
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

Alchemist: Learning Guarded Affine Functions

Shambwaditya Saha, Pranav Garg, and P. Madhusudan

University of Illinois, Urbana-Champaign

Abstract. We present a technique and an accompanying tool that learns
guarded affine functions. In our setting, a teacher starts with a guarded
affine function and the learner learns this function using equivalence
queries only. In each round, the teacher examines the current hypothesis
of the learner and gives a counter-example in terms of an input-output
pair where the hypothesis differs from the target function. The learner
uses these input-output pairs to learn the guarded affine expression. This
problem is relevant in synthesis domains where we are trying to synthe-
size guarded affine functions that have particular properties, provided
we can build a teacher who can answer using such counter-examples. We
implement our approach and show that our learner is effective in learn-
ing guarded affine expressions, and more effective than general-purpose
synthesis techniques.

1 Introduction

We consider the problem of learning guarded affine functions, where the function
is expressed using linear inequality guards that delineate regions, and where in
each region, the function is expressed using an affine function. More precisely,
guarded affine functions are those expressible as guarded linear expressions,
which are given by the following grammar:

gle := ite(lp, gle, gle) | le
lp := le < le | le ≤ le | le = le
le := c | cx | le + le

where x ranges over a fixed finite set of variables V with domain D (which can be
reals, rationals, integers or natural numbers), and where c ranges over rationals.

We are interested in the problem of learning guarded affine functions using
only a sample of its behavior on a finite set of points. More precisely, consider
the learning setting where we have a teacher that has a target guarded affine
function f : Rd −→ R. We start with the behavior on a finite set of samples
S ⊆ Rd, and the teacher gives the value of the function on these points. The
learner then must respond with a guarded linear expression hypothesis H that
is consistent with these points. The teacher then examines H and checks if the
learner has learned the target function (i.e., checks whether H ≡ f). If yes, we
are done; otherwise, the teacher adds a new sample s ∈ Rd where they differ
(i.e., H(s) 6= f(s)), and we iterate the learning process with the learner coming
up with a new hypothesis. The goal of the learner is to learn the target guarded
affine function f .

The above model can be seen as a learning model with equivalence queries
only, or an online learning model [3]. This learning model is motivated by syn-
thesis problems, where the idea is to synthesize functions that satisfy certain
properties. For instance, in an effort to help a programmer identify a guarded
affine function within a program, we can consider the program with this hole,
capture the correctness requirement (perhaps expressed using input-output ex-
amples to the program) and then build a teacher who can check correctness of
hypothesized expressions [10]. Combined with the learner that we build, we will
then obtain synthesis algorithms for this problem.

We do emphasize, however, that the problem and solution we consider here
works only if there is an effective teacher who knows the target concept. In some
synthesis contexts, where the specification admits many acceptable guarded
affine functions as solutions, we would have to use heuristics to use our ap-
proach (for example, the teacher may decide how the function behaves on some
inputs, from the class of possible outputs, to instruct the learner). However, as
a learning problem, our problem formulation is simple and clean.

The black-box learning approach to synthesis is in fact very common in syn-
thesis solvers. For instance, the CEGIS (counter-example guided inductive syn-
thesis) approach [11] is similar to learning in the sense that it too synthesizes from
samples, and solvers in the SyGuS format for synthesis, including the enumera-
tive solver, the stochastic solver, the symbolic solver, and Sketch [10], are based
on synthesizing using concrete valuations of variables in the specification [1].

There has also been previous work on the construction of piece-wise affine
models of hybrid dynamical systems from input-output examples [2,4,5,12] (also
see [7] for an extensive survey of the existing techniques). The problem setting,
in these works, attacks a different problem, where the goal is to learn guarded
linear functions that approximate the sample. Consequently, the work in [2] uses
techniques such as regression, while we use accurate algorithms. Also, in our
setting, we have an active learning setup where the learner keeps learning using
counterexamples till the process converges to the target function.

Contribution: In this paper, we build a learning algorithm for guarded affine
functions, that learns from a sample of points and how the target function eval-
uates on that sample: {(xi, f(xi))}i=1,...,n. Our goal is to learn a simple guarded
linear expression that is consistent with this sample (the learning bias is towards
simpler expressions). A guarded linear expression can be thought of as a nested
if-then-else expression with linear guards, and linear expressions at its leaves.
Our algorithm is composed of two distinct phases:
– Phase 1: [Geometry] First, we synthesize the set of linear expressions that

will occur at the leaves of our guarded linear expression. This problem is to
essentially find a small set of planes that include all the given points in the
(d + 1)-dimensional space (viewing the space describing the inputs and the
output of the function being synthesized), and we use a greedy algorithm
that uses computational geometry techniques for achieving this. At the end
of this phase, we have labeled every point in the sample with a plane that
correctly gives the output for that point.

– Phase 2: [Classifier] Given the linear expressions from the first phase, we then
synthesize the guards. This is done using a classification algorithm, which
decides how to assign all points in Rd to planes such that all the samples get
mapped to the correct planes. We use a decision tree classifier [6,8] for this,
which is a fast and scalable machine-learning algorithm that can discover
such a classification based on Boolean guards.
Neither phase is meant to return the best solution. The geometry phase tries

to find k planes that cover all points, and uses a greedy algorithm that need
not necessarily work; in this case, we may increase k, and hence our algorithm
might find more planes than necessary. The second phase for finding guards
also does not necessarily find the minimal tree. Needless to say, the optimal
versions of these problems are intractable. However, the algorithms we employ
are extremely efficient; there are no NP oracles (SAT/SMT solvers) used. The
learning of decision trees is based on information theory to choose the best guards
at each point, and work well in practice in producing small trees [6].

We implement our learning algorithm and also build a teacher who has partic-
ular target functions, and instructs the learner using counter-examples obtained
with the help of an SMT solver. We show that for many functions with rea-
sonable guards and linear expressions, our technique performs extremely well.
Furthermore, we can express the problem of learning guarded affine functions
in the SyGuS framework [1], and hence use the black-box synthesis algorithms
that are implemented for SyGuS. We show that our tool performs much better
than these general-purpose synthesis techniques for this class of problems.

2 A Learning Algorithm based on Geometry and
Decision Trees

The learner learns from a set of sample points S = {(xi, vi), i = 1, . . . n}. A
guarded linear expression e satisfies such a set of samples S if the function f
defined by the expression e maps each xi to vi.

As we mentioned earlier, the learner works in two phases. The first phase
finds the leaf expressions using geometry and the second phase finds a guarded
expression that maps points to these planes. We now describe these two phases.

2.1 Finding leaf planes using geometric techniques

The first phase, based on geometry, finds a small set of (unguarded) linear expres-
sions P such that for every sample point, there is at least one linear expression in
P that will produce the right output for that point. This phase hence discovers
the set of leaf expressions in the guarded linear expression. Let |S| = n where
n is large, and let us assume that we want to find k planes that cover all the
points, where k is small. Let the function being synthesized be of arity d. Each
sample point in S can be viewed as an input-output pair, p = (x, y) such that
f(x) = y. We view them as points in a (d + 1)-dimensional space, and try to
find, using a greedy strategy, a small number of planes such that every point
falls on at least one plane. We start with a small budget for k and increase k
when it doesn’t suffice.

Assuming that there are k planes that cover all the points, there must be at
least dn/ke points that are covered by a single plane. Hence, our strategy is to
find a plane in a greedy manner that covers at least these many points. Once we
find such a plane, we can remove all the points that are covered by that plane,
and recurse, decrementing k.

Note that in a (d+1)-dimensional space, one can always a construct a plane
that passes through any (d+ 1) points. Hence, our strategy is to choose sets of
(d+2) points and check if they are coplanar (and then check if they cover enough
points in the sample). Since we are synthesizing a guarded linear expression, it is
likely that the leaf planes are defined over a local region, and hence we would like
to choose the d+2 points such that they are close to each other. Our algorithm
Construct-Plane, depicted below, searches for a plane by (a) choosing a random
point p and taking the closest 2d points next to p, by computing the distance of
all points to p, sorting them, and picking the closest 2d points and (b) choosing
every combination of (d+2) points from this set and checking it for coplanarity.
Construct-Plane(S)

1 Select a random point p = (x, y) ∈ S
2 C = set of 2d points closest to p
3 Y = collection of all subsets of (d+ 1) points in C
4 repeat for all Z in Y
5 if the set of points in (Z ∪ p) are coplanar
6 pln = find_plane (Z ∪ p)
7 Sel = set of points in S that lie on plane pln
8 if |Sel| > d|S|/ke
9 label the points in Sel as pln

10 return Sel, pln

∣∣∣∣∣∣∣∣∣
x1
1 x2

1 . . . xd+1
1 1

x1
2 x2

2 . . . xd+1
2 1

...
...

...
...

x1
d+2 x2

d+2 . . . xd+1
d+2 1

∣∣∣∣∣∣∣∣∣ = 0

Fig. 1. (a) Algorithm for constructing planes that cover the input points (b) Co-
planarity check for a set of points.

Coplanarity can be verified by checking the value of determinant as above (Fig-
ure 1b), and the plane defined by these (d + 2) points can be constructed by
solving for the co-efficients ci in the set of equations Σn

i=1cixi = cn+1, where
we substitute the xi’s with the points we have chosen. The above two require
numerical solvers and can be achieved using software like MatLab or Octave.

If the above process discovers k planes that cover all points in the sample,
then we are done. If not, we are either left with too few points (< d+ 2) or too
many points and have run out of the budget of planes. In the former case, we
ignore these points, compute a guarded linear expression for the points that we
have already covered using the second phase, and then add these points back as
special points on which the answers are fixed using the appropriate constants in
the sample. In the latter case, we increase our budget k, and continue.

There are several parameters that can be tuned for performance, including
(a) how many points the teacher returns in each round, (b) the number of points
in the window from which we select points to find planes, (c) the threshold of
coverage for selecting a plane, etc. These parameters can be tweaked for better
performance on the application at hand.

2.2 Finding conditionals using decision tree learning

The first phase identifies a set of planes and labels each input in the sample with
a plane from this set that correctly maps it to its output. In the second phase,
we use state-of-the-art decision tree classification algorithm [6, 8] to synthesize
the conditional guards that classify all inputs such that the inputs in the sample
are mapped to the correct planes. Decision trees can classify points according
to a finite set of numerical attributes. We choose numerical attributes that are
linear combinations of the variables with bounded integer coefficients (since we
expect the coefficients in the guards to be small, the learner considers attributes
of the form Σaixi where Σai < K for a small K, where K increases in an outer
loop). The decision-tree learner then constructs a classifier that uses Boolean
combinations of formulas of the form a ≤ t, where a is a numerical attribute and
t is a threshold (constant) which it synthesizes. Note that the linear coefficients
for the guards are enumerated by our tool— the decision tree learner just picks
appropriate numerical attribute and synthesizes the thresholds.

The decision tree learner that we use is a standard state-of-the-art decision
tree algorithm, called C5.0 [8,9], and is extremely scalable and has an inductive
bias to learn smaller trees. It constructs trees using an algorithm that does no
back-tracking, but chooses the best attributes heuristically using information
gain, calculated using Shannon’s entropy measure. We disable some features in
the C5.0 algorithm such as pruning, which is traditionally performed to reduce
overfitting, since we want a classifier that works precisely on the given sample
and cannot tolerate errors. During the construction of the tree, if there are
several attributes with the highest information gain, we choose the attribute
that has the smallest absolute value. This heuristic biases the learner towards
synthesizing guards that have smaller threshold values.

3 Evaluation
We implemented the two phases of the learner as follows: The geometric phase
is implemented using a numerical solver, Octave, and the classifier phase is im-
plemented using decision tree classification algorithm C5.0. The output of both
these two phases is then combined to construct a hypothesis that is conjectured
as the target guarded linear expression.

In order to evaluate our tool, we also implemented a teacher which knows a
target guarded affine function f and provides counter-examples to the learner
using a constraint solver. Given a hypothesisH the teacher checks if there is some
valuation for variables x such that H(x) 6= f(x). If such a valuation exists, the
teacher returns (x, f(x)) as a counterexample to the learner.

All experiments were performed on a system with an Intel Core i7 2.2 GHz
processor and 4GB RAM running 64-bit Ubuntu 14.04 OS, with a timeout of
600s. In Table 1 we tabulate our experimental results comparing our learner1
with the enumerative, the stochastic, and the symbolic SyGus solver [1] for
learning various target guarded affine functions of increasing complexity, both in
1 Our tool can be accessed at http://web.engr.illinois.edu/~ssaha6/Alchemist/

http://web.engr.illinois.edu/~ssaha6/Alchemist/

Target Guarded Affine Function Enumerative Stochastic Symbolic Alchemistsolver solver solver
x+ y 0.0s 0.3s 5.4s 0.7s

3x+ 3y + 3 2m12.4s 16.1s timeout 0.7s

5x+ 5y + 5 timeout 4m1.1s timeout 0.7s

max2 : ite(x < y, y, x) 0.0s 0.2s 2.6s 0.6s

max3 : ite(x < y, ite(y < z, z, y), ite(x < z, z, x)) timeout 5.4s timeout 1.1s

max4(x, y, z, u) timeout 6m21.6s timeout 20.5s

max5(x, y, z, u, v) timeout timeout timeout 1m30.0s

ite(x+ y ≤ 1, x+ y, x− y) 1.2s 2.5s timeout 0.9s

ite(x+ y + z ≤ 1, x+ y, x− y) 12.8s 6.5s timeout 0.8s

ite(2x+ y + z ≤ 1, x+ y, x− y) 6m42.7s 8.1s timeout 1.4s

ite(2x+ 2y + z ≤ 1, x+ y, x− y) timeout 7.9s timeout 1.4s

ite(x+ y ≥ 1, ite(x+ z ≥ 1, x+ 1, y + 1), z + 1) timeout 20.7s timeout 1.8s

ite(x+ y ≥ 1, ite(x+ z ≥ 1, x+ 1, y + 1), timeout 4m37.2s timeout 2.9s
ite(y + z ≥ 1, y + 1, z + 1))

ite(x ≥ 5, 5x+ 3y + 17, 3x+ 1) timeout timeout timeout 0.9s

ite(x ≤ y + 4,min(x, y, z),max(x, y, z)) timeout timeout timeout 1.8s

if x+ y <= 1 then 10x+ 10y + 10 timeout timeout timeout 27.9s
elseif x+ y <= 2 then 20x+ 20y − 20
elseif x+ y <= 3 then 30x+ 30y + 30
elseif x+ y <= 4 then 40x+ 40y − 40
elseif x+ y <= 5 then 50x+ 50y + 50

else 60x+ 60y − 60

Table 1. Experimental results. The timeout is set to 600s.

terms of the Boolean structure and in terms of the coefficients. We also evaluate
on relevant SyGuS benchmarks. For the stochastic solver, we report the time
averaged over ten runs. From the results, it seems the SyGus solvers are very
general and do not exploit the geometry of this domain well. Also, the machine
learning algorithms seem better at sifting through candidate guards and picking
a small subset that work.

Apart from the above mentioned solvers, we also tried the SyGus solver based
on Sketch [10] but it failed to execute for most of the problems. We could not
try [2] as being a passive algorithm which approximates the solution makes it
very hard to compare the tools empirically.

4 Conclusions
The learning based synthesis of guarded affine functions we have proposed seems
very promising and a good alternative to existing synthesis techniques. An earlier
version of this solver was submitted as a solver to the SyGuS synthesis compe-
tition; however, note that in a more general setting, building a teacher is not
easy as the teacher does not know precisely the function to be synthesized. We
hence built a teacher who would identify at least certain inputs on which the
function was determined and feed these to the learner. A more general approach
that extends our work to solving general synthesis problems involving guarded
affine functions is an interesting direction for future work.

5 Acknowledgments
We thank Sariel Har-Peled for discussions on geometric techniques for synthe-
sizing leaf expressions. This work was partially supported by NSF Expeditions
in Computing ExCAPE Award #1138994.

References

1. Alur, R., Bodík, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
October 20-23, 2013. pp. 1–17 (2013)

2. Alur, R., Singhania, N.: Precise piecewise affine models from input-output data.
In: Proceedings of the 14th International Conