A First-Order Logic with Frames

CHRISTOF LODING, RWTH Aachen University
P. MADHUSUDAN, University of Illinois at Urbana-Champaign
ADITHYA MURALI, University of Illinois at Urbana-Champaign
LUCAS PEÑA, University of Illinois at Urbana-Champaign

We propose a novel logic, called Frame Logic (FL), that extends first-order logic (with recursive definitions) using a construct $Sp(\cdot)$ that captures the implicit supports of formulas—the precise subset of the universe upon which their meaning depends. Using such supports, we formulate proof rules that facilitate frame reasoning elegantly when the underlying model undergoes change. We show that the logic is expressive by expressing several properties of data-structures and also exhibit a translation from a separation logic that defines precise formulas to frame logic. Finally, we design a program logic based on frame logic for reasoning with programs that dynamically update heaps that facilitates local specifications and frame reasoning. This program logic consists of both localized proof rules as well as rules that derive the weakest tightest preconditions in FL.

1 INTRODUCTION

Program logics for expressing and reasoning with programs that dynamically manipulate heaps is an active area of research. The research on separation logic has argued convincingly that it is highly desirable to have localized logics that talk about small states (heaplets rather than the global heap), and the ability to do frame reasoning. Separation logic achieves this objective by having a tight heaplet semantics and using special operators, primarily a separating conjunction operator \ast and a separating implication operator (the magic wand $\neg\ast$).

In this paper, we ask a fundamental question: can classical logics (such as FOL and FOL with recursive definitions) be extended to support localized specifications and frame reasoning? Can we utilize classical logics for reasoning effectively with programs that dynamically manipulate heaps, with the aid of local specifications and frame reasoning?

The primary contribution of this paper is to endow a classical logic, namely first-order logic with recursive definitions (with least fixpoint semantics) with frames and frame reasoning.

A formula in first-order logic with recursive definitions (FO-RD) can be naturally associated with a support—the subset of the universe that determines its truth. By using a more careful syntax such as guarded quantification (which continue to have a classical interpretation), we can in fact write specifications in FO-RD that have very precise supports. For example, we can write the property that x points to a linked list using a formula $\text{list}(x)$ written purely in FO-RD so that its support is precisely the locations constituting the linked list.

In this paper, we define an extension of FO-RD, called Frame Logic (FL) where we allow a new operator $Sp(\alpha)$ which, for an FO-RD formula α, evaluates to the support of α. Logical formulas thus have access to supports and can use it to separate supports and do frame reasoning. For instance, the logic can now express that two lists are disjoint by asserting that $Sp(\text{list}(x)) \cap Sp(\text{list}(y)) = \emptyset$. It can then reason that in such a program heap configuration, if the program manipulates only the locations in $Sp(\text{list}(y))$ then $\text{list}(x)$ would continue to be true, using simple frame reasoning.
The addition of the support operator to FO-RD yields a very natural logic for expressing specifications. First, formulas in FO-RD have the same meaning as they have in FL, i.e. retain their classical meaning. For example, \(f(x) = y \) (written in FO-RD as well as in FL) is true in any model that has \(x \) mapped by \(f \) to \(y \), instead of a specialized “tight heaplet semantics” that demands that \(f \) be a partial function with domain only consisting of the location \(x \). The support that contains only the location \(x \) is important, of course, but is made accessible using the support operator, i.e., \(S(p(x) = y) \) gives the set containing the sole element interpreted for \(x \). Second, expressing properties of supports can be naturally expressed using set operations. To state that the lists pointed to by \(x \) and \(y \) are disjoint, we don’t need special operators (such as the \(* \) operator in separation logic) but can express this as \(S(p(list(x)) \cap S(p(list(y))) = \emptyset \).

Third, when used to annotate programs, pre/post specifications for programs written in FL can be made implicitly local by interpreting their supports to be the localized heaplets accessed and modified by programs, yielding frame reasoning akin to separation logic. Finally, as we show in this paper, the weakest precondition of specifications across basic loop-free paths can be expressed in FL, making it an expressive logic for reasoning with programs. Separation logic, on the other hand, introduces the magic wand operator \(\neg * \) in order to add enough expressiveness to be closed under weakest preconditions [Reynolds 2002].

We define frame logic (FL) as an extension of FO with recursive definitions (FO-RD) that operates over a multi-sorted universe, with a particular foreground sort (used to model locations on the heap) and several background sorts that are defined using separate theories. Supports for formulas are defined with respect to the foreground sort only. A special background sort of sets of elements of the foreground sort is assumed and is used to model the supports for formulas. For any formula \(\varphi \) in the logic, we have a special formula \(S(p(\varphi)) \) that captures its support, a set of locations in the foreground sort, that intuitively corresponds to the precise subdomain of functions the value of \(\varphi \) depends on.

We then prove a frame theorem (Theorem 3.4) that says that changing a model \(M \) by changing the interpretation of functions that are not in the support of \(\varphi \) will not affect the truth of the formula \(\varphi \). This theorem then directly supports frame reasoning; if a model satisfies \(\varphi \) and the model is changed so that the changes made are disjoint from the support of \(\varphi \), then \(\varphi \) will continue to hold. We also show that FL formulae can be translated to vanilla FO-RD logic (without support operators); in other words, the semantics for the support of a formula can be captured in FO-RD itself. Consequently, we can use any FO-RD reasoning mechanism (proof systems [Kovács et al. 2017; Kovács and Voronkov 2013] or heuristic algorithms such as the natural proof techniques [Madhusudan et al. 2012; Pek et al. 2014; Qiu et al. 2013; Suter et al. 2010]) to reason with FL formulae.

We illustrate our logic using several examples drawn from program verification; we show how to express various data-structure definitions and the elements they contain and various measures for them using FL formulas (e.g., linked lists, sorted lists, list segments, binary search trees, AVL trees, lengths of lists, heights of trees, set of keys stored in the datastructure, etc.)

While the sensibilities of our logic are definitely inspired by separation logic, there are some fundamental differences (beyond the fact that our logic extends the syntax and semantics of classical logics with a special frame operator, avoiding operators such as \(* \) and \(\neg * \)). In separation logic, there can be many supports of a formula (also called heaplets)— a heaplet for a formula is one that supports its truth. For example, a formula of the form \(\alpha \lor \beta \) can have a heaplet that supports the truth of \(\alpha \) or one that supports the heap of \(\beta \). However, the philosophy that we follow in our design is to have a single support that supports the truth value of a formula, whether it be true or false. Consequently, the support of the formula \(\alpha \lor \beta \) is the union of the supports of the formulas \(\alpha \) and \(\beta \).

The above design choice of the support being determined by the formula has several consequences that lead to a deviation from separation logic. For instance, the support of the negation of a formula \(\varphi \) is the same as the support of \(\varphi \). And the support of the formula \(f(x) = y \) and its negation are
the same, namely the singleton location interpreted for x. In separation logic, the corresponding formula will have the same heaplet but its negation will include all other heaplets. The choice of having determined supports or heaplets is not new, and there have been several variants and sublogics of separation logics that have been explored. For example, the logic DRYAD [Pek et al. 2014; Qiu et al. 2013] is a separation logic that insists on determined heaplets to support automated reasoning, and the precise fragment of separation logic studied in the literature [O’Hearn et al. 2004] defines a sublogic that has (essentially) determined heaplets. The second main contribution in this paper is to show that this fragment of separation logic (with slight changes for technical reasons) can be translated to frame logic, such that the unique heaplet that satisfies a precise separation logic formula is its support of the corresponding formula in FL.

The third main contribution of this paper is a program logic based on frame logic for a simple while-programming language destructively updating heaps. We present two kinds of proof rules for reasoning with such programs annotated with pre- and post-conditions written in frame logic. The first set of rules are local rules that axiomatically define the semantics of the program, using the smallest supports for each command. We also give a frame rule that allows arguing preservation of properties whose supports are disjoint from the heaplet modified by a program. These rules are similar to analogous rules in separation logic. The second class of rules work to give a weakest tightest precondition for any postcondition with respect to non-recursive programs. In separation logic, the corresponding rules for weakest preconditions are often expressed using separating implication (the magic-wand operator). Given a small change made to the heap and a postcondition β, the formula $\alpha \rightarrow* \beta$ captures all heaplets H where if a heaplet that satisfies α is joined with H, then β holds. When α describes the change effected by the program, $\alpha \rightarrow* \beta$ captures, essentially, the weakest precondition. However, the magic wand is a very powerful operator that calls for quantifications over heaplets and submodels, and hence involves second order quantification. In our logic, we show that we can capture the weakest precondition with only first-order quantification, and hence first-order frame logic is closed under weakest preconditions across non-recursive programs blocks. This means that when inductive loop invariants are given also in FL, reasoning with programs reduces to reasoning with FL. By translating FL to pure FO-RD formulas, we can use FO-RD reasoning techniques to reason with FL, and hence programs.

In summary, the contributions of this paper are:

- A logic, called frame logic (FL) that extends FO-RD with a support operator and supports frame reasoning. We illustrate FL with specifications of various data-structures. We also show a translation to equivalent formulas in FO-RD.
- A program logic and proof system based on FL including local rules and rules for computing the weakest tightest precondition. FL reasoning required for proving programs is hence reducible to reasoning with first-order logic.
- A separation logic fragment that can generate only precise formulas, and a translation from this logic to equivalent FL formulas.

The paper is organized as follows. Section 2 sets up first-order logics with recursive definitions (FO-RD), with a special uninterpreted foreground sort of locations and several background sorts/theories. Section 3 introduces Frame Logic (FL), its syntax, its semantics which includes a discussion of design choices for supports, proves the frame theorem for FL, shows a reduction of FL to FO-RD, and illustrates the logic by defining several datastructures and their properties using FL. Section 4 develops a program logic based on FL, illustrating them with proofs of verification of programs. Section 5 introduces a precise fragment of separation logic and shows its translation to FL. Section 6 discusses comparisons of FL to separation logic, and some existing first-order
techniques that can be used to reason with FL. Section 7 compares our work with the research literature and Section 8 has concluding remarks.

2 BACKGROUND: FIRST-ORDER LOGIC WITH RECURSIVE DEFINITIONS AND UNINTERPRETED COMBINATIONS OF THEORIES

The base logic upon which we build frame logic is a first order logic with recursive definitions (FO-RD), where we allow a foreground sort and several background sorts, each with their individual theories (like arithmetic, sets, arrays, etc.). The foreground sort and functions involving the foreground sort are uninterpreted (not constrained by theories). This hence can be seen as an uninterpreted combination of theories over disjoint domains. This logic has been defined and used to model heap verification before [Löding et al. 2018].

We will build frame logic over such a framework where supports are modeled as subsets of elements of the foreground sort. When modeling heaps in program verification using logic, the foreground sort will be used to model locations of the heap, uninterpreted functions from the foreground sort to foreground sort will be used to model pointers, and uninterpreted functions from the foreground sort to the background sort will model data fields. Consequently, supports will be subsets of locations of the heap, which is appropriate as these are the domains of pointers that change when a program updates a heap.

We define a signature as \(\Sigma = (S; C; F; R; I) \), where \(S \) is a finite non-empty set of sorts. \(C \) is a set of constant symbols, where each \(c \in C \) has some sort \(\tau \in S \). \(F \) is a set of function symbols, where each function \(f \in F \) has a type of the form \(\tau_1 \times \ldots \times \tau_m \rightarrow \tau \) for some \(m \), with \(\tau_1, \tau \in S \). The sets \(R \) and \(I \) are (disjoint) sets of relation symbols, where each relation \(R \in R \cup I \) has a type of the form \(\tau_1 \times \ldots \times \tau_m \). The set \(I \) contains those relation symbols for which the corresponding relations are inductively defined using formulas (details are given below), while those in \(R \) are given by the model.

We assume that the set of sorts contains a designated “foreground sort” denoted by \(\sigma_f \). All the other sorts in \(S \) are called background sorts, and for each such background sort \(\sigma \) we allow the constant symbols of type \(\sigma \), function symbols that have type \(\sigma^n \rightarrow \sigma \) for some \(n \), and relation symbols have type \(\sigma^m \) for some \(m \), to be constrained using an arbitrary theory \(T_\sigma \).

A formula in first-order logic with recursive definitions (FO-RD) over such a signature is of the form \((D, \alpha) \), where \(D \) is a set of recursive definitions of the form \(R(\vec{x}) := \rho_R(\vec{x}) \), where \(R \in I \) and \(\rho_R(\vec{x}) \) is a first-order logic formula, in which the relation symbols from \(I \) occur only positively. \(\alpha \) is also a first-order logic formula over the signature. We assume \(D \) has at most one definition for any inductively defined relation, and that the formulas \(\rho_R \) and \(\alpha \) use only inductive relations defined in \(D \).

The semantics of a formula is standard; the semantics of inductively defined relations are defined to be the least fixpoints that satisfies the relational equations, and the semantics of \(\alpha \) is the standard one defined using these semantics for relations. We do not formally define the semantics, but we will formally define the semantics of frame logic (discussed in the next section and whose semantics is defined in the Appendix) which is an extension of FO-RD.

3 FRAME LOGIC

We now define Frame Logic, the central contribution of this paper.

We consider a universe with a foreground sort and several background sorts, each restricted by individual theories, as described in Section 2. We consider the elements of the foreground sort to be locations and consider supports as sets of locations, i.e., sets of elements of the foreground sort. We hence introduce a background sort \(\sigma_S(f) \); the elements of sort \(\sigma_S(f) \) model sets of elements of sort \(\sigma_f \). Among the relation symbols in \(R \) there is the relation \(\in \) of type \(\sigma_f \times \sigma_S(f) \) that is interpreted...
A First-Order Logic with Frames

FL formulas: \(\phi ::= t_\tau = t_\tau \mid R(t_{\tau_1}, \ldots, t_{\tau_m}) \mid \phi \land \phi \mid \neg \phi \mid \text{ite}(\gamma : \phi, \phi') \mid \exists y : \gamma, \phi \)

where \(\tau \in S, R \in \mathcal{R} \cup \mathcal{I} \) of type \(\tau_1 \times \cdots \times \tau_m \)

Guards: \(\gamma ::= t_\tau = t_\tau \mid R(t_{\tau_1}, \ldots, t_{\tau_m}) \mid \gamma \land \gamma \mid \neg \gamma \mid \text{ite}(\gamma : \gamma', \gamma) \mid \exists y : \gamma, \gamma \)

where \(\tau \in S \setminus \{\sigma_S\}, R \in \mathcal{R} \) of type \(\tau_1 \times \cdots \times \tau_m \)

Terms: \(t_\tau ::= c \mid x \mid f(t_{\tau_1}, \ldots, t_{\tau_m}) \mid \text{ite}(y : t_\tau, t_\tau') \mid \text{Sp}(\phi) \) (if \(\tau = \sigma_S \)) \(\mid \text{Sp}(t_\tau') \) (if \(\tau = \sigma_S \))

where \(\tau, \tau' \in S \) with constants \(c \), variables \(x \) of type \(\tau \), \(f \) of type \(\tau_1 \times \cdots \times \tau_m \rightarrow \tau \)

Recursive definitions: \(R(\bar{x}) := \rho_R(\bar{x}) \) with \(R \in \mathcal{I} \) of type \(\tau_1 \times \cdots \times \tau_m \) with \(\bar{t}_i \in S \setminus \{\sigma_S\} \)

frame logic formula \(\rho_R(\bar{x}) \) in which all relation symbols \(R' \in \mathcal{I} \) occur only positively or inside a support expression.

Fig. 1. Syntax of frame logic: \(\gamma \) for guards, \(t_\tau \) for terms of sort \(\tau \), and general formulas \(\phi \). Guards cannot use inductively defined relations or support expressions.

as the usual element relation. The signature includes the standard operations on sets \(\cup, \cap \) with the usual meaning, the unary function \(\overline{\cdot} \) that is interpreted as the complement on sets (with respect to the set of foreground elements), and the constant \(\emptyset \). For these functions and relations we assume a background theory \(B_{\sigma_S} \) that is an axiomatisation of the theory of sets. We further assume that the signature does not contain any other function or relation symbols involving the sort \(\sigma_S \).

For reasoning about changes of the structure over the locations, we assume that there is a subset \(F_m \subseteq F \) of function symbols that are declared mutable. These functions can be used to model mutable pointer fields in the heap that can be manipulated by a program and thus change. Formally, we require that each \(f \in F_m \) has at least one argument of sort \(\sigma_f \).

For variables, let \(\text{Var}_\tau \) denote the set of variables of sort \(\tau \), where \(\tau \in S \). We let \(\overline{x} \) abbreviate tuples \(x_1, \ldots, x_n \) of variables.

Our frame logic over uninterpreted combinations of theories is a variant of first-order logic with recursive definitions that has an additional operator \(\text{Sp}(\phi) \) that assigns to each formula \(\phi \) a set of elements (its support or “heapset” in the context of heaps) in the foreground universe. So \(\text{Sp}(\phi) \) is a term of sort \(\sigma_S \).

The intended semantics of \(\text{Sp}(\phi) \) (and of the inductive relations) is defined formally as a least fixpoint of a set of equations. This semantics is presented in Section 3.3. In the following, we first define the syntax of the logic, then discuss informally the various design decisions for the semantics of supports, before proceeding to a formal definition of the semantics.

3.1 Syntax of Frame Logic (FL)

The syntax of our logic is given in the grammar in Figure 1. This extends FO-RD with the rule for building support expressions, which are terms of sort \(\sigma_S \) of the form \(\text{Sp}(\alpha) \) for a formula \(\alpha \), or \(\text{Sp}(t) \) for a term \(t \).

The formulas defined by \(\gamma \) are used as guards in existential quantification and in the if-then-else-operator, which is denoted by \(\text{ite} \). The restriction compared to general formulas is that guards cannot use inductively defined relations (\(R \) ranges only over \(\mathcal{R} \) in the rule for \(\gamma \), and over \(\mathcal{R} \cup \mathcal{I} \) in the rule for \(\phi \)), nor terms of sort \(\sigma_S \) and thus no support expressions (\(\tau \) ranges over \(S \setminus \{\sigma_S\} \)) in the rules for \(\gamma \) and over \(S \) in the rule for \(\phi \). The requirement that the guard does not use the inductive relations and support expressions is used later to ensure the existence of least fixpoints for defining semantics of inductive definitions. The semantics of an \(\text{ite} \)-formula \(\text{ite}(\gamma : \alpha, \beta) \) is the same as the one of \((\gamma \land \alpha) \lor (\neg \gamma \land \beta) \); however, the supports of the two formulas will turn out to be different (i.e., \(\text{Sp}(\text{ite}(\gamma : \alpha, \beta)) \) and \(\text{Sp}((\gamma \land \alpha) \lor (\neg \gamma \land \beta)) \) are different), as explained in Section 3.2.
The same is true for existential formulas, i.e., $\exists y : y.\varphi$ has the same semantics as $\exists y. y \land \varphi$ but, in general, has a different support.

For recursive definitions (throughout the paper, we use the terms recursive definitions and inductive definitions with the same meaning), we require that the relation R that is defined does not have arguments of sort $\sigma_S(t)$. This is another restriction in order to ensure the existence of a least fixpoint model in the definition of the semantics.\(^1\)

3.2 Semantics of Support Expressions: Design Decisions

We discuss the design decisions that go behind the semantics of the support operator Sp in our logic, and then give an example for the support of an inductive definition. The formal conditions that the supports should satisfy are stated in the equations in Figure 2, and are explained in Section 3.3. Here, we start by an informal discussion.

The first decision is to have every formula define uniquely a support, which roughly captures the subdomain of mutable functions that a formula φ’s truthhood depends on, and have $Sp(\varphi)$ evaluate to it.

The choice for supports of atomic formulae are relatively clear. An atomic formula of the kind $f(x) = y$, where x is of the foreground sort and f is a mutable function, has as its support the singleton set containing the location interpreted for x. And atomic formulas that do not involve mutable functions over the foreground have an empty support. Supports for terms can also be similarly defined. The support of a conjunction $\alpha \land \beta$ should clearly be the union of the supports of the two formulas.

Remark 1. In traditional separation logic, each pointer field is stored in a separate location, using integer offsets. However, in our work, we view pointers as references and disallow pointer arithmetic. A more accurate heaplet for such references can be obtained by taking heaplet to be the pair (x,f) (see [Parkinson and Bierman 2005]), capturing the fact that the formula depends only on the field f of x. Such accurate heaplets can be captured in FL as well— we can introduce a non-mutable field lookup pointer L_f and use $x.L_f.f$ in programs instead of $x.f$.

What should the support of a formula $\alpha \lor \beta$ be? The choice we make here is that its support is the union of the supports of α and β. Note that in a model where α is true and β is false, we still include the heaplet of β in $Sp(\alpha \lor \beta)$. In a sense, this is an overapproximation of the support as far as frame reasoning goes, as surely preserving the model’s definitions on the support of α will preserve the truth of α, and hence of $\alpha \lor \beta$.

However, we prefer the support to be the union of the supports of α and β. We think of the support as the subdomain of the universe that determines the meaning of the formula, whether it be true or false. Consequently, we would like the support of a formula and its negation to be the same. Given that the support of the negation of a disjunction, being a conjunction, is the union of the frames of α and β, we would like this to be the support.

Separation logic makes a different design decision. Logical formulas are not associated with tight supports, but rather, the semantics of the formula is defined for models with given supports/heaplets, where the idea of a heaplet is whether it supports the truthhood of a formula (and not its falsehood). For example, for a model, the various heaplets that satisfy $\neg(f(x) = y)$ in separation logic would include all heaplets where the location of x is not present, which does not coincide with the notion we have chosen for supports. However, for positive formulas, separation logic handles supports more accurately, as it can associate several supports for a formula, yielding two heaplets for formulas.

\(^1\)It would be sufficient to restrict formulas of the form $R(t_1, \ldots, t_n)$ for inductive relations R to not contain support expressions as subterms.
of the form $\alpha \lor \beta$ when they are both true in a model. The decision to have a single support for a
formula compels us to take the union of the supports to be the support of a disjunction.

There are situations, however, where there are disjunctions $\alpha \lor \beta$, where only one of the disjuncts
can possibly be true, and hence we would like the support of the formula to be the support of the
disjunct that happens to be true. We therefore introduce a new syntactical form $ite(\gamma : \alpha, \beta)$ in
frame logic, whose heaplet is the union of the supports of γ and α, if γ is true, and the supports of
γ and β if γ is false. While the truthhood of $ite(\gamma : \alpha, \beta)$ is the same as that of $(\gamma \land \alpha) \lor (\neg \gamma \land \beta)$,
it supports are potentially smaller, allowing us to write formulas with tighter supports to support
better frame reasoning. Note that the support of $ite(\gamma : \alpha, \beta)$ and its negation $ite(\gamma : \neg \alpha, \neg \beta)$ are
the same, as we desired.

Turning to quantification, the support for a formula of the form $\exists x.\alpha$ is hard to define, as
its truthhood could depend on the entire universe. We hence provide a mechanism for guarded
quantification, in the form $\exists x : \gamma.\alpha$. The semantics of this formula is that there exists some location
that satisfies the guard γ, for which α holds. The support for such a formula includes the support of
the guard, and the supports of α when x is interpreted to be a location that satisfies γ. For example,
$\exists x : (x = f(y)).\ g(x) = z$ has as its support the locations interpreted for y and $f(y)$ only.

For a formula $R(\overline{x})$ with an inductive relation R defined by $R(\overline{x}) := \rho_{R}(\overline{x})$, the support descends
into the definition, changing the variable assignment of the variables in \overline{x} from the inductive
definition to the terms in \overline{t}. Furthermore, it contains the elements to which mutable functions are
applied in the terms in \overline{t}.

Recursive definitions are designed such that the evaluation of the equations for the support
expressions is independent of the interpretation of the inductive relations. The equations mainly
depend on the syntactic structure of formulas and terms. Only the semantics of guards, and the
semantics of subterms under a mutable function symbol play a role. For this reason, we disallow
guards to contain recursively defined relations or support expressions. We also require that the
only functions involving the sort $\sigma_{S(\ell)}$ are the standard functions involving sets. Thus, subterms of
mutable functions cannot contain support expressions (which are of sort $\sigma_{S(\ell)}$) as subterms.

These restrictions ensure that there indeed exists a unique simultaneous least solution of the
equations for the inductive relations and the support expressions.

We end this section with an example.

Example 3.1. Consider the definition of a predicate $tree(x)$ w.r.t. two unary mutable functions ℓ
and r:

$$
tree(x) := ite(x = \text{Nil} : \text{true}, \alpha)$$

where

$$
\alpha = \exists x_\ell, x_r : (x_\ell = \ell(x) \land x_r = r(x)).tree(x_\ell) \land tree(x_r) \land
Sp(tree(x_\ell)) \cap Sp(tree(x_r)) = \emptyset \land \neg(x \in Sp(tree(x_\ell)) \cup Sp(tree(x_r)))
$$

The above inductive definition defines binary trees with pointer fields ℓ and r for left- and right-pointers. The definition says that x points to a tree if either x is equal to Nil (and in this case its
support is empty), or $\ell(x)$ and $r(x)$ are trees and its supports are disjoint. The last conjunct says that
x does not belong to the support of the left and right subtrees; this condition is, strictly speaking,
not required to define trees (as least fixpoint semantics will ensure this anyway). Note that the
access to the support of formulas eases defining disjointness of heaplets, like in separation logic.
The support of $tree(x)$ turns out to be precisely the nodes that are reachable from x using ℓ and r
pointers, as one would desire. Consequently, if a pointer outside this support changes, we would be
able to conclude using frame reasoning that the truth value of $tree(x)$ does not change. \square
\[
\begin{align*}
[Sp(c)]_M(v) &= [Sp(x)]_M(v) = 0 \text{ for a constant } c \text{ or variable } x \\
[Sp(f(t_1, \ldots, t_n))]_M(v) &= \bigcup_{i \textup{ with } t_i \textup{ of sort } \sigma_f} \{[t_i]_M, v\} \cup \bigcup_{i=1}^n [Sp(t_i)]_M(v) \quad \text{if } f \in F_m \\
[Sp(\varphi)]_M(v) &= [Sp(f)]_M(v) \\
[Sp(\neg \varphi)]_M(v) &= \bigcup_{i=1}^n [Sp(\neg \varphi)]_M(v) \quad \text{if } f \notin F_m \\
[Sp(\exists y: \gamma. \varphi)]_M(v) &= \bigcup_{u \in D_y} [Sp(\gamma)]_M(v[y \leftarrow u]) \cup [Sp(\varphi)]_M(v[y \leftarrow u]) \\
&\qquad \text{for } R \in \mathcal{I} \text{ with definition } R(\overline{x}) := \rho_{\mathcal{I}}(\overline{x}).
\end{align*}
\]

Fig. 2. Equations for support expressions.

3.3 Formal Semantics of Frame Logic

Before we explain the semantics of the support expressions and inductive definitions, we introduce a semantics that treats support expressions and the symbols from \(\mathcal{I} \) as uninterpreted symbols. We refer to this semantics as uninterpreted semantics. For the formal definition we need to introduce some terminology first.

An occurrence of a variable \(x \) in a formula is free if it does not occur under the scope of a quantifier for \(x \). By renaming variables we can assume that each variable only occurs freely in a formula or is quantified by exactly one quantifier in the formula. We write \(\varphi(x_1, \ldots, x_k) \) to indicate that the free variables of \(\varphi \) are among \(x_1, \ldots, x_k \). Substitution of a term \(t \) for all free occurrences of variable \(x \) in a formula \(\varphi \) is denoted \(\varphi[t/x] \). Multiple variables are substituted simultaneously as \(\varphi[t_1/x_1, \ldots, t_n/x_n] \). We abbreviate this by \(\varphi[\overline{t}/\overline{x}] \).

A model is of the form \(M = (U; [\cdot]_M) \) where \(U = (U_\sigma)_{\sigma \in \mathcal{S}} \) contains a universe for each sort, and an interpretation function \([\cdot]_M \). The universe for the sort \(\sigma_{\mathcal{I}(t)} \) is the powerset of the universe for \(\sigma_t \).

A variable assignment is a function \(v \) that assigns to each variable a concrete element from the universe for the sort of the variable. For a variable \(x \), we write \(D_x \) for the universe of the sort of \(x \) (the domain of \(x \)). For a variable \(x \) and an element \(u \in D_x \) we write \(v[x \leftarrow u] \) for the variable assignment that is obtained from \(v \) by changing the value assigned for \(x \) to \(u \).

The interpretation function \([\cdot]_M \) maps each constant \(c \) of sort \(\sigma \) to an element \([c]_M \in U_\sigma \), each function symbol \(f : \tau_1 \times \ldots \times \tau_m \rightarrow \tau \) to a concrete function \([f]_M : U_{\tau_1} \times \ldots \times U_{\tau_m} \rightarrow U_\tau \), and each relation symbol \(R \in \mathcal{R} \cup \mathcal{I} \) of type \(\tau_1 \times \ldots \times \tau_m \) to a concrete relation \([R]_M \subseteq U_{\tau_1} \times \ldots \times U_{\tau_m} \). These interpretations are assumed to satisfy the background theories (see Section 2). Furthermore, the interpretation function maps each expression of the form \(\varphi(x) \) to a function \([\varphi(x)]_M \) that assigns to each variable assignment \(v \) a set \([\varphi(x)]_M(v) \) of foreground elements. The set \([\varphi(x)]_M(v) \) corresponds to the support of the formula when the free variables are interpreted by \(v \). Similarly, \([Sp(\varphi)]_M \) is a function from variable assignments to sets of foreground elements.
Based on such models, we can define the semantics of terms and formulas in the standard way. The only construct that is non-standard in our logic are terms of the form $Sp(\phi)$, for which the semantics is directly given by the interpretation function. We write $[t]_{M,v}$ for the interpretation of a term t in M with variable assignment v. With this convention, $[Sp(\phi)]_{M,v}$ denotes the same thing as $[Sp(\phi)]_{M,v}$. As usual, we write $M,v \models \phi$ to indicate that the formula ϕ is true in M with the free variables interpreted by v, and $[\phi]_M$ denotes the relation defined by the formula ϕ with free variables \bar{x}.

We refer to the above semantics as the uninterpreted semantics of ϕ because we do not give a specific meaning to inductive definitions and support expressions.

Now let us define the true semantics for FL. The relation symbols $R \in I$ represent inductively defined relations, which are defined by equations of the form $R(\bar{x}) := \rho_R(\bar{x})$ (see Figure 1).

In the intended meaning, R is interpreted as the least relation that satisfies the equation

$$[R(\bar{x})]_M = [\rho_R(\bar{x})]_M.$$

The usual requirement for the existence of a unique least fixpoint of the equation is that the definition of R does not negatively depend on R. For this reason, we require that in $\rho_R(\bar{x})$ each occurrence of an inductive predicate $R' \in I$ is either inside a support expression, or it occurs under an even number of negations.\(^2\)

Every support expression is evaluated on a model to a set of foreground elements (under a given variable assignment v). Formally, we are interested in models in which the support expressions are interpreted to be the sets that correspond to the smallest solution of the equations given in Figure 2. The intuition behind these definitions was explained in Section 3.2

Example 3.2. Consider the inductive definition $\text{tree}(x)$ defined in Example 3.1. To check whether the equations from Figure 2 indeed yield the desired support, note that the supports of $Sp(x = \text{nil}) = Sp(x) = Sp(\text{true}) = \emptyset$. Below, we write $[u]$ for a variable assignment that assigns u to the free variable of the formula that we are considering. Then we obtain that $Sp(\text{tree}(x))[u] = \emptyset$ if $u = \text{nil}$, and $Sp(\text{tree}(x))[u] = Sp(\alpha)[u]$ if $x \neq \text{nil}$. The formula α is existentially quantified with guard $x_L = \ell(x) \land x_R = r(x)$. The support of this guard is $\{u\}$ because mutable functions are applied to x. The support of the remaining part of α is the union of the supports of $\text{tree}(x_L)[\ell(u)]$ and $\text{tree}(x_R)[r(u)]$ (the assignments for x_L and x_R that make the guard true). So we obtain for the case that $u \neq \text{nil}$ that the element u enters the support, and the recursion further descends into the subtrees of u, as desired. \(\Box\)

A frame model is a model in which the interpretation of the inductive relations and of the support expressions corresponds to the least solution of the respective equations (see Appendix 9.1 for a rigorous formalisation).

Proposition 3.3. For each model M, there is a unique frame model over the same universe and the same interpretation of the constants, functions, and non-inductive relations.

3.4 A Frame Theorem

The support of a formula can be used for frame reasoning in the following sense: if we modify a model M by changing the interpretation of the mutable functions (e.g., a program modifying pointers), then truth values of formulas do not change if the change happens outside the support of the formula. This is formalized below.

Given two models M, M' over the same universe, we say that M' is a mutation of M if $[R]_M = [R]_{M'}, [c]_M = [c]_{M'}$, and $[f]_M = [f]_{M'}$, for all constants c, relations $R \in R$, and functions ρ_R.\(^2\)

As usual, it would be sufficient to forbid negative occurrences of inductive predicates in mutual recursion.
We capture these supports by an inductively defined relation Sp, which defines a function from interpretations of free variables to sets of foreground elements. The semantics of Sp is stable on arguments with $f \in F \setminus F_m$. In other words, M can only be different from M' on the interpretations of the mutable functions, the inductive relations, and the support expressions.

Given a subset $X \subseteq U_q$ of the elements from the foreground universe, we say that the \textit{mutation is stable on} X if the values of the mutable functions did not change on arguments from X, that is, $[f]_M(u_1, \ldots, u_n) = [f]_{M'}(u_1, \ldots, u_n)$ for all mutable functions $f \in F_m$ and all appropriate tuples u_1, \ldots, u_n of arguments with $\{u_1, \ldots, u_n\} \cap X \neq \emptyset$.

\textbf{Theorem 3.4 (Frame Theorem).} Let M, M' be frame models such that M' is a mutation of M that is stable on $X \subseteq U_q$, and let ν be a variable assignment. Then $M, \nu \models \alpha$ iff $M', \nu \models \alpha$ for all formulas α with $[Sp(\alpha)]_M(\nu) \subseteq X$, and $[\overline{t}]_{M', \nu} = [\overline{t}]_{M', \nu}$ for all terms t with $[Sp(t)]_M(\nu) \subseteq X$.

\textbf{Proof.} See Appendix 9.2. \hfill \Box

3.5 Reduction from Frame Logic to FO-RD

The only extension of frame logic compared to FO-RD is the frame operator Sp, which defines a function from interpretations of free variables to sets of foreground elements. The semantics of the frame operator can be captured within FO-RD itself, so reasoning within frame logic can be reduced to reasoning within FO-RD.

A formula $\alpha(y)$ with $y = y_1, \ldots, y_m$ has one support for each interpretation of the free variables. We capture these supports by an inductively defined relation $Sp_\alpha(y, z)$ of arity $m + 1$ such that for each frame model M, we have $(u_1, \ldots, u_m, u) \in [Sp_\alpha]_M$ if $u \in [Sp(\alpha)]_M(\nu)$ for the interpretation ν that interprets y_i as u_i.

Since the semantics of $Sp(\alpha)$ is defined over the structure of α, we introduce corresponding inductively defined relations Sp_β and Sp_t for all subformulas β and subterms t of either α or of a formula ρ_R for $R \in F$.

The equations for supports from Figure 2 can be expressed by inductive definitions for the relations Sp_β. The translations are shown in Figure 3.
Table 1. Various definitions of data structures and other predicates in Frame Logic

<table>
<thead>
<tr>
<th>Data Structure/Predicate</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>list(x)</td>
<td>(\text{ite}(x = \text{nil} : \top, \exists z : z = \text{next}(x). \text{list}(z) \land x \notin \text{Sp}(\text{list}(z))))</td>
</tr>
<tr>
<td>singly linked list</td>
<td>(\text{ite}(x = \text{nil} : \top, \text{ite}(\text{next}(x) = \text{nil} : \top, \exists z : z = \text{next}(x). \text{prev}(z) = x \land \text{dll}(z) \land x \notin \text{Sp}(\text{dll}(z))))</td>
</tr>
<tr>
<td>dll(x)</td>
<td>(\text{ite}(x = y : \top, \exists z : z = \text{next}(x). \text{iseg}(z, y) \land x \notin \text{Sp}(\text{iseg}(z, y))))</td>
</tr>
<tr>
<td>list segment</td>
<td>(\text{ite}(x = \text{nil} : 0, \exists z : z = \text{next}(x). \text{length}(z, n - 1)))</td>
</tr>
<tr>
<td>length(x, n)</td>
<td>(\text{ite}(x = \text{nil} : \top, \text{ite}(\text{next}(x) = \text{nil} : \top, \exists z : z = \text{next}(x). \text{key}(x) \leq \text{key}(z) \land \text{sorted}(z) \land x \notin \text{Sp}(\text{sorted}(z)))))</td>
</tr>
<tr>
<td>sorted list</td>
<td>(\text{ite}(x = \text{nil} : M = \emptyset, \exists z, M_1 : z = \text{next}(x). M = M_1 \cup m{\text{key}(x) \land \text{mkeys}(z, M_1) \land x \notin \text{Sp}(\text{mkeys}(z, M_1))))</td>
</tr>
<tr>
<td>mkeys(x, M)</td>
<td>(\text{ite}(x = \text{nil} : M = \emptyset, \exists z, M_1 : z = \text{next}(x). M = M_1 \cup m{\text{key}(x) \land \text{mkeys}(z, M_1) \land x \notin \text{Sp}(\text{mkeys}(z, M_1))))</td>
</tr>
<tr>
<td>binary tree</td>
<td>(\text{ite}(x = \text{nil} : \top, \exists x, n, r, n_2 : x = \text{left}(x) \land r = \text{right}(x). \text{bst}(r) \land \text{bst}(x) \land x \notin \text{Sp}(\text{bst}(r)) \land \text{Sp}(\text{bst}(r)) \land \text{Sp}(\text{bst}(x)) = \emptyset))</td>
</tr>
<tr>
<td>bst(x)</td>
<td>(\text{ite}(x = \text{nil} : \top, \exists x, n, r, n_2 : x = \text{left}(x) \land r = \text{right}(x). \text{bst}(r) \land \text{bst}(x) \land x \notin \text{Sp}(\text{bst}(r)) \land \text{Sp}(\text{bst}(r)) \land \text{Sp}(\text{bst}(x)) = \emptyset))</td>
</tr>
<tr>
<td>height of binary tree</td>
<td>(\text{ite}(x = \text{nil} : n = 0, \exists x, n_1, n_2 : x = \text{left}(x) \land r = \text{right}(x). \text{height}(r, n_2) \land \text{ite}(n_1 > n_2 : n_1 + 1, n = n_2 + 1)))</td>
</tr>
<tr>
<td>priorities(x, M)</td>
<td>(\text{ite}(x = \text{nil} : M = \emptyset, \exists x, n, r, M_1, M_2 : x = \text{left}(x) \land r = \text{right}(x). M = M_1 \cup M_2 \cup {\text{priority}(x) \land \text{priorities}(r, M_1) \land \text{priorities}(x, M_2)))</td>
</tr>
<tr>
<td>set of priorities in a binary tree</td>
<td>(\text{ite}(x = \text{nil} : \top, \exists x, n, r, r_2 : x = \text{left}(x) \land r = \text{right}(x). r \neq \text{nil} \Rightarrow \text{key}(r) \leq \text{key}(x) \land \text{priority}(r) < \text{priority}(x) \land \text{treap}(r) \land \text{treap}(\text{right}(x)) \land \text{priorities}(x, M_2)) \land \text{Sp}(\text{treap}(r)) \land \text{Sp}(\text{treap}(\text{right}(x))) = \emptyset)</td>
</tr>
<tr>
<td>treap(x)</td>
<td>(\text{ite}(x = \text{nil} : \top, \exists x, n, r, n_2 : x = \text{left}(x) \land r = \text{right}(x). \text{height}(r, n_2) \land \text{height}(n_1 > n_2 : n_1 + 1, n = n_2 + 1)))</td>
</tr>
<tr>
<td>balance-factor(x, b)</td>
<td>(\text{ite}(x = \text{nil} : 0, \exists x, n, r, n_2 : x = \text{left}(x) \land r = \text{right}(x). \text{avl-tree}(x) \land \text{avl-tree}(r) \land \text{balance-factor}(x, b) \in {-1, 0, 1} \land x \notin \text{Sp}(\text{avl-tree}(x) \cup \text{Sp}(\text{avl-tree}(r)) \cup \text{Sp}(\text{avl-tree}(x) \land \text{Sp}(\text{avl-tree}(r))) = \emptyset))</td>
</tr>
<tr>
<td>balance factor (for AVL tree)</td>
<td>(\text{pte}(x, n))</td>
</tr>
<tr>
<td>threaded tree</td>
<td>(\text{ite}(x = \text{nil} : \top, \exists x, n, r, n_2 : x = \text{left}(x) \land r = \text{right}(x). \text{avl-tree}(x) \land \text{avl-tree}(r) \land \text{avl-tree}(x) \land \text{avl-tree}(r) = \emptyset))</td>
</tr>
<tr>
<td>ptree(x, p)</td>
<td>(\text{ite}(x = \text{nil} : \top, \exists x, n, r, n_2 : x = \text{left}(x) \land r = \text{right}(x). \text{avl-tree}(x) \land \text{avl-tree}(r) \land \text{avl-tree}(x) \land \text{avl-tree}(r) = \emptyset))</td>
</tr>
<tr>
<td>threaded tree aux</td>
<td>(\text{ite}(x = \text{nil} : \top, \exists x, n, r, n_2 : x = \text{left}(x) \land r = \text{right}(x). \text{avl-tree}(x) \land \text{avl-tree}(r) \land \text{avl-tree}(x) \land \text{avl-tree}(r) = \emptyset))</td>
</tr>
</tbody>
</table>
\[S ::= x := c \mid x := y \mid x := y.f \mid v := be \]
\[\mid x.f := y \mid \text{alloc}(x) \mid \text{free}(x) \]
\[\mid \text{if } be \text{ then } S \text{ else } S \mid \text{while } be \text{ do } S \mid S ; S \]

Fig. 4. Grammar of while programs. Here \(c \) is a constant location and \(f \) is a field pointer. \(be \) and \(le \) are background and location expressions respectively. In our logics, we model every field \(f \) as a function \(f() \) from locations to the appropriate sort.

For the definitions, we assume that \(\overline{y} \) contains all variables that are used in \(\alpha \) and in the formulas \(\rho_R \) of the inductive definitions. We further assume that each variable either is used in at most one of the formulas \(\alpha \) or \(\rho_R \), and either only occurs freely in it, or is quantified at most once. The relations \(S_{\rho_R} \) are all of arity \(n + 1 \), even if the subformulas do not use some of the variables. In practice, one would rather use relations of arities as small as possible, referring only to the relevant variables. In a general definition, this is, however, rather cumbersome to write, so we use this simpler version in which we do not have to rearrange and adapt the variables according to their use in subformulas.

For the definition of \(S_{\rho_R(t)} \) where \(R \) is an inductively defined relation, note that the variables \(\overline{x} \) from the definition of \(R \) are contained in \(\overline{y} \) by the above assumptions, and are substituted by the terms in \(\overline{t} \) in the first part of the formula. Similarly, the quantified variable \(x \) in an existential formula is contained in \(\overline{y} \).

It is not hard to see that general frame logic formulas can be translated to FO-RD formulas that make use of these new inductively defined relations.

Proposition 3.5. For every frame logic formula there is an equivalent FO-RD formula with the signature extended by auxiliary predicates for recursive definitions of supports as given in Figure 3.

3.6 Expressing Data-structures Properties in FL

We now present the formulation of several data-structures and properties about them in FL. Table 1 depicts formulations of singly- and doubly-linked lists, list segments, lengths of lists, sorted lists, the multiset of keys stored in a list (assuming a background sort of multisets), binary trees, their heights, treaps, and AVL trees. In all these definitions, the support operator plays a crucial role. We also present a formulation of threaded trees, which are binary trees where, apart from tree-edges, there is a pointer \(tnext \) that connects every tree node to the inorder successor in the tree; these pointers go from leaves to ancestors arbitrarily far away in the tree, making it a nontrivial definition.

We believe that FL formulas naturally and succinctly express these data-structures and their properties, making it an attractive logic for annotating programs.

4 PROGRAMS AND PROOFS

In this section, we develop a program logic for a while-programming language that can destructively update heaps. We assume that location variables are denoted by variables of the form \(x \) and \(y \), whereas variables that denote other data (which would correspond to the background sorts in our logic) are denoted by \(v \). We omit the grammar to construct background terms and formulas, and simply denote such ‘background expressions’ with \(be \) and clarify the sort when it is needed. The grammar for our programming language is in Figure 4.

4.1 Operational Semantics

A configuration \(C \) is of the form \((M, H, U)\) where \(M \) contains interpretations for the store and the heap. The store is a partial map that interprets variables, constants, and non-mutable functions (a
(M, H, U) \xRightarrow{x=y} (M[x \mapsto M(y)], H, U)

(M, H, U) \xRightarrow{x=c} (M[x \mapsto c], H, U)

(M, H, U) \xRightarrow{v=be} (M[v \mapsto be], H, U)

(M, H, U) \xRightarrow{x:=f} (M[x \mapsto f(y)], H, U), if M(y) \in H

(M, H, U) \xRightarrow{x:=f} \bot, if M(y) \notin H

(M, H, U) \xRightarrow{\text{if } be \text{ then } S \text{ else } T} (M', H', U'), if M \models be and (M, H, U) \xRightarrow{S} (M', H', U')

(M, H, U) \xRightarrow{\text{if } be \text{ then } S \text{ else } T} (M', H', U'), if M \models be and (M, H, U) \xRightarrow{T} (M', H', U')

(M, H, U) \xRightarrow{\text{while } be \text{ do } S} (M', H', U'), if M \models be and (M, H, U) \xRightarrow{T; \text{ while } be \text{ do } S} (M', H', U')

(M, H, U) \xRightarrow{x.f:=y} (M[f \mapsto f[M(x) \mapsto M(y)]], H, U), if M(y) \in H

(M, H, U) \xRightarrow{x.f:=y} \bot, if M(y) \notin H

(M, H, U) \xRightarrow{\text{alloc}(x)} (M[x \mapsto a][f \mapsto f[a \mapsto \text{def } f]], H \cup \{a\}, U \setminus \{a\}), for all f \in F

if M(x) \notin H, a \notin H, and a \in U

(M[x \mapsto a], H, U) \xRightarrow{\text{free}(x)} (M, H, U \setminus \{M(x)\}), if M(x) \in H

(M, H, U) \xRightarrow{\text{free}(x)} \bot, if M(x) \notin H

(M, H, U) \xRightarrow{S; T} (M'', H'', U''), if (M, H, U) \xRightarrow{S} (M', H', U') and (M', H', U') \xRightarrow{T} (M'', H'', U'')

Fig. 5. Operational Semantics of Frame Logic Programming Language

function from location variables to locations) and the heap is a total map on the domain of locations that interprets mutable functions (a function from pointers and locations to locations). H is a subset of locations denoting the set of allocated locations, and U is a subset of locations denoting a subset of unallocated locations that can be allocated in the future (the complement of H ∪ U is deallocated and will never be allocated in the future). We introduce a special configuration \bot that the program transitions to when it dereferences a variable not in H.

A configuration (M, H, U) is valid if all variables of the location sort map only to locations not in U, locations in H do not point to any location in U and U is a subset of the complement of H that does not contain nil or the locations mapped to by the variables. We denote this by valid(M, H, U).

Initial configurations and reachable configurations of any program will be valid.

The transition of configurations on various commands that manipulate the store and heap are defined in the natural way. Allocation adds a new location from U into A with pointer-fields defaulting to nil and default data fields.

The full operational semantics are in Figure 5. Both the store and the heap are present in the model M. The pointer lookup rule changes the store where the variable x now maps to f(y),
provided \(y \) had been allocated. The pointer modification rule modifies the heap on the function \(f \), where the store’s interpretation for \(x \) now maps to the store’s interpretation for \(y \). The allocation rule is actually the only nondeterministic rule in the operational semantics, as there is a transition for each \(a \notin H \). For each such \(a \), provided \(x \) had not been allocated (\(M(x) \notin H \)), the store is modified where \(x \) now points to \(a \). Additionally, the heap is modified for each function \(f \) where the newly allocated \(a \) maps to the default value for each \(f \). All other rules are straightforward.

Note that when side conditions are violated as in the lookup rule or pointer modification rule, the configuration transitions to \(\perp \), which denotes an abort or fault configuration. These faulting transitions are crucial for the soundness of the frame rule. However, in the allocation rule, there is no transition to bottom if a side condition is violated. Instead, no transition occurs at all, and the configuration gets stuck. This is because for the weakness condition of the allocation program logic rule, we want to include states in which no location can be allocated (see Section 4.3).

TRIPLES AND VALIDITY

We express specifications of programs using triples of the form \(\{ \alpha \} S \{ \beta \} \) where \(\alpha \) and \(\beta \) are FL formulae and \(S \) is a program. The formulae are, however, restricted—we disallow atomic relations on locations, and functions with arity greater than one. We also disallow functions from a background sort to the foreground sort, and require guards in quantification to be of the form \(f(z') = z \) or \(z \in U \) (\(z \) is the quantified variable).

We define a triple to be valid if every valid configuration with heaplet being precisely the support of \(\alpha \), when acted on by the program, yields a configuration with heaplet being the support of \(\beta \). More formally, a triple is valid if for every valid configuration \((M,H,U) \) such that \(M \models \alpha \), \(H = \mathcal{S}(\alpha)_M \):

- it is never the case that the abort state \(\perp \) is encountered in the execution on \(S \).
- if \((M,H,U)\) transitions to \((M',H',U')\) on \(S \), then \(M' \models \beta \) and \(H' = \mathcal{S}(\beta)_{M'} \)

4.2 Program Logic

First, we define a set of local rules and rules for conditionals, while, sequence, consequence, and framing:

Assignment:

\[
\{ \text{true} \} \ x := y \ \{ x = y \} \quad \{ \text{true} \} \ x := c \ \{ x = c \}
\]

Lookup:

\[
\{ f(y) = f(y) \} \ x := y \cdot f \ \{ x = f(y) \}
\]

Mutation:

\[
\{ f(x) = f(x) \} \ x \cdot f := y \ \{ f(x) = y \}
\]

Allocation:

\[
\{ \text{true} \} \ \text{alloc}(x) \ \{ \bigwedge_{f \in F} f(x) = \text{def}_f \}
\]

Deallocation:

\[
\{ f(x) = f(x) \} \ \text{free}(x) \ \{ \text{true} \}
\]

Conditional rule:

\[
\frac{\{ b \land \alpha \} \ S \ { \beta } \quad \{ \lnot b \land \alpha \} \ T \ { \beta } }{ \ { \alpha } \ \text{if} \ b \ \text{then} \ S \ \text{else} \ T \ \{ \beta \} }
\]

While rule:

While rule:
A First-Order Logic with Frames

\[\{ \alpha \land be \} S \{ \alpha \} \]

Sequence rule:

\[\{ \alpha \} S \{ \beta \} \quad \{ \beta \} T \{ \mu \} \]

\[\{ \alpha \} S ; T \{ \mu \} \]

Consequence rule:

\[\alpha' \implies \alpha \quad \{ \alpha \} S \{ \beta \} \quad \text{Sp}(\alpha) = \text{Sp}(\alpha') \]

\[\beta \implies \beta' \quad \{ \alpha \} S \{ \beta \} \quad \text{Sp}(\beta) = \text{Sp}(\beta') \]

Frame rule:

\[\text{Sp}(\alpha) \cap \text{Sp}(\mu) = \emptyset \quad \{ \alpha \} S \{ \beta \} \quad \text{vars}(S) \cap \text{fv}(\mu) = \emptyset \]

The above rules are intuitively clear and are similar to the local rules in separation logic [Reynolds 2002]. The rules for statements capture their semantics using minimal/tight heaplets, and the frame rule allows proving triples with larger heaplets. The soundness of the frame rule relies crucially on the frame theorem for FL (Theorem 3.4). In the rule for alloc above, the postcondition says that the newly allocated location has default values for all pointer fields and datafields (denoted as \(\text{def}_f \)).

Theorem 4.1. The above rules are sound with respect to the operational semantics.

Proof. See Appendix 9.4. Local rules are derived from global rules (see next section). \(\square\)

4.3 Weakest-precondition proof rules

We now turn to the much more complex problem of designing rules that give weakest preconditions for arbitrary postconditions, for loop-free programs. In separation logic, such rules resort to using the magic-wand operator \(\neg\ast\) [Demri and Deters 2015; O’Hearn 2012; O’Hearn et al. 2001; Reynolds 2002]. The magic-wand operator, a complex operator whose semantics calls for second-order quantification over arbitrarily large submodels. In our setting, our main goal is to show that FL is itself capable of expressing weakest preconditions of postconditions written in FL.

First, we define a notion of **Weakest Tightest Precondition** (WTP) of a formula \(\beta\) with respect to each command in our operational semantics. To define this notion, we first define a preconfiguration, and use that definition to define weakest tightest preconditions:

Definition 4.2. The preconfigurations corresponding to a configuration \((M, H, U)\) with respect to a program \(S\) are a set of valid configurations of the form \((M_p, H_p, U_p)\) (with \(M_p\) being a model, \(H_p\) and \(U_p\) a subuniverse of the locations in \(M_p\), and \(U_p\) being unallocated locations) such that when \(S\) is executed on \(M_p\) with unallocated set \(U_p\) it dereferences only locations in \(H_p\) and results (using the operational semantics rules) in \((M, H, U)\) or gets stuck. That is:

\[\text{preconfigurations}((M, H, U), S) = \]

\[\{ (M_p, H_p, U_p) \mid \text{valid}(M_p, H_p, U_p) \text{ and } (M_p, H_p, U_p) \overset{S}{\Rightarrow} (M, H, U) \text{ or } (M_p, H_p, U_p) \text{ gets stuck on } S \} \]
Definition 4.3. The WTP of a formula β with respect to a program S, is a formula α such that

$$\{(M_p, H_p, U_p) \mid M_p \models \alpha, H_p = \text{valid}(M_p, H_p, U_p)\}$$

$$= \{\text{preconfigurations}(M, H, U) \mid M \models \beta, H = \text{valid}(M, H, U)\}$$

With the notion of weakest tightest preconditions, we define global program logic rules for each command of our language. In contrast to local rules, global specifications contain heaplets that may be larger than the smallest heap on which one can execute the command.

Intuitively, the WTP of β for lookup states that β must hold in the precondition when x is interpreted as x', where $x' = f(y)$, and further that the location y must belong to the support of β. The rules for mutation and allocation are more complex. For mutation, we define a transformation $\text{MW}^{x.f=y(\beta)}$ that evaluates a formula β in the pre-state as though it were evaluated in the post-state. We similarly define such a transformation $\text{MW}^{\text{alloc}(x)}_v$ for allocation. We will define these in detail later. Finally, the deallocation rule ensures x is not in the support of the postcondition. The conjunct $f(x) = f(x)$ is provided to satisfy the tightness condition, ensuring the support of the precondition is the support of the postcondition with x added. The rules can be seen below.

Assignment-G:

$$\{\beta[y/x]\} x := y \beta, \ {\beta[c/x]} x := c \ {\beta}$$

Lookup-G:

$$\{\exists x' : x' = f(y). (\beta \land y \in \text{Sp}(\beta))[x'/x]\}$$

$$x := y \cdot f$$

$$\{\beta\}$$

where x' does not occur in β

Mutation-G:

$$\{\text{MW}^{x.f=y(\beta) \land x \in \text{Sp}(\beta)}\} x \cdot f := y \ {\beta}$$

Allocation-G:

$$\{\forall v : (v \in U) \cdot v \neq \text{nil} \Rightarrow \text{MW}^{\text{alloc}(x)}_v(\beta)\}$$

$$\text{alloc}(x)$$

$$\{\beta\}$$

for some fresh variable v

Deallocation-G:

$$\{\beta \land x \notin \text{Sp}(\beta) \land f(x) = f(x) \} \text{free}(x) \ {\beta}$$

where $f \in F_m$ is an arbitrary (unary) mutable function.

Definitions of MW primitives3

Recall that the formulas $\text{MW}^{x.f=y}$ and $\text{MW}^{\text{alloc}(x)}_v$ need to evaluate a formula β in the pre-state as it would evaluate in the post-state after mutation and allocation statements. The definition of $\text{MW}^{x.f=y}$ is as follows:

$$\text{MW}^{x.f=y}(\beta) = \beta[\lambda z. \text{ite}(z = x : \text{ite}(f(x) = f(x) : y, y), f(z))/f]$$

3The acronym MW is a shout-out to the Magic-Wand operator, as these serve a similar function, except that they are in FL itself.
The $\beta[\lambda z. \rho(z)/f]$ notation is shorthand for saying that each occurrence of a term of the form $f(t)$, where t is a term, is substituted (recursively, from inside out) by the term $\rho(t)$. The precondition essentially evaluates β taking into account f’s transformation, but we use the ite expression with a tautological guard $f(x) = f(x)$ (which has the support containing the singleton x) in order to preserve the support (see Appendix 9.4: Lemma 9.5).

The definition of $MW^\text{alloc}_v(x)$ is much more complex and uses the set of unallocated nodes U:

$$MW^\text{alloc}_v(x) = \beta[v/x][\lambda z. ite(z = v : \text{def } f, f(z))/f]_{f \in F \setminus U \setminus \{v\}/U}$$

This transformation removes x from the support of the formula (note $MW^x.f = y$ preserves the support).

Theorem 4.4. The rules above suffixed with $-G$ are sound w.r.t the operational semantics. And, each precondition corresponds to the weakest tightest precondition of β.

Proof. See Appendix 9.4. □

4.4 Example

In this section, we will see an example of using our program logic rules that we described earlier. This will demonstrate the utility of Frame Logic as a logic for annotating and reasoning with heap manipulating programs, as well as offer some intuition about how our program logic can be deployed in a practical setting.

The example program that we choose is one that performs in-place list reversal:

```plaintext
j := nil;
while (i != nil) do
  k := i.next;
  i.next := j;
  j := i;
  i := k
```

For the sake of simplicity, instead of proving that this program reverses a list, we will instead prove the simpler claim that after executing this program j is a list. After proving this we will discuss how to prove that j not only is a list but indeed that the sequence of elements that begin at j are the reverse of the sequence of elements in the original list beginning at i.

The recursive definition of list we use for this proof is in Table 1 which we restate here:

$$\text{list}(x) := ite(x = \text{nil}, \top, \exists z : z = \text{next}(x). \text{list}(z) \land x \notin \text{Sp} (\text{list}(z))$$

As might be obvious, we need to also give an invariant for the while loop. We claim that the invariant is

$$\text{list}(i) \land \text{list}(j) \land \text{Sp} (\text{list}(i)) \cap \text{Sp} (\text{list}(j)) = \emptyset$$

which simply states that i and j point to disjoint lists.

We prove that this is indeed an invariant of the while loop below. Our proof uses a mix of both local and global rules from Sections 4.2 and 4.3 above to demonstrate how either type of rule can be used. We also use the consequence rule along with the program rule to be applied in several places in order to simplify presentation. As a result, some detailed analysis is omitted, such as proving supports are disjoint in order to use the frame rule.

$$\{\text{list}(i) \land \text{list}(j) \land \text{Sp}(\text{list}(i)) \cap \text{Sp}(\text{list}(j)) = \emptyset \land i \neq \text{nil}\}$$ (consequence rule)
We can use this macro to represent disjoint supports in similar proofs.

Observe that in the above proof we were apply the frame rule because of the fact that \(i \) belongs neither to \(Sp(list(k)) \) nor \(Sp(list(j)) \). This can be dispensed with easily using reasoning about first-order formulae with least-fixpoint definitions, techniques for which are discussed in Section 6.

Also note the invariant of the loop is precisely the intended meaning of \(list(i)\ast list(j) \) in separation logic. In fact, as we will see in Section 6, we can define a first-order macro \(Star \) as

\[
Star(\varphi, \psi) = \varphi \land \psi \land Sp(\varphi) \land Sp(\psi) = \emptyset
\]

We can use this macro to represent disjoint supports in similar proofs.

We will next discuss how to prove the above program actually reverses a list. We do not show a proof of this as the proof is ultimately quite similar to the above proof, albeit with a slightly more complex invariant.

In order to say the resulting sequence of elements at the list at \(j \) is the reverse of the sequence of elements at \(i \), we need an alternative definition of \(list \) that uses a background theory of sequences.

\[
lst(x, \alpha) := \ite(x = nil, \alpha = \varepsilon, \exists z, a, a_0 : z = next(x). \ kyw(x) = a \land \alpha = a \cdot a_0 \land \list(z, a_0) \land x \notin Sp(list(z, a_0)))
\]

Here, \(\varepsilon \) represents the empty sequence, and we use \(a \cdot s \) to denote cons of an element \(a \) to a sequence \(s \). We also use the same notation \(a \cdot b \) for concatenating sequences.
With this list definition, we can prove the program correctly reverses the list originally at \(i \). For using the \(\texttt{while} \) rule, we need a loop invariant that states that \(i \) and \(j \) are lists representing the sequences \(\alpha \) and \(\beta \) respectively, and the value of the initial sequence \(\alpha_0 \) reversed is the reverse of \(\alpha \) concatenated with \(\beta \). Further, the invariant must also ensure disjointedness between the two lists. We use the notation \(\alpha^\dagger \) to represent the reverse of the sequence \(\alpha \).

\[\exists \alpha, \beta. \ Star(list(i, \alpha), list(j, \beta)) \land \alpha_0^\dagger = \alpha^\dagger \cdot \beta \]

Note the use of the \(\texttt{Star} \) macro in this invariant, as well as the similarity of this invariant to that in the list-reversal proof in [Reynolds 2002].

These proofs demonstrate what proofs of actual programs look like in our program logic. They also show that frame logic and our program logic can prove many results similarly to traditional separation logic. And, by using the derived operator \(\texttt{Star} \), very little even in terms of verbosity is sacrificed in gaining the flexibility of Frame Logic (please see Section 6 for a broader discussion of the ways in which Frame Logic differs from Separation Logic and in certain situations offers many advantages in stating and reasoning with specifications/invariants).

5 EXPRESSING A PRECISE SEPARATION LOGIC

In this section, we show that FL is expressive by capturing a fragment of separation logic in frame logic; the fragment is a syntactic fragment of separation logic that defines only precise formulas—formulas that can be satisfied in at most one heaplet for any store. The translation also shows that frame logic can naturally and compactly capture such separation logic formulas.

5.1 A Precise Separation Logic

As discussed in Section 1, a crucial difference between separation logic and frame logic is that formulas in separation logic have uniquely determined supports/heaplets, while this is not true in separation logic. However, it is well known that in verification, determined heaplets are very natural (most uses of separation logic in fact are precise) and sometimes desirable. For instance, see [Brookes 2007] where precision is used crucially to give sound semantics to concurrent separation logic and [O’Hearn et al. 2004] where precise formulas are proposed in verifying modular programs as imprecision causes ambiguity in function contracts.

We define a fragment of separation logic that defines precise formulas (more accurately, we handle a slightly larger class inductively: formulas that when satisfiable have unique minimal heaplets for any given store). The fragment we capture is similar to the notion of precise predicates seen in [O’Hearn et al. 2004]:

Definition 5.1. PSL Fragment:

- \(sf \): formulas over the stack only (nothing dereferenced). Includes \(\texttt{isatom}() \), \(m(x) = y \) for immutable \(m \), \texttt{true}, background formulas, etc.
- \(x \xrightarrow{f} y \)
- \(\texttt{ite}(sf, \varphi_1, \varphi_2) \) where \(sf \) is from the first bullet
- \(\varphi_1 \land \varphi_2 \)
- \(\varphi_1 \ast \varphi_2 \)
- \(I \) where \(I \) contains all unary inductive definitions \(I \) that have unique heaplets inductively (\(\texttt{list}, \texttt{tree} \), etc.). In particular, the body \(\rho_1 \) of \(I \) is a formula in the PSL fragment \((\rho_1[I \leftarrow \varphi]) \) is in the PSL fragment provided \(\varphi \) is in the PSL fragment). Additionally, for all \(x \), if \(s, h \models I(x) \) and \(s, h' \models I(x) \), then \(h = h' \).

\(^4\)While we only assume unary inductive definitions here, we can easily generalize this to inductive definitions with multiple parameters.
\[\exists y. (x \overset{f}{\rightarrow} y) \ast \varphi_1 \]

Note that in the fragment negation and disjunction are disallowed, but mutually exclusive disjunction using \text{ite} is allowed. Existential quantification is only present when the topmost operator is a \(\ast \) and where one of the formulas guards the quantified variable uniquely.

The semantics of this fragment follows the standard semantics of separation logic [Demri and Deters 2015; O’Hearn 2012; O’Hearn et al. 2001; Reynolds 2002], with the heaplet of \(x \overset{f}{\rightarrow} y \) taken to be \(\{x\} \). See Remark 1 in Section 3.2 for a discussion of a more accurate heaplet for \(x \overset{f}{\rightarrow} y \) being the set containing the pair \((x, f)\), and how this can be modeled in the above semantics by using field-lookups using non-mutable pointers.

Theorem 5.2 (Minimum Heap). For any formula \(\varphi \) in the PSL fragment, if there is an \(s \) and \(h \) such that \(s, h \models \varphi \) then there is a \(h_\varphi \) such that \(s, h_\varphi \models \varphi \) and for all \(h' \) such that \(s, h' \models \varphi \), \(h_\varphi \subseteq h' \).

Proof. The minimal heaplets for stack formulas are empty. For \(x \overset{f}{\rightarrow} y \) the heaplet is uniquely \(\{x\} \).

For conjunction, there are three cases depending on if \(\varphi_1 \) or \(\varphi_2 \) or both have extensible heaplets. We cover the most difficult case where they both have extensible heaplets here. By definition we know \(s, h \models \varphi_1 \) and \(s, h \models \varphi_2 \). By induction, we know there are unique \(h_{\varphi_1} \) and \(h_{\varphi_2} \) such that \(h_{\varphi_1} \) and \(h_{\varphi_2} \) model \(\varphi_1 \) and \(\varphi_2 \) respectively and are minimal. Thus, \(h_{\varphi_1} \subseteq h \) and \(h_{\varphi_2} \subseteq h \), so \(h_{\varphi_1} \cup h_{\varphi_2} \subseteq h \).

By Lemma 5.5, \(h_{\varphi_1} \cup h_{\varphi_2} \) is a valid heap for both \(\varphi_1 \) and \(\varphi_2 \). Thus, \(s, h_{\varphi_1} \cup h_{\varphi_2} \models \varphi_1 \land \varphi_2 \) and \(h_{\varphi_1} \cup h_{\varphi_2} \) is minimal.

For separating conjunction the minimal heaplet is (disjoint) union. For \text{ite} we pick the heaplet of either case depending on the truth of the guard. By definition, inductive definitions will have minimal heaplets.

Inductive definitions have unique heaplets by the choice we made above and therefore vacuously satisfy the given statement.

For existentials, we know from the semantics of separation logic that every valid heap on a store \(s \) for the original existential formula is a valid heap for \(\psi \equiv (x \overset{f}{\rightarrow} y) \ast \varphi_1 \) on a modified store \(s' \equiv s[y \mapsto v] \) for some \(v \). Since the constraint \(x \overset{f}{\rightarrow} y \) forces the value \(v \) to be unique, we can then invoke the induction hypothesis to conclude that the minimal heaplets of the existential formula on \(s \) and of \(\psi \) on \(s' \) are the same. In particular, this means that existential formulae in our fragment also have a minimal heaplet. \(\square\)

5.2 Translation to Frame Logic

For a separation logic store and heap \(s, h \) (respectively), we define the corresponding interpretation \(M_{s, h} \) such that variables are interpreted according to \(s \) and values of pointer functions on \(\text{dom}(h) \) are interpreted according to \(h \). For \(\varphi \) in the PSL fragment, we first define a formula \(P(\varphi) \), inductively, that captures whether \(\varphi \) is precise. \(\varphi \) is a precise formula iff, when it is satisfiable with a store \(s \), there is exactly one \(h \) such that \(s, h \models \varphi \). The formula \(P(\varphi) \) is in separation logic and will be used in the translation. To see why this formula is needed, consider the formula

\[\varphi_1 \land \text{ite}(\text{ite}(sf, \varphi_2, \varphi_3)) \]

Assume that \(\varphi_1 \) is imprecise, \(\varphi_2 \) is precise, and \(\varphi_3 \) is imprecise. Under conditions where \(sf \) is true, the heaplets for \(\varphi_1 \) and \(\varphi_2 \) must align. However, when \(sf \) is false, the heaplet for \(\varphi_1 \) and \(\varphi_2 \) can be anything. Because we cannot initially know when \(sf \) will be true or false, we need this separation logic formula \(P(\varphi) \) that is true exactly when \(\varphi \) is precise.
Definition 5.3. Precision predicate P:

- $P(sf) = \perp$
- $P(x \xrightarrow{f} y) = \top$
- $P(ite(sf, \varphi_1, \varphi_2)) = (sf \land P(\varphi_1)) \lor (\neg sf \land P(\varphi_2))$
- $P(\varphi_1 \land \varphi_2) = P(\varphi_1) \lor P(\varphi_2)$
- $P(\varphi_1 \lor \varphi_2) = P(\varphi_1) \land P(\varphi_2)$
- $P(I) = \top$ where $I \in I$ is an inductive predicate
- $P(\exists y. (x \xrightarrow{f} y) \ast \varphi_1) = P(\varphi_1)$

Note that this definition captures precision within our fragment since stack formulae are imprecise and pointer formulae are precise. The argument for the rest of the cases follow by simple structural induction.

Now we define the translation T inductively:

Definition 5.4. Translation from PSL to Frame Logic:

- $T(sf) = sf$
- $T(x \xrightarrow{f} y) = (f(x) = y)$
- $ite(sf, \varphi_1, \varphi_2) = ite(T(sf), T(\varphi_1), T(\varphi_2))$
- $T(\varphi_1 \land \varphi_2) =$
 \[
 T(\varphi_1) \land T(\varphi_2) \land T(P(\varphi_1)) \implies Sp(T(\varphi_2)) \subseteq Sp(T(\varphi_1))
 \]
 \[
 \land T(P(\varphi_2)) \implies Sp(T(\varphi_1)) \subseteq Sp(T(\varphi_2))
 \]
- $T(\varphi_1 \lor \varphi_2) = T(\varphi_1) \land T(\varphi_2) \land Sp(T(\varphi_1)) \cap Sp(T(\varphi_2)) = \emptyset$
- $T(I) = T(\rho_I)$ where ρ_I is the definition of the inductive predicate I as in Section 3.
- $T(\exists y. (x \xrightarrow{f} y) \ast \varphi_1) = \exists y : [f(x) = y]. [T(\varphi_1) \land x \notin Sp(T(\varphi_1))]

Next, we simply state some auxiliary lemmas that will be needed to prove the main result. We prove these in Appendix 9.5.

Lemma 5.5. For any formula φ in the PSL fragment, if there is an s and h such that $s, h \models \varphi$ and we can extend h by some nonempty h' such that $s, h \cup h' \models \varphi$, then for any h'', $s, h \cup h'' \models \varphi$.

Lemma 5.6. For any s, h such that $s, h \models \varphi$ we have $M_{s,h}(Sp(T(\varphi))) = h_\varphi$ where h_φ is as above.

Finally, recall that any formula φ in the PSL fragment has a unique minimal heap (Theorem 5.2). With this, we have the following theorem, which captures the correctness of the translation:

Theorem 5.7. For any formula φ in the PSL fragment, we have the following implications:

$s, h \models \varphi \implies M_{s,h} \models T(\varphi)$

Here, $M_{s,h}(Sp(T(\varphi)))$ is the interpretation of $Sp(T(\varphi))$ in the model $M_{s,h}$. Note h' is minimal and is equal to h_φ as in Theorem 5.2.

Proof. First implication: Structural induction on φ.

If φ is a stack formula or a pointer formula, this is true by construction. If φ is an if-then-else formula then the claim is true by construction and the induction hypothesis.

If $\varphi = \varphi_1 \land \varphi_2$, we know by the induction hypothesis that $M_{s,h} \models T(\varphi_1)$ and $M_{s,h} \models T(\varphi_2)$.

Further, from the semantics of separation logic, we have that if φ_1 is precise, then $h_{\varphi_1} = h$. Therefore,
The design of frame logic is, in many ways, inspired by the design choices of separation logic. Similarly if \(\varphi_2 \) is precise. This justifies the two latter conjuncts of the translation.

If \(\varphi = \varphi_1 \land \varphi_2 \), we know there exist \(h_1, h_2 \) such that \(h_1 \cap h_2 = \emptyset \) and \(s, h_1 \models \varphi_1 \) and \(s, h_2 \models \varphi_2 \). Then, from Lemma 5.2, we have that \(\mathcal{M}_{s, h} \models \text{Sp}(\varphi_2) \subseteq \text{Sp}(\varphi_1) \).

Similarly to the proof of Lemma 5.6, we can show that the translation of the inductive definition satisfies the same recursive equations as the original inductive definition and we are done.

If \(\varphi \) is an existential, the result follows from definition and the induction hypothesis.

Second implication: Structural induction on \(\varphi \).

By construction, induction hypotheses, and Lemma 5.6, all cases can be discharged besides conjunction and inductive predicates.

For conjunction, if \(\varphi = \varphi_1 \land \varphi_2 \), we have from the induction hypothesis that \(s, h_{\varphi_1} \models \varphi_1 \) and \(s, h_{\varphi_2} \models \varphi_2 \). If \(\varphi_1 \) is precise, we know \(\mathcal{M}_{s, h} \models \text{Sp}(\varphi_2) \subseteq \text{Sp}(\varphi_1) \) and therefore \(h_{\varphi_2} \subseteq h_{\varphi_1} \) (from Lemma 5.6). Similarly, if \(\varphi_2 \) is precise, then \(\mathcal{M}_{s, h} \models \text{Sp}(\varphi_1) \subseteq \text{Sp}(\varphi_2) \) as well as \(h_{\varphi_1} \subseteq h_{\varphi_2} \). In particular, if they are both precise, their supports (and therefore minimal heaplets) are equal, and \(h' = h_{\varphi_1} \cup h_{\varphi_2} \) (from the proof of Lemma 5.2) = \(h_{\varphi_1} = h_{\varphi_2} \), and we are done. If only \(\varphi_1 \) is precise (similarly if only \(\varphi_2 \) is precise), then we have as above that \(h_{\varphi_2} \subseteq h_{\varphi_1} \) and \(h_{\varphi_1} = h' \). Moreover, we know by Lemma 5.5 that \(s, h_{\varphi_1} \models \varphi_2 \) and we are done. If neither is precise, both heaps are extensible, so we know by Lemma 5.5 that \(s, h_{\varphi_1} \cup h_{\varphi_2} \models \varphi_1 \) and \(s, h_{\varphi_1} \cup h_{\varphi_2} \models \varphi_2 \) and we are done.

For \(\varphi \) an inductive predicate, we know that \(\mathcal{M}_{s, h} |_{\text{Sp}(\varphi)} \models T(\varphi) \). The remainder follows since, because we restrict the form of inductive predicates to have a unique heap at each level, the translated inductive predicate will satisfy the same recursive equations as \(\varphi \).

\[\square\]

6 DISCUSSION

Comparison with Separation Logic

The design of frame logic is, in many ways, inspired by the design choices of separation logic. Separation logic formulas implicitly hold on tight heaplets—models are defined on pairs \((s, h)\), where \(s\) is a store (an interpretation of variables) and \(h\) is a heaplet that defines a subset of the heap as the domain for functions/pointers. In Frame Logic, we choose to not define satisfiability with respect to heaplets, but rather give access to the implicitly defined heaplet using the operator \(Sp\), and give a logic over sets to talk about supports. The separating conjunction operation \(*\) can then be expressed using normal conjunction and a constraint that says that the support of formulae are disjoint.

We do not allow formulas to have multiple supports, which is crucial as \(Sp\) is a function, and this roughly corresponds to precise fragments of separation logic. Precise fragments of separation logic have already been proposed and accepted in the separation logic literature for giving robust handling of modular functions, concurrency, etc. [Brookes 2007; O’Hearn et al. 2004]. Section 5 details a translation of a precise fragment of separation logic (with \(\ast\) but not magic wand) to frame logic that shows the natural connection between precise formulas in separation logic and frame logic.

Frame logic, through the support operator, facilitates local reasoning much in the same way as separation logic does, and the frame rule in frame logic supports frame reasoning in a similar way as separation logic.

The key difference between frame logic and separation logic is the adherence to a first-order logic (with recursive definitions), both in terms of syntax and expressiveness.
First and foremost, in separation logic, the magic wand is needed to express the weakest precondition [Reynolds 2002]. Consider for example computing the weakest precondition of the formula \(\text{list}(x) \) with respect to the code \(y.n \coloneqq z \). The weakest precondition should essentially describe the (tight) heaplets such that changing the \(n \) pointer from \(y \) to \(z \) results in \(x \) pointing to a list. In separation logic, this is expressed typically (see [Reynolds 2002]) using magic wand as \((y \xrightarrow{n} z) \rightarrow (\text{list}(x)). \) However, the magic wand operator is inherently a second-order property. The formula \(\alpha \rightarrow \beta \) holds on a heap \(h \) if for any disjoint heaplet that satisfies \(\alpha \), \(\beta \) will hold on the conjoined heaplet.

Expressing this property (for arbitrary \(\alpha \), whose heaplet can be unbounded) requires quantifying over unbounded heaplets satisfying \(\alpha \), which is not first order expressible.

In frame logic, we instead rewrite the recursive definition \(\text{list}() \) to a new one \(\text{list}'() \) that captures whether \(x \) points to a list, assuming that \(n(y) = z \) (see Section 4.3). This property continues to be expressible in frame logic and can be converted to first-order logic with recursive definitions (see Section 3.5). Note that we are exploiting the fact that there is only a bounded amount of change to the heap in straight-line programs in order to express this in frame logic.

Let us turn to expressiveness and compactness. In separation logic, separation of structures is expressed using \(*\), and in frame logic, such a separation is expressed using conjunction and an additional constraint that says that the supports of the two formulas are disjoint. A precise separation logic formula of the form \(\alpha_1 * \alpha_2 * \ldots \alpha_n \) would get translated to a much larger formula in frame logic as it would have to state that the supports of each pair of formulas is disjoint. We believe this can be tamed using macros \(\text{Star}(\alpha, \beta) = \alpha \land \beta \land \text{Sp}(\alpha) \cap \text{Sp}(\beta) = \emptyset \).

There are, however, several situations where frame logic leads to more compact and natural formulations. For instance, consider expressing the property that \(x \) and \(y \) point to lists, which may or may not overlap.

In Frame Logic, we write simply:

\[
\text{list}(x) \land \text{list}(y)
\]

The support of this formula is the union of the supports of the two lists.

In separation logic, we cannot use \(*\) to write this compactly (while capturing the tightest heaplet). Note that the formula \(\left(\text{list}(x) \land \text{true} \right) \land \left(\text{list}(y) \land \text{true} \right) \) is not equivalent, as it is true in heaplets that are larger than the set of locations of the two lists. The simplest formulation we know is to write a recursive definition \(\text{lseg}(u, v) \) for list segments from \(u \) to \(v \) and use quantification:

\[
(\exists z. \text{lseg}(x, z) \land \text{lseg}(y, z) \land \text{list}(z)) \lor (\text{list}(x) \land \text{list}(y))
\]

where the definition of \(\text{lseg} \) is the following: \(\text{lseg}(u, v) \equiv (u = v \lor \text{emp}) \lor (\exists w. u \rightarrow w \land \text{lseg}(w, v)) \).

If we wanted to say \(x_1, \ldots, x_n \) all point to lists, that may or may not overlap, then in FL we can say \(\text{list}(x_1) \land \text{list}(x_2) \land \ldots \land \text{list}(x_n) \). However, in separation logic, the simplest way seems to be to write using \(\text{lseg} \) and a linear number of quantified variables and an exponentially-sized formula.

Now consider the property saying \(x_1, \ldots, x_n \) all point to binary trees, with pointers left and right, and that can overlap arbitrarily. We can write it in FL as

\[
\text{tree}(x_1) \land \ldots \land \text{tree}(x_n)
\]

A formula in (first-order) separation logic that expresses this property seems very complex.

In summary, we believe that frame logic is a logic that supports frame reasoning built on the same principles as separation logic, but is still translatable to first-order logic (avoiding the magic wand), and makes different choices for syntax/semantics that lead to expressing certain properties more naturally and compactly, and others more verbosely.
Reasoning with Frame Logic using First-Order Reasoning Mechanisms

An advantage of the adherence of frame logic to being translatable to a first-order logic with recursive definitions is the power to reason with it using first-order theorem proving techniques. While we do not present tools for reasoning in this paper, we note that there are several reasoning schemes that can readily handle first-order logic with recursive definitions.

Examples include tools like Vampire [Kovács and Voronkov 2013] for first-order logic that have been extended in recent work to handle algebraic datatypes [Kovács et al. 2017]; many datastructures in practice can be modeled as algebraic datatypes and the schemes proposed in [Kovács et al. 2017] are powerful tools to reason with them using first-order theorem provers.

A second class of tools are those proposed in the work on natural proofs [Löding et al. 2018; Pek et al. 2014; Qiu et al. 2013]. Natural proofs explicitly work with first order logic with recursive definitions (FO-RD), implementing validity through a process of unfolding recursive definitions, uninterpreted abstractions, and proving inductive lemmas using induction schemes. Natural proofs are currently used primarily to reason with separation logic by first translating verification conditions arising from Hoare triples with separation logic specifications (without magic wand) to first-order logic with recursive definitions. Frame logic reasoning can also be done in a similar way by translation to FO-RD.

In [Löding et al. 2018] the technique of quantifier instantiation is used in order to check FO-RD formulas for unsatisfiability, and the work identifies a fragment of FO-RD (called safe fragment) for which this reasoning is complete (in the sense that a formula is detected as unsatisfiable by quantifier instantiation if it is unsatisfiable with the inductive definitions interpreted as fixpoints and not least fixpoints). Since FL can be translated to FO-RD, it is possible to deal with FL using the techniques of [Löding et al. 2018]. The conditions for the safe fragment of FO-RD are that the quantifiers over the foreground elements are the outermost ones, and that terms of foreground type do not contain variables of any background type. As argued in [Löding et al. 2018], these restrictions are usually satisfied in many applications.

If we want the translation from FL to FO-RD to satisfy the restrictions of the safe fragment for FO-RD formulas, we can impose a condition on the FL formulas. In FL it is possible to use terms like, e.g., \(Sp(\alpha) \cap Sp(\beta) = \emptyset\). In the translation to FO-RD, such expressions have to be replaced by formulas of the form \(\forall z. \neg Sp_{\alpha}(y, z) \lor \neg Sp_{\beta}(y, z)\), introducing a new quantifier over a foreground element. So in order to obtain a formula in the safe fragment by the translation, we assume that in the FL formula no support expressions are used in the scope of a quantifier over background elements. This will then yield FO-RD formulas where FO reasoning using quantifier instantiation (modulo least fixpoints treated as fixpoints) to be complete.

7 RELATED WORK

The frame problem [Hayes 1981] is an important problem in many different domains of research. In the broadest form, it concerns representing and reasoning about the effects of a local action without requiring explicit reasoning regarding static changes to the global scope. For example, in artificial intelligence one wants a logic that can seamlessly state that if a door is opened in a lit room, the lights continue to stay switched on. This issue is present in the domain of verification as well, specifically with heap-manipulating programs.

There are many solutions that have been proposed to this problem. The most prominent proposal in the verification context is separation logic [Demri and Deters 2015; O’Hearn 2012; O’Hearn et al. 2001; Reynolds 2002], which introduces special symbols \(\ast\) and \(\ast\) (magic wand) representing separating conjunction and separating implication, with a tight frame semantics for each statement; formulas hence implicitly define supports.
In contrast to separation logic, the work on Dynamic Frames [Kassios 2006, 2011] and similarly inspired approaches such as Region Logic [Banerjee and Naumann 2013; Banerjee et al. 2008, 2013] allow methods to explicitly specify the portion of the support that may be modified. This allows finer grained control over the modifiable section and avoids special symbols like ∗ and −∗. However, explicitly writing out frame annotations can become verbose and tedious. The work on Implicit Dynamic Frames [Smans et al. 2012] is similar to ours in attempts to counteract this and allows the syntactic inference of an ‘access set’ that aids frame reasoning; however, it resorts to special constructs like ∗. Our work, in contrast, gives access to the support of formulas using a special construct, and the user to reason with these supports using set theory.

Another distinction involves the discrepancy between non-unique heaplets in separation logic and unique heaplets in our work. The use of determined heaplets has been seen in [O’Hearn et al. 2004; Pek et al. 2014; Qiu et al. 2013] as it can be more amenable to automated reasoning, and in particular a subset of separation logic with determined heaplets known as precise predicates is captured in [O’Hearn et al. 2004], which we also capture in Section 5.

There is also a rich literature on reasoning with these logics for programs. Decidability is an important dimension and there is a lot of work on decidable logics for heaps with separation logic specifications [Berdine et al. 2006, 2004, 2005; Cook et al. 2011; Navarro Pérez and Rybalchenko 2011; Pérez and Rybalchenko 2013]. The work based on EPR (Effectively Propositional Reasoning) for specifying heap properties [Itzhaky et al. 2014a, 2013, 2014b] provides decidability, as does some of the work that translates separation logic specifications into classical logic [Piskac et al. 2013].

Translating separation logic into classical logics and reasoning with them is a solution pursued in a lot of recent efforts [Chin et al. 2007; Pek et al. 2014; Piskac et al. 2013, 2014a,b]. Work on natural proofs [Madhusudan et al. 2012; Pek et al. 2014; Qiu et al. 2013; Suter et al. 2010] convert the special operators ∗ and −∗ to first-order logic or first-order logic variants. Techniques such as [Löding et al. 2018] include foundations for natural proofs with an emphasis on reasoning about recursive definitions. These techniques perform sound but incomplete reasoning, but not decidable procedures.

Other techniques including recent work on cyclic proofs [Brotherston et al. 2011; Ta et al. 2016] use heuristics for reasoning about recursive definitions. We believe the above tools and techniques can be adapted in the future to the Frame Logic introduced in this paper.

8 CONCLUSIONS

Our main contribution is to show that classical first-order logic can be endowed with frame reasoning using a logical construct that recovers the implicit supports of formulas, and to develop a program logic based on it. The program logic supports local heap reasoning, frame reasoning, supports weakest tightest preconditions across loop-free programs, and we have argued its efficacy by expressing properties of data-structures naturally and succinctly, and showing that it can express a precise fragment of separation logic.

Our results show that when inductive loop invariants are expressed in Frame Logic, the weakest precondition rules can be used, automatically, to reduce verification to checking validity of frame logic formulas. These can then be reduced to pure first-order with recursive definition reasoning, which can be effected using interactive theorem provers like Coq [The Coq development team 2018] or by automated first-order mechanisms [Kovács et al. 2017; Madhusudan et al. 2012; Pek et al. 2014; Qiu et al. 2013; Suter et al. 2010]. A practical realization of this in a tool for verifying programs in a standard programming language, especially by marrying it with existing automated techniques and tools for first-order logic [Kovács et al. 2017; Madhusudan et al. 2012; Pek et al. 2014; Qiu et al. 2013; Suter et al. 2010], is the most compelling future work.
REFERENCES

Laura Kovács and Andrei Voronkov. 2013. First-Order Theorem Proving and Vampire. In CAV’13. 1–35. https://doi.org/10.1007/978-3-642-39799-8_1

For example, the tree definition from Example 3.1 uses support expressions in the subformula relations and the support expressions.

In order to make the definition of frame models precise, we need a bit of terminology.

A pre-model \(\hat{M} \) is defined like a model with the difference that a pre-model does not interpret the inductive relation symbols and the support expressions \(Sp(\varphi) \) and \(Sp(t) \). A pre-model \(\hat{M} \) spans a class of models \(\text{Mod}(\hat{M}) \), namely those that simply extend \(\hat{M} \) by an interpretation of the inductive relations and the support expressions.

The inductive definitions of relations from \(I \) can have negative references to support expressions. For example, the tree definition from Example 3.1 uses support expressions in the subformula \(Sp(\text{tree}(\ell(x))) \cap Sp(\text{tree}(\ell(x))) = \emptyset \). This formula is true if there does not exist an element in the...
intersection $Sp(\text{tree}(\ell(x))) \cap Sp(\text{tree}(r(x)))$, and hence negatively refers to these support expressions. For this reason, we need to define two partial orders that correspond to first taking the least fixpoint for the support expression, and then the least fixpoint for the inductive predicates.

In the following, we refer to the equations for the support expressions from Figure 2 as support equations, and to the equations $[R(\overline{x})]_M = [\rho_R(\overline{x})]_M$ for the inductive definitions as the inductive equations.

For $M_1, M_2 \in \text{Mod}(\hat{M})$ we let $M_1 \leq_{\ell} M_2$ if
- $[Sp(\phi)]_{M_1} [\nu] \subseteq [Sp(\phi)]_{M_2} [\nu]$ as well as $[Sp(t)]_{M_1} [\nu] \subseteq [Sp(t)]_{M_2} [\nu]$ for all support expressions and all variable assignments ν.

Note that \leq_{ℓ} is not a partial order but only a preorder: for two models M_1, M_2 that differ only in their interpretations of the inductive relations, we have $M_1 \leq_{\ell} M_2$ and $M_2 \leq_{\ell} M_1$. We write $M_1 <_{\ell} M_2$ if $M_1 \leq_{\ell} M_2$ and not $M_2 \leq_{\ell} M_1$.

We further define $M_1 \leq_{1} M_2$ if
- $[Sp(\phi)]_{M_1} = [Sp(\phi)]_{M_2}$ as well as $[Sp(t)]_{M_1} = [Sp(t)]_{M_2}$ for all support expressions, and
- $[I]_{M_1} \subseteq [I]_{M_2}$ for all inductive relations $I \in I$.

The relation \leq_{1} is a partial order.

We say that $M \in \text{Mod}(\hat{M})$ is a frame model if its interpretation function $[\cdot]_M$ satisfies the inductive equations and the support equations, and furthermore

1. each $M' \in \text{Mod}(\hat{M})$ with $M' <_{\ell} M$ does not satisfy the support equations, and
2. each $M' \in \text{Mod}(\hat{M})$ with $M' <_{1} M$ does not satisfy the inductive equations.

For proving the existence of a unique frame model, we use the following lemma for dealing with guards and terms with mutable functions.

Lemma 9.1. Let \hat{M} be a pre-model, $M_1, M_2 \in \text{Mod}(\hat{M})$, and ν be a variable assignment.

1. If ϕ is formula that does not use inductive relations and support expressions, then $M_1, \nu \models \phi$ if and only if $M_2, \nu \models \phi$.
2. If t is a term that has no support expressions as subterms, then $[t]_{M_1, \nu} = [t]_{M_2, \nu}$.
3. If $t = f(t_1, \ldots, t_n)$ is a term with a mutable function symbol $f \in F_m$, then $[t_i]_{M_1, \nu} = [t_i]_{M_2, \nu}$ for all i.

Proof. Parts 1 and 2 are immediate from the fact that M_1 and M_2 only differ in the interpretation of the inductive relations and support expressions. For the third claim, note that we assumed that the only functions involving arguments of sort $\sigma_{\text{sf(f)}}$ are the standard functions for set manipulation. Hence, a term build from a mutable function symbol cannot have support expressions as subterms. Therefore, the third claim follows from the second one. \hfill \square

The following proposition is the formalization of Proposition 3.3 in Section 3.3.

Proposition 9.2. For each pre-model \hat{M}, there is a unique frame model in $\text{Mod}(\hat{M})$.

Proof. The support equations define an operator μ_{ℓ} on $\text{Mod}(\hat{M})$. This operator μ_{ℓ} is defined in a standard way, as explained in the following. Let $M \in \text{Mod}(\hat{M})$. Then $\mu_{\ell}(M)$ is a model in $\text{Mod}(\hat{M})$ where $[Sp(\phi)]_{\mu_{\ell}(M)}$, resp. $[Sp(t)]_{\mu_{\ell}(M)}$, is obtained by taking the right-hand side of the corresponding equation. For example, $[Sp(\phi_1 \land \phi_2)]_{\mu_{\ell}(M)} [\nu] = [Sp(\phi_1)]_{M} [\nu] \cup [Sp(\phi_2)]_{M} [\nu]$. The interpretation of the inductive predicates is left unchanged by μ_{ℓ}.

We can show that μ_{ℓ} is a monotonic operator on $(\text{Mod}(\hat{M}), \leq_{\ell})$, that is, for all $M_1, M_2 \in \text{Mod}(\hat{M})$ with $M_1 \leq_{\ell} M_2$ we have that $\mu_{\ell}(M_1) \leq_{\ell} \mu_{\ell}(M_2)$. It is routine to check monotonicity of μ_{ℓ} by induction on the structure of the support expressions. We use Lemma 9.1 for the only cases in which the semantics of formulas and terms is used in the support equations, namely \ite-formulas, existential
formulas, and terms \(f(t_1, \ldots, t_n) \) with mutable function \(f \). Consider, for example, the support equation
\[
\left[\text{Sp}(f(t_1, \ldots, t_n)) \right]_{M}(v) = \bigcup_{i \text{ with } t_i \text{ of sort } \sigma_i} \{ [t_i]_{M_i, v} \} \cup \bigcup_{i=1}^{n} \left[\text{Sp}(t_i) \right]_{M}(v)
\]
for \(f \in F_m \), and let \(M_1 \leq_f M_2 \) be in \(\text{Mod}(\tilde{M}) \) and \(v \) be a variable assignment. Then
\[
\left[\text{Sp}(f(t_1, \ldots, t_n)) \right]_{\mu_i(M_1)}(v)
= \bigcup_{i \text{ with } t_i \text{ of sort } \sigma_i} \{ [t_i]_{M_2, v} \} \cup \bigcup_{i=1}^{n} \left[\text{Sp}(t_i) \right]_{M_2}(v)
\]
where (1) holds because of Lemma 9.1, and (2) holds because \(M_1 \leq_f M_2 \).

As a further case, consider the support equation for \(R(\tilde{t}) \) where \(R \) is an inductively defined relation and \(t = (t_1, \ldots, t_n) \).
\[
\left[\text{Sp}(R(\tilde{t})) \right]_{\mu_i(M_1)}(v)
= \left[\text{Sp}(\rho R(\tilde{x})) \right]_{M_1}(v[\tilde{x} \leftarrow [\tilde{t}]_{M_1, v}]) \cup \bigcup_{i=1}^{n} \left[\text{Sp}(t_i) \right]_{M_1}(v)
\]
For the inclusion (*) we use the fact that the \(t_i \) do not contain support expressions as subterms by our restriction of the type of inductively defined relations. Hence, by Lemma 9.1, \([t_i]_{M_1, v} = [t_i]_{M_2, v} \).

Similarly, one can show the inclusion for the other support equations.

We also obtain an operator \(\mu_i \) from the inductive equations, which leaves the interpretation of the support expressions unchanged. The operator \(\mu_i \) is monotonic on \((\text{Mod}(\tilde{M}), \leq_i) \) because inductive predicates can only be used positively in the inductive definitions, and furthermore \(\leq_i \) only compares models with the same interpretation of the support expressions.

In order to obtain the unique frame model, we first consider the subset of \(\text{Mod}(\tilde{M}) \) in which all inductive predicates are interpreted as empty set. On this set of models, \(\leq_f \) is a partial order and forms a complete lattice (the join and meet for the lattice are obtained by taking the pointwise union, respectively intersection, of the interpretations of the support expression). By the Knaster-Tarski theorem, there is a unique least fixpoint of \(\mu_i \). This fixpoint can be obtained by iterating \(\mu_i \) starting from the model in \(\text{Mod}(\tilde{M}) \) that interprets all inductive relations and the support expression by the empty set (in general, this iteration is over the ordinal numbers, not just the natural numbers). Let \(M_f \) be this least fixpoint.

The subset of \(\text{Mod}(\tilde{M}) \) in which the support expressions are interpreted as in \(M_f \) forms a complete lattice with the partial order \(\leq_i \). Again by the Knaster-Tarski Theorem, there is a unique least fixpoint. This least fixpoint can be obtained by iterating the operator \(\mu_i \) starting from \(M_f \) (again, the iteration is over the ordinals).

Denote the resulting model by \(M_{f,i} \). It interprets the support expressions in the same way as \(M_f \), and thus \(M_f \leq_f M_{f,i} \) and \(M_{f,i} \leq_f M_f \). By monotonicity of \(\mu_i, M_{f,i} \) is also a fixpoint of \(\mu_i \) and thus satisfies the support equations. Hence \(M_{f,i} \) satisfies the inductive equations and the support equations. It can easily be checked that \(M_{f,i} \) also satisfies the other conditions of a frame model.
Let $M \in \text{Mod}(\hat{M})$ with $M \preceq M_{f,i}$. Then also $M \preceq M_f$ and assuming that M satisfies the support equations yields a smaller fixpoint of μ, and thus a contradiction. Similarly, a model $M \preceq M_{f,i}$ cannot satisfy the inductive equations.

It follows that $M_{f,i}$ is a frame model in $\text{Mod}(\hat{M})$. Uniqueness follows from the uniqueness of the least fixpoints of μ and μ_i as used in the construction of $M_{f,i}$. □

9.2 Frame Theorem Proof

Theorem 9.4 (Frame Theorem). Let M, M' be frame models such that M' is a mutation of M that is stable on $X \subseteq \U_{\sigma_j}$, and let ν be a variable assignment. Then $M, \nu \models \varphi$ iff $M', \nu \models \varphi$ for all formulas φ with $[\text{Sp}(\varphi)]_M(\nu) \subseteq X$, and $[t]_M, \nu = [t]_{M'}, \nu$ for all terms t with $[\text{Sp}(t)]_M(\nu) \subseteq X$.

Proof. The intuition behind the statement of the theorem should be clear. The support of a formula/term contains the elements on which mutable functions are dereferenced in order to evaluate the formula/term. If the mutable functions do not change on this set, then the evaluation does not change.

For a formal proof of the Frame Theorem, we refer to the terminology and definitions introduced in Appendix 9.1, and to the proof of Proposition 9.2 in Appendix 9.1, in which the unique frame model is obtained by iterating the operators μ_i and μ, which are defined by the support equations and the inductive equations.

In general, this iteration of the operators ranges over ordinals (not just natural numbers). For an ordinal η, let M_η and M'_η be the models at step η of the fixpoint iteration for obtaining the frame models M and M'. So the sequence of the M_η have monotonically increasing interpretations of the inductive relations and support expressions, and are equal to M on the interpretation of the other relations and functions. The frame model M is obtained at some stage ξ of the fixpoint iteration, so $M = M_\xi$. More precisely, the frame model is contructed by first iterating the operator μ_i until the fixpoint of the support expressions is reached. During this iteration, the inductive relations are interpreted as empty. Then the operator μ_i is iterated until also the inductive relations reach their fixpoint. Below, we do an induction on η. In that induction, we do not explicitly distinguish these two phases, because it does not play any role for the arguments (only in one place and we mention it explicitly there).

By induction on η, we can show that $M_\eta, \nu \models \varphi \iff M'_\eta, \nu \models \varphi$, and $[t]_{M_\eta}, \nu = [t]_{M'_\eta}, \nu$ for all variable assignments ν and all formulas φ with $[\text{Sp}(\varphi)]_M(\nu) \subseteq X$, respectively terms t with $[\text{Sp}(t)]_M(\nu) \subseteq X$. For each η, we furthermore do an induction on the structure of the formulas, respectively terms.

Note that the assumption that the support is contained in X refers to the support in M. So when applying the induction, we have to verify that the condition on the support of a formula/term is satisfied in M (and not in M_η).

For the formulas, the induction is straight forward, using Lemma 9.1 (see Appendix 9.1) in the cases of existential formulas and ite-formulas. Consider, for example, the case of an existential formula $\psi = \exists y : \gamma. \varphi$ with $[\text{Sp}(\psi)]_M \subseteq X$.

\[M_\eta, \nu \models \exists y : \gamma. \varphi \]
\[\iff \exists u \in D_y : M_\eta, \nu[y \leftarrow u] \models \gamma \]
\[\text{and } M_\eta, \nu[y \leftarrow u] \models \varphi \]
\[\iff \exists u \in D_y : M'_\eta, \nu[y \leftarrow u] \models \gamma \]
\[\text{and } M'_\eta, \nu[y \leftarrow u] \models \varphi \]
\[\iff M'_\eta, \nu \models \exists y : \gamma. \varphi \]
where (⋆) holds by induction on the structure of the formula. We only have to verify that \([Sp(\gamma)]_M(v[y \leftarrow u]) \subseteq X\) and \([Sp(\phi)]_M(v[y \leftarrow u]) \subseteq X\) in order to use the induction hypothesis.

Since \(\gamma\) is a guard of an existential formula, it satisfies the condition of Lemma 9.1 (see Appendix 9.1), and therefore its truth value is the same in \((M_\eta, v[y \leftarrow u])\) for all ordinals \(\eta\) (Lemma 9.1 applies because all the models \(M_\eta\) differ only in the interpretations of the support expressions and inductive relations, and thus have the same pre-model). In particular, \(M, v[y \leftarrow u] \models \gamma\) since \(M = M_\xi\) for some ordinal \(\xi\). From the equations for the supports we obtain \([Sp(\gamma)]_M(v[y \leftarrow u]) \subseteq [Sp(\psi)]_M(v)\) and \([Sp(\phi)]_M(v[y \leftarrow u]) \subseteq [Sp(\psi)]_M(v).\) The desired claim now follows from the fact that \([Sp(\psi)]_M(v) \subseteq X\).

For inductive relations \(R\) with definition \(R(\overline{x}) := \rho_R(\overline{x})\), we have to use the induction on the ordinal \(\eta\). Assume that \(\varphi = R(\overline{t})\) for \(\overline{t} = (t_1, \ldots, t_n)\), and that \([Sp(\varphi)]_M(v) \subseteq X\). Then \([Sp(\rho_R(\overline{x}))]_M(v[\overline{x} \leftarrow \overline{t}]) \subseteq X\) and \([Sp(t_i)]_M(v) \subseteq X\) for all \(i\) by the support equations.

For the case of a limit ordinal \(\eta\), the inductive relations of \(M_\eta\), resp. \(M'_\eta\), are obtained by taking union of the interpretations of the inductive relations for all \(M_\xi\), resp. \(M'_\xi\), for all \(\xi < \eta\). So the claim follows directly by induction.

For a successor ordinal \(\eta + 1\), we can assume that we are in the second phase of the construction of the frame model (the iteration of the operator \(\mu\)). For the first phase the claim trivially holds because all the inductive relations are interpreted as empty. Thus, we have

\[
M_{\eta+1}, v \models R(\overline{t}) \iff M_\eta, v \models \rho_R(\overline{t})
\]

\[
\iff M_\eta, v[\overline{x} \leftarrow [\overline{t}]_{M_\eta,v}] \models \rho_R(\overline{x})
\]

\[
(\ast)
\]

\[
\iff M'_\eta, v[\overline{x} \leftarrow [\overline{t}]_{M'_\eta,v}] \models \rho_R(\overline{x})
\]

\[
(\ast)
\]

\[
M'_{\eta+1}, v \models R(\overline{t})
\]

where (⋆) holds by induction on \(\eta\).

The other cases for formulas are similar (or simpler).

Concerning the terms, we also present some cases only, the other cases being similar or simpler.

We start with the case \(t = f(t_1, \ldots, t_n)\) for a mutable function \(f\). Let \(v\) be a variable assignment with \([t]_{M,v} \subseteq X\). By the support equations, \([t_i]_{M,v} \subseteq X\) for all \(i\). We have \([t]_{M,v} = [f]_{M}([t_1]_{M,v}, \ldots, [t_n]_{M,v}).\) By induction on the structure of terms, we have \([t_i]_{M,v} = [t_i]_{M'_v} =: u_i\). By Lemma 9.1 (see Appendix 9.1), we conclude that \([t_i]_{M,v} = [t_i]_{M'_v} =: u_i\). Since \(f\) is mutable, it contains at least one argument of sort \(\sigma_f\), say \(t_j\). Then \([t_j]_{M,v} \in [Sp(t_j)]_{M(v)} \subseteq X\), and the mutation did not change the function value of \(f\) on the tuple \((u_1, \ldots, u_n)\). So we obtain in summary that \([t]_{M,v} = [f]_{M}(u_1, \ldots, u_n) = [f]_{M}(u_1, \ldots, u_n) = [t]_{M,v} = [t]_{M'_v}\).

Now consider terms of the form \(Sp(\varphi)\). We need to proceed by induction on the structure of \(\varphi\).

We present the case of \(\varphi = \text{ite}(\gamma : \varphi_1, \varphi_2)\). Let \(v\) be a variable assignment with \([Sp(\varphi)]_M(v) \subseteq X\). Assume that \(M_\eta, v \models \gamma\). By the condition on guards, Lemma 9.1 yields that \(M, v \models \gamma\) and thus \([Sp(\gamma)]_M(v) \subseteq X\) and \([Sp(\varphi_1)]_M(v) \subseteq X\). We obtain

\[
[Sp(\varphi)]_M(v) = [Sp(\gamma)]_M(v) \cup [Sp(\varphi_1)]_M(v)
\]

\[
(\ast)
\]

\[
[Sp(\varphi)]_M'(v) = [Sp(\gamma)]_M'(v) \cup [Sp(\varphi_1)]_M'(v)
\]

\[
(\ast)
\]

where (⋆) follows by induction on the structure of the formula inside the support expression. The case \(M_\eta, v \not\models \gamma\) is analogous.

Now consider \(Sp(\varphi)\) with \(\varphi = R(\overline{t})\) for an inductively defined relation \(R\) with definition \(R(\overline{x}) = \rho_R(\overline{x})\) and \(\overline{t} = (t_1, \ldots, t_n)\). Let \(v\) be a variable assignment with \([Sp(\varphi)]_M(v) \subseteq X\). By the support equations, \([Sp(\rho_R(\overline{x}))]_M(v[\overline{x} \leftarrow [\overline{t}]_{M,v}]) \subseteq X\) and \([Sp(t_i)]_M(v) \subseteq X\).
We have already seen the definition of $\text{MW}^{x;y}$ in Section 4.3. We will detail the construction of $\text{MW}^{\text{alloc}(x)}$ in this section.

$\text{MW}^{\text{alloc}(x)}$, like $\text{MW}^{x;y}$, is also meant to evaluate a formula in the pre-state as though it were evaluated in the post-state. However, note that the support of this formula must not contain the allocated location (say x). Since we know from the operational semantics of allocation that the allocated location is going to point to default values, we can proceed similarly as we did for the previous definition, identify terms evaluating to $f(x)$ and replace them with the default value (under f). This has the intended effect of evaluating to the same value as in the post-state while removing x from the support.

However, this approach fails when we apply it to support expressions (since removing x from the support guarantees that we would no longer compute the 'same' value as of that in the post-state). In particular, a subformula of the form $t \in \text{Sp}(y)$ may be falsified by that transformation. To handle this, we identify when x might be in the support of a given expression and replace it with ν (which

\[\text{Sp}^{x;u}(\bar{y}, z) := \text{false for a constant } c\]
\[\text{Sp}^{x;u}(\bar{y}, z) := \text{false for a variable } w\]
\[\text{Sp}^{x;u}_{f}(\bar{y}, z) := \{z = \text{MW}^{\text{alloc}(x)}(t) \lor \text{Sp}^{x;u}_{t}(\bar{y}, z) \land \left(\text{MW}^{\text{alloc}(x)}(f(t) = f(t))\right)\text{ if } f \in F_m\]
\[\text{Sp}^{x;u}_{f}(\bar{y}, z) := \text{Sp}^{x;u}_{t}(\bar{y}, z)\text{ if } f \notin F_m\]

\[\text{Sp}^{x;u}_{\beta}(\bar{y}, z) := \text{Sp}^{x;u}_{\beta}(\bar{y}, z)\]
\[\text{Sp}^{x;u}_{\beta}(\bar{y}, z) := \text{Sp}^{x;u}_{\beta}(\bar{y}, z) \lor \text{Sp}^{x;u}_{\beta}(\bar{y}, z)\]

\[\text{Sp}^{x;u}_{\text{ite}(\gamma; \beta_1, \beta_2)}(\bar{y}, z) := \text{Sp}^{x;u}_{\text{ite}(\gamma; \beta_1, \beta_2)}(\bar{y}, z) \lor \text{ite}((\text{MW}^{\text{alloc}(x)}(y) \land \text{Sp}^{x;u}_{\beta_1}(\bar{y}, z), \text{Sp}^{x;u}_{\beta_2}(\bar{y}, z))\]

\[\text{Sp}^{x;u}_{\text{ite}(\gamma; \beta_1, \beta_2)}(\bar{y}, z) := \text{Sp}^{x;u}_{\text{ite}(\gamma; \beta_1, \beta_2)}(\bar{y}, z) \lor \text{ite}((\text{MW}^{\text{alloc}(x)}(y) \land \text{Sp}^{x;u}_{\beta_1}(\bar{y}, z), \text{Sp}^{x;u}_{\beta_2}(\bar{y}, z))\]

\[\text{Sp}^{x;u}_{\exists \psi}(\bar{y}, z) := \exists \psi : (\text{MW}^{\text{alloc}(x)}(y) \land \text{Sp}^{x;u}_{\beta}(\bar{y}, z)\]

Fig. 6. Definition of $\text{Sp}^{x;u}$ for use in $\text{MW}^{\text{alloc}(x)}$.

Let $\eta + 1$ be a successor ordinal. Then

\[\left[\text{Sp}(R(\bar{t}))\right]_{M_{\eta + 1}}(v)\]

\[= \left[\text{Sp}(\rho_R(\bar{x}))\right]_{M_{\eta}}(v[\bar{x} \leftarrow \left[\bar{t}\right]_{M_{\eta}, v}]) \lor \bigcup_{i=1}^{n} \left[\text{Sp}(t_i)\right]_{M_{\eta}}(v)\]

\[= \left[\text{Sp}(R(\bar{t}))\right]_{M_{\eta + 1}}(v)\]

where (\ast) holds by induction on η. We can apply the induction hypothesis because the terms t_i do not contain support expressions by the restriction on the type of inductive relations, and thus $\left[\bar{t}\right]_{M_{\eta}, v} = \left[\bar{t}\right]_{M_{\eta}, v} = \left[\bar{t}\right]_{M, v}$ by Lemma 9.1.

The proof of the other cases works in a similar fashion. □

9.3 Definitions of MW primitives

We have already seen the definition of $\text{MW}^{x;y} = y$ in Section 4.3. We will detail the construction of $\text{MW}^{\text{alloc}(x)}$ in this section.

\[\text{MW}^{\text{alloc}(x)}\]

is given as a parameter) such that neither x nor v is dereferenced, and will not be in the support of the resulting transformation. For the program logic rule we then interpret v to any of the locations outside the allocated set in the pre-state and demand that weakest-pre satisfy the transformed formula for any such location (as it must, since we do not know which of the hitherto unallocated locations might be allocated as a result of the command).

We define $MW_{\alpha}^{\text{alloc}(x)}$ inductively. We first consider the case where β does not contain any subformulas involving support expressions or inductive definitions. Then, we have $MW_{\alpha}^{\text{alloc}(x)}$ defined as follows:

$$MW_{\alpha}^{\text{alloc}(x)}(\beta) = \beta[v/x][\lambda z. \text{ite}(z = v : \text{def}_f, f(z))/f[f_{\in F}[U/U \setminus \{v\}]]$$

where this means for each instance of a (mutable or immutable) function f in β, we replace $f(x)$ with a default value. We also replace all free instances of x in β with v, as x should not appear free in the precondition since it had not yet been allocated. Further we must transform all the unallocated sets to be used later in the program to not contain v (which contains the value we intend to allocate in the current step).

If $Sp(y)$ is a subterm of β, we translate it to a term $Sp_{\beta}^{x/v}$ inductively as in Figure 6. This definition is very similar to the translation of FL formulae to FO-RD in Figure 3 where we replace free instances of x with v. Since this is a relation, we must transform membership to evaluation, i.e., transform expressions of the form $t \in Sp(y)$ to $Sp_{\beta}^{x/v}(y), MW_{\alpha}^{\text{alloc}(x)}(t))$ where β are the free variables (we transform inductively— at the highest level free variables will be program/ghost variables). We also transform union of support expressions to disjunction of the corresponding relations, equality to (quantified) double implication, etc.

For a subterm of β of the form $I(\overline{t})$ where I is an inductive definition with body ρ_I, we translate it to $I'(MW_{\alpha}^{\text{alloc}(x)}(\overline{t}))$ where the body of I' is defined as $MW_{\alpha}^{\text{alloc}(x)}(\rho_I)$.

The above cases can be combined with boolean operators and if-then-else, which $MW_{\alpha}^{\text{alloc}(x)}$ distributes over.

9.4 Program Logic Proofs

This section contains the soundness proofs for all global rules in Section 4.3. Since only the allocation rule modifies U, we represent a configuration as (M, H) for all rules in this section besides the allocation rule.

Theorem 9.3 (Lookup Soundness). Let M be a model and H a sub-universe of locations such that

$$M \models \exists x' : x' = f(y). (\beta \land y \in Sp(\beta))[x'/x]$$

$$H = [Sp(\exists x' : x' = f(y). (\beta \land y \in Sp(\beta))[x'/x])]_M$$

Then $(M, H) \xrightarrow{\text{def}} (M', H')$, $M' \models \beta$, and $H' = [Sp(\beta)]_{M'}$.

Proof. Observe that $[y]_M \in H$ since y is in the support of the precondition. Therefore we know $(M, H) \xrightarrow{\text{def}} (M', H')$ where $M' = M[x \mapsto [f(y)]_M]$ and $H' = H$. Next, note that if there is a formula α (or term t) where x is not a free variable of α (or t), then M and M' have the same valuation of α (or t). This is true because the semantics of lookup only changes the valuation for x on M. In particular, $M' \models \exists x' : x' = f(y). (\beta \land y \in Sp(\beta))[x'/x]$. Thus,

$$M' \models \exists x' : x' = f(y). (\beta \land y \in Sp(\beta))[x'/x]$$

$$\implies M'[x' \mapsto c]$$
\[\models x' = f(y) \land (\beta \land y \in \text{Sp}(\beta))[x'/x] \] (for some c)

\[\Rightarrow M'[x' \mapsto [f(y)]_{M'}] \models (\beta \land y \in \text{Sp}(\beta))[x'/x] \] (since \(f \) is a function)

\[\Rightarrow M'[x' \mapsto [x']_{M'}] \models (\beta \land y \in \text{Sp}(\beta))[x'/x] \] (operational semantics)

\[\Rightarrow M'[x' \mapsto [x']_{M'}] \models (\beta \land y \in \text{Sp}(\beta))[x'/x] \] (operational semantics)

\[\Rightarrow M' \models \beta \land y \in \text{Sp}(\beta) \] (\(\beta \) does not mention \(x' \))

\[\Rightarrow M' \models \beta \]

The heaplet condition follows from a similar argument. Specifically

\[H' = H \]

\[= [\text{Sp}(\exists x' : x' = f(y). (\beta \land y \in \text{Sp}(\beta))[x'/x])]_{M} \]

\[= [\text{Sp}(\forall x' : x' = f(y). (\beta \land y \in \text{Sp}(\beta))[x'/x])]_{M'} \] (does not mention \(x \))

\[= \{[y]_{M'} \} \cup \]

\[[\text{Sp}(\forall x' : x' = f(y). (\beta \land y \in \text{Sp}(\beta))[x'/x])]_{M'}(x' \mapsto [f(y)]_{M'}) \] (def of Sp)

\[= \{[y]_{M'} \} \cup \]

\[[\text{Sp}(\forall x' : x' = f(y). (\beta \land y \in \text{Sp}(\beta))[x'/x])]_{M'}(x' \mapsto [x]_{M'}) \] (operational semantics)

\[= \{[y]_{M'} \} \cup [\text{Sp}(\forall x' : x' = f(y). (\beta \land y \in \text{Sp}(\beta))[x'/x])]_{M'} \] (similar reasoning as above)

\[= [\text{Sp}(\beta)]_{M'} \] (since \(M' \models y \in \text{Sp}(\beta) \) from above)

\[\square \]

Theorem 9.4 (WTP Lookup). Let \(M, M' \) be models with \(H, H' \) sub-universes of locations (respectively) such that \((M, H) \xrightarrow{x=y,f} (M', H')\), \(M' \models \beta \) and \(H' = [\text{Sp}(\beta)]_{M'} \). Then

\[M \models \exists x' : x' = f(y). (\beta \land y \in \text{Sp}(\beta))[x'/x] \] (weakest-pre)

\[H = [\text{Sp}(\exists x' : x' = f(y). (\beta \land y \in \text{Sp}(\beta)))]_{M} \] (tightest-pre)

Proof. Both parts follow by simply retracing steps in the above proof. The weakness claim follows from the first part of the proof above, where all implications can be made bidirectional (using operational semantics rules, definition of existential quantifier, etc.). The tightness claim follows immediately from the second part of the proof above as all steps involve equalities. \(\square \)

For soundness of the pointer modification rules, we prove the following lemma:

Lemma 9.5. Given a formula \(\beta \) (term \(t \)) and configurations \((M, H)\) and \((M', H')\) such that \((M, H) \xrightarrow{\text{sub-universes of locations}} (M', H')\) transforms to \((M', H')\) on the command \(x.f := y (\beta) \) transforms to \((M', H')\) on the command \(x.f := y (\beta) \). Additionally, \([\text{Sp}(\text{MW}_{x.f := y (\beta)})]_{M} = [\text{Sp}(\beta)]_{M'}\). Both equalities hold for terms \(t \) as well.

Proof. Induction on the structure of \(\beta \), unfolding \(\text{MW}_{x.f := y (\beta)} \) accordingly. We discuss one interesting case here, namely when \(\beta \) has a subterm of the form \(f(t) \). Now, we have two cases, depending on whether \([\text{MW}_{x.f := y (\beta)}]_{M} = [x]_{M}\). If it does, then

\[[\text{MW}_{x.f := y (f(t))}]_{M} \]

\[= [\text{MW}_{x.f := y (f(t))}]_{M}([\text{MW}_{x.f := y (t)}]_{M}) \] (definition)

\[= [\text{MW}_{x.f := y (f(t))}]_{M}([x]_{M}) \] (assumption)
The proof for the cases when $[MW^{x,f:=y}(t)]_M \neq [x]_M$ and the heaplet equality claims are similar, and all other cases are trivial.

\[\quad \]

Theorem 9.6 (Mutation Soundness). Let M be a model and H a sub-universe of locations such that

\[
M \models MW^{x,f:=y}(\beta \land x \in Sp(\beta))
\]

\[\]

Then $(M, H) \xrightarrow{x,f:=y} (M', H'), M' \models \beta$, and $H' = [Sp(\beta)]_{M'}$.

Proof. From the definition of the transformation $MW^{x,f:=y}$, we have that $MW^{x,f:=y}(\beta \land x \in Sp(\beta))$ will be transformed to the same formula as $MW^{x,f:=y}(\beta \land x \in Sp(MW^{x,f:=y}(\beta)))$, the heaplet of which, since the formula holds on M, contains x. Therefore, $x \in H$ and from the operational semantics, we have that $(M, H) \xrightarrow{x,f:=y} (M', H')$ for some (M', H') such that $H = H'$.

From Lemma 9.5 we have that $M' \models \beta \land x \in Sp(\beta)$, since M models the same. In particular $M' \models \beta$. Moreover we have

\[
H' = H
\]

(operational semantics)

\[
= [Sp(MW^{x,f:=y}(\beta \land x \in Sp(\beta)))]_M
\]

(given)

\[
= [Sp(\beta \land x \in Sp(\beta))]_{M'}
\]

(Lemma 9.5)

\[
= [Sp(\beta)]_{M'}
\]

(semantics of H operator)

Therefore $M' \models \beta$ and $H' = [Sp(\beta)]_{M'}$ which makes our pointer mutation rule sound.

\[\]

Theorem 9.7 (WTP Mutation). Let M, M' be models with H, H' sub-universes of locations (respectively) such that $(M, H) \xrightarrow{x,f:=y} (M', H')$, $M' \models \beta$ and $H' = [Sp(\beta)]_{M'}$. Then

\[
M \models MW^{x,f:=y}(\beta \land x \in Sp(\beta))
\]

(weakest-pre)

\[
H = [Sp(MW^{x,f:=y}(\beta \land x \in Sp(\beta)))]_M
\]

(tightest-pre)

Proof. From the operational semantics, we have that $(M, H) \xrightarrow{x,f:=y} (M', H')$ only if $x \in H$ and $H = H'$. Therefore $x \in H' = [Sp(\beta)]_{M'}$ (given) which in turn implies that $M' \models \beta \land x \in Sp(\beta)$ as well as $H' = [Sp(\beta \land x \in Sp(\beta))]_{M'}$. Applying Lemma 9.5 yields the result.

\[\]

Lemma 9.8. Given a formula β (or term t) and configurations (M, H, U) and (M', H', U') such that (M, H, U) transforms to (M', H', U') on the command $\text{alloc}(x)$, then $[\text{Sp}^{x:=\beta} (\overline{\gamma}, \text{MW}^{\text{alloc}(x)}_{\overline{v}}(l))]_{M[\overline{\gamma}:=a]}$ if $[t \in \text{Sp}(\beta)]_{M'}$, where $a = [x]_{M'}$ and $\overline{\gamma}$ are the free variables in $\text{MW}^{\text{alloc}(x)}_{\overline{v}}(\beta)$. Additionally,
\[[\text{Sp}(\text{Sp}^\beta_x(y, z))]_{U[v \mapsto a]} = [\text{Sp}(\beta) \setminus \{x\}]_{M'} \text{ where } z \text{ is a free variable. Both equalities hold for terms } t \text{ as well.} \]

Proof. Induction on the structure of \(\beta \) and using the construction in Figure 6. For the second claim about the support of \(\text{Sp}^x_Y \), the fact that we only allow specific kinds of guards is crucial in the inductive case of the existential quantifier. \(\square \)

Lemma 9.9. Given a formula \(\beta \) (or term \(t \)) and configurations \((M, H, U) \) and \((M', H', U') \) such that \((M, H, U)\) transforms to \((M', H', U')\) on the command \(\text{alloc}(x) \), then \([\text{MW}^\text{alloc}(x)(\beta)]_{M[v\mapsto a]} = [\beta]_{M'} \), where \(a = [x]_{M'} \). Additionally, \([\text{Sp}(\text{MW}^\text{alloc}(x)(\beta))]_{M[v\mapsto a]} = [\text{Sp}(\beta) \setminus \{x\}]_{M'} \). Both equalities hold for terms \(t \) as well.

Proof. First, we split on the structure of \(\beta \), as the definition of \(\text{MW}^\text{alloc}(x) \) differs depending on the form of \(\beta \). For subformulas with no support expressions or inductive definitions, the proof follows from the syntactic definition of \(\text{MW}^\text{alloc}(x) \) and is very similar to Lemma 9.5. Subformulas with support expressions follow by construction using Lemma 9.8, and formulas with inductive definitions follow by construction as well. Boolean combinations and if-then-else follow using the inductive hypothesis. \(\square \)

We are now ready to prove the soundness and WTP property of the allocation rule. This will be different from the other soundness theorems because it reasons only about configurations reachable by a program or a valid initial state. This strengthening of the premise is not an issue since we will only ever execute commands on such states. We shall first prove a lemma.

Lemma 9.10. Let \(\beta \) be any formula within our restricted fragment (Section 4) and \((M, H, U)\) be a valid configuration. Then, for any locations \(a_1, a_2 \in U \):

\[[\text{MW}^\text{alloc}(x)(\beta)]_{M[v \mapsto a_1]} = [\text{MW}^\text{alloc}(x)(\beta)]_{M[v \mapsto a_2]} \]

and

\[[\text{Sp}(\text{MW}^\text{alloc}(x)(\beta))]_{M[v \mapsto a_1]} = [\text{Sp}(\text{MW}^\text{alloc}(x)(\beta))]_{M[v \mapsto a_2]} \]

Proof. The proof follows by a simple inductive argument on the structure of \(\beta \). First observe that in any model if \(v \) is interpreted to an unallocated location (more generally a location outside of \(H \)) it is never contained in \(\text{MW}^\text{alloc}(x)(\beta) \) since it is never dereferenced. Therefore, all we are left to prove is that the actual value of \(v \) (between choices in \(U \)) influences neither the truth value nor the support of the formula. The key case is that of \(\text{ite} \) expressions where the value of \(v \) can influence the truth of the guard. This case can be resolved using the observation that since \((M, H, U)\) is a valid configuration, the value of any unallocated location can never equal that of a program variable. Since we have no atomic relations either in our restricted fragment, any two values in \(U \) are indistinguishable by a formula in this fragment.

In particular, any \(\text{ite} \) expressions that depend on the value of \(v \) either compare it with a term over a program variable—which is never equal, or compare it with a quantified variable—which itself only takes on values allowed by the guard of the quantification that, inductively, does not distinguish between values in \(U \). \(\square \)

Theorem 9.11 (Allocation Soundness). Let \((M, H, U)\) be a valid configuration such that

\[M \models \forall v : (v \in U) \cdot (\text{MW}^\text{alloc}(x)(\beta)) \]

, Vol. 1, No. 1, Article . Publication date: July 2019.
\[H = \left[Fr(\forall v : (v \in U) \cdot \left(MW_{\nu}^{\text{alloc}(x)}(\beta) \right) \right]_M \]

\[(M, H, U) \xrightarrow{\text{alloc}(x)} (M', H', U \setminus \{x\})_M \]

Then \(M' \models \beta \) and \(H' = \left[Sp(\beta) \right]_{M'} \)

Proof. Let \(a \) be the actual location allocated, i.e., \(a = \left[x \right]_{M'} \). Clearly \(a \in U \) by the operational semantics. Then, we have:

\[M \models \forall v : (v \in U) \cdot \left(MW_{\nu}^{\text{alloc}(x)}(\beta) \right) \]

\[\Rightarrow M[v \mapsto a] \models (v \in U) \Rightarrow \left(MW_{\nu}^{\text{alloc}(x)}(\beta) \right) \]

\[\Rightarrow M[v \mapsto a] \models MW_{\nu}^{\text{alloc}(x)}(\beta) \quad (a \in U \text{ by operational semantics}) \]

\[\Rightarrow M' \models \beta \quad \text{(Lemma 9.9)} \]

For the support claim, we have:

\[H = \left[Fr(\forall v : (v \in U) \cdot \left(MW_{\nu}^{\text{alloc}(x)}(\beta) \right) \right]_M \]

\[= \bigcup_{s \in U} \left[Sp(MW_{\nu}^{\text{alloc}(x)}(\beta)) \right]_{M[v \mapsto s]} \quad \text{(definition of Sp operator)} \]

\[= \left[Sp(MW_{\nu}^{\text{alloc}(x)}(\beta)) \right]_{M[v \mapsto a]} \quad \text{(Lemma 9.10)} \]

\[= \left[Sp(\beta) \setminus \{x\} \right]_{M'} \quad \text{(Lemma 9.9)} \]

Now \(H' = H \cup \{\left[x \right]_{M'}\} \) (by operational semantics) = \(\left[Sp(\beta) \setminus \{x\} \right]_{M'} \cup \{\left[x \right]_{M'}\} = \left[Sp(\beta) \right]_{M'} \), as desired. \(\square \)

Theorem 9.12 (WTP Allocation). Let \((M, H, U) \) and \((M', H', U \setminus \{x\})_M \) be valid configurations such that

\[(M, H, U) \xrightarrow{\text{alloc}(x)} (M', H', U \setminus \{x\})_M \]

Then

\[M \models \forall v : (v \in U) \cdot \left(MW_{\nu}^{\text{alloc}(x)}(\beta) \right) \]

\[H = \left[Fr(\forall v : (v \in U) \cdot \left(MW_{\nu}^{\text{alloc}(x)}(\beta) \right) \right]_M \]

Proof. The first claim follows easily from an application of Lemma 9.9 followed by an application of Lemma 9.10. For the second claim, observe that as done in the proof above for Theorem 9.11 we can prove that \(\left[Sp(\beta) \setminus \{x\} \right]_{M'} = \left[Fr(\forall v : (v \in U) \cdot \left(MW_{\nu}^{\text{alloc}(x)}(\beta) \right) \right]_M \). The proof concludes by observing that by the operational semantics we have \(H = H' \setminus \{\left[x \right]_{M'}\} = \left[Sp(\beta) \right]_{M'} \setminus \{\left[x \right]_{M'}\} = \left[Sp(\beta) \setminus \{x\} \right]_{M'}, \) \(\square \)

Theorem 9.13 (Deallocation Soundness). Let \(M \) be a model and \(H \) a sub-universe of locations such that

\[M \models \beta \land x \notin Sp(\beta) \land f(x) = f(x) \]

\[H = \left[Sp(\beta \land x \notin Sp(\beta) \land f(x) = f(x)) \right]_M \]
Then \((M, H) \xrightarrow{\text{free}(x)} (M', H'), M' \models \beta\), and \(H' = [\text{Sp}(\beta)]_{M'}\).

Proof. Observe that \(x \in \text{Sp}(\beta) \wedge x \notin \text{Sp}(\beta) \wedge f(x) = f(x)\), i.e., \([x]_M \in H\). Therefore we have from the operational semantics that \((M, H) \xrightarrow{\text{free}(x)} (M', H')\) such that \(M' = M\) and \(H' = H \setminus \{[x]_M\}\).

Since \(M \models \beta \wedge x \notin \text{Sp}(\beta) \wedge f(x) = f(x)\), we know \(M \models \beta\), which implies \(M' \models \beta\). Similarly, we have:

\[
H' = H \setminus \{[x]_M\} \quad \text{(operational semantics)}
\]

\[
\begin{align*}
&= [\text{Sp}(\beta) \wedge x \notin \text{Sp}(\beta) \wedge f(x) = f(x)]_M \setminus \{[x]_M\} \\
&= [\text{Sp}(\beta)]_M \cup \{[x]_M\} \setminus \{[x]_M\} \\
&= [\text{Sp}(\beta)]_M \\
&= [\text{Sp}(\beta)]_{M'} \\
&= (M = M')
\end{align*}
\]

Theorem 9.14 (WTP Deallocation). Let \(M, M'\) be models with \(H, H'\) sub-universes of locations (respectively) such that \((M, H) \xrightarrow{\text{free}(x)} (M', H')\), \(M' \models \beta\) and \(H' = [\text{Sp}(\beta)]_{M'}\). Then

\[
M \models \beta \wedge x \notin \text{Sp}(\beta) \wedge f(x) = f(x) \quad \text{(weakest-pre)}
\]

\[
H = [\text{Sp}(\beta) \wedge x \notin \text{Sp}(\beta) \wedge f(x) = f(x)]_M \quad \text{(tightest-pre)}
\]

Proof. For the first part, note that the operational semantices ensures \([x]_M \notin H' = [\text{Sp}(\beta)]_{M'}\) and \(M = M'\). So \(M' \models x \notin \text{Sp}(\beta)\) which implies \(M \models x \notin \text{Sp}(\beta)\). Similarly, \(M \models \beta\), and \(M \models f(x) = f(x)\) as it is a tautology. Tightness follows from similar arguments as in Theorem 9.13, again noting that \(H' = H \setminus \{[x]_M\}\) as per the operational semantics.

Theorem 4.1. The four local rules (for assignment, lookup, mutation, allocation, and deallocation) given in Section 4 are sound given the global rules.

Proof. The validity of assignment follows immediately setting \(\beta\) to be \(x = y\) (or \(x = c\)). Instantiating with this and the precondition becomes \(y = y\) which is equivalent to \(\text{true}\) (the heaplet of both is empty)

The validity of the next (lookup) follows since

\[
\text{wtp}(x = f(y), x := y.f)
\]

\[
\exists x' : x' = f(y).
\]

\[
(x = f(y) \wedge y \in \text{Sp}(x = f(y))[x'/x]
\]

\[
\exists x' : x' = f(y). \ x' = f(y) \wedge y \in \text{Sp}(x') = f(y)
\]

\[
f(y) = f(y) \wedge y \in \text{Sp}(f(y) = f(y))
\]

This is a tautology, so it is clearly implied by any precondition, in particular the precondition \(f(y) = f(y)\). Similarly, the support of the resulting formula is the singleton \(\{y\}\) which is also the support of \(f(y) = f(y)\) as needed.

For the second local rule (mutation), we first notice that

\[
M \text{W}^{x.f = y}(f(x) = y)
\]

\[
= (f(x) = y)
\]

\[
[\text{ite}(z = x : \text{ite}(f(x) = f(x) : y, y), f(z))/f(x)]
\]

\[
= \text{ite}(x = x : \text{ite}(f(x) = f(x) : y, y), f(x)) = y
\]
Then,
\[\text{wtp}(f(x) = y, x.f := y) \]
\[= \text{ite}(x = x : \text{ite}(f(x) = f(x) : y, y), f(x)) = y \]
\[\land x \in \text{Sp}(\text{ite}(x = x : \text{ite}(f(x) = f(x) : y, y), f(x)) = y) \]
\[\text{ite}(f(x) = f(x) : y, y), f(x)) = y \]

The first conjunct is clearly true since it is equivalent to \(y = y \). The second conjunct is also true because \(\text{Sp}(\text{ite}(x = x : \text{ite}(f(x) = f(x) : y, y), f(x)) = y) = \{x\} \). Thus, this formula is also a tautology, and it is implied by the precondition \(f(x) = f(x) \). Additionally the support of the resulting formula and the support of \(f(x) = f(x) \) is \(\{x\} \) as needed.

For the next local rule (allocation), observe that the postcondition does not have any support expressions or inductive definitions. Therefore, we have that:
\[MW^{\text{alloc}(x)}(f(x) = \text{def}_f) \]
\[= \text{ite}(x = x : \text{def}_f, f(x)) = \text{def}_f \]

Observe that the support of the above expression is \(\emptyset \). The support of a conjunction of such expressions is also \(\emptyset \). This and the fact that \(MW^{\text{alloc}(x)} \) distributes over \(\land \) gives us:
\[\text{wtp}\left(\bigwedge_{f \in F} (f(x) = \text{def}_f), x := \text{alloc}() \right) \]
\[= \forall \nu : \nu \notin \emptyset \implies MW^{\text{alloc}(x)}\left(\bigwedge_{f \in F} f(x) = \text{def}_f \right) \]
\[= \forall \nu : \bigwedge_{f \in F} (\text{ite}(x = x : \text{def}_f, f(x)) = \text{def}_f) \]

which is a tautology (as it is equivalent to \(\text{def}_f = \text{def}_f \)) and its support is \(\emptyset \) as desired.

Finally the last local rule (deallocation) follows directly from the global rule for deallocation by setting \(\beta = \text{true} \).

Theorem 9.15 (Conditional, While Soundness).

Proof. See any classical proof of the soundness of these rules, as in [Apt 1981].

Theorem 9.16 (Sequence Soundness). The Sequence rule is sound.

Proof. Follows directly from the operational semantics.

Theorem 9.17 (Consequence Soundness). The Consequence rule is sound.

Proof. First, note if we can’t execute \(S \) then the triple is vacuously valid. Next, assume \(M \models \alpha \).

Then, because \(\alpha' \implies \alpha \), we know \(M \models \alpha \). So, if we execute \(S \) and result in \(M' \), we know \(M' \models \beta \) since \(\{\alpha\}S\{\beta\} \) is a valid triple. Then, \(M' \models \beta' \) since \(\beta \implies \beta' \). Finally, since the supports of \(\alpha \) and \(\alpha' \) as well as \(\beta \) and \(\beta' \) are equal, the validity of the Hoare triple holds.

Theorem 9.18 (Frame Rule Soundness). The Frame rule is sound.

Proof. First, we establish that for any \((M, H)\) such that \(M \models \alpha \land \gamma \) and \(H = S^{m}[\text{Sp}(\alpha \land \gamma)] \), we never reach \(\bot \). Consider \((M, S^{m}[\text{Sp}(\alpha)] \implies ^* \) and \((M, H) \implies ^* \). Let these executions be expressed as a sequence of configurations \(P_1 \) and \(P_2 \). We can show that for each step in \(P_2 \), there exists a corresponding step in \(P_1 \) such that:
(1) at any corresponding step the allocated set on P_2 is a superset of the allocated set on P_1
(2) the executions allocate and deallocate the same locations

The claim as well as the first item is easy to show by structural induction on the program. Given that, the second is trivial since a location available to allocate on P_2 is also available to allocate on P_1. Any location that is deallocated on P_2 that is unavailable on P_1 would cause P_1 to reach \bot which is disallowed since we are given that $\{a\}S\{b\}$ is valid.

Thus if we abort on the former we must abort on the latter, which is a contradiction since we are given that $\{a\}S\{b\}$ is valid. From the second item above, we can also establish that all mutations of the model are outside of $Sp(\gamma)$ since it is unavailable on P_1 (we start with $Sp(\alpha)$ and allocate only outside $Sp(\alpha \land \gamma) = Sp(\alpha) \cup Sp(\gamma)$, and we are also given that the supports of α and γ are disjoint in any model). Therefore, if there exists a configuration (M', H') such that $(M, H) \Rightarrow^* (M', H')$ it must be the case that M' is a mutation of M that is stable on $Sp(\gamma)$. Since $\{a\}S\{b\}$ is valid we have that $M' \models \beta$. Lastly, we conclude from the Frame Theorem (Theorem 3.4) that since $M \models \gamma$, $M' \models \beta \land \gamma$ which gives us $M' \models \beta \land \gamma$.

We must also show that $H' = [Sp(\beta \land \gamma)]_{M'}$. To show this, we can strengthen the inductive invariant above with the fact that at any corresponding step the allocated set on P_2 is not simply a superset of that on P_1, but in fact differs exactly by $Sp(\gamma)$. This invariant establishes the desired claim, which concludes the proof of the frame rule.

\section{Frame Logic Can Capture the PSL fragment}

Lemma 5.5. For any formula φ in the PSL fragment, if there is an s and h such that $s, h \models \varphi$ and we can extend h by some nonempty h' such that $s, h \cup h' \models \varphi$, then for any h'', $s, h \cup h'' \models \varphi$.

Proof. If a stack formula holds then it holds on any heap. Pointer formulas and inductive definitions as defined can never have an extensible heap so this is vacuously true.

For $ite(sf, \varphi_1, \varphi_2)$, assume WLOG $s, h \models sf$. Then for any h', $s, h' \models \varphi_1 \iff s, h' \models ite(sf, \varphi_1, \varphi_2)$.

Then use the induction hypothesis.

For $\varphi_1 \land \varphi_2$, for any h', $s, h' \models \varphi_1 \land \varphi_2 \iff s, h' \models \varphi_1$ and $s, h' \models \varphi_2$. If the conjoined formula can be extended, both subformulas can be extended, and then we apply the induction hypothesis.

For separating conjunction, the nature of the proof is similar to conjunction, noting that the heap can be extended iff the heap of either subformula can be extended.

For existential formulas in our form, the proof is again similar, noting the heap is extensible iff the heap of φ_1 is extensible.

Lemma 5.6. For any s, h such that $s, h \models \varphi$ we have $M_{s,h}(Sp(T(\varphi))) = h_{\varphi}$ where h_{φ} is as above.

Proof. Structural induction on φ.

If φ is a stack formula, $h_{\varphi} = Sp(T(\varphi)) = \emptyset$. If $\varphi \equiv x \overset{f}{\rightarrow} y$, $h_{\varphi} = Sp(T(\varphi)) = \{x\}$.

For $\varphi \equiv ite(sf, \varphi_1, \varphi_2)$, because, $s, h \models \varphi$, we know either $s, h \models \varphi_1$ or $s, h \models \varphi_2$ depending on the truth of sf. WLOG assume $s, h \models sf$, then $h_{\varphi} = h_{\varphi_1}$. Similarly, $Sp(T(\varphi)) = Sp(sf) \cup Sp(T(\varphi_1)) = Sp(T(\varphi_1))$ (heaplet of stack formulas is empty) and then we apply the induction hypothesis. Similarly if $s, h \not\models sf$.

For $\varphi \equiv \varphi_1 \land \varphi_2$, we know from the proof of Lemma 5.2 that $h_{\varphi} = h_{\varphi_1} \cup h_{\varphi_2} = M_{s,h}(Sp(T(\varphi_1))) \cup M_{s,h}(Sp(T(\varphi_2)))$. The guard parts of the translation $Sp(\varphi)$ since they are all precise formulas which have empty heaplets.

For $\varphi \equiv \varphi_1 * \varphi_2$, the proof is the same to the previous case, again from the proof of Lemma 5.2.

For an inductive definition I, recall that $\rho_I[I \leftarrow \varphi]$ is in the PSL fragment (and crucially does not mention I). Assume φ is fresh and does not occur in ρ_I. Define $\rho'_I \equiv \rho_I[I \leftarrow \varphi]$ and note that $\rho_I =
\[\rho'_1[\phi \leftarrow I]. \] This means that \(h_{\rho_1} = h_{\rho'_1}[h_\phi \leftarrow h_I]. \) We also see that \(Sp(T(\rho_1)) = Sp(T(\rho'_1))[Sp(\psi) \leftarrow Sp(T(\rho_1))]. \) Because \(h_{\rho'_1} = Sp(T(\rho'_1)) \) (by the other cases in this proof and since \(\rho'_1 \) does not mention \(I) \), we see the heaplets are related by the same sets of recursive equations and we are done.

For existentials, we have from the definition of the \(Sp \) operator that the support of the translation of the existential formula is the same as that of \(\{x\} \cup Sp(T(\phi_1)). \) The claim then follows from the definition of heaplet of existentials in separation logic as well as the inductive hypothesis for \(\phi_1. \) □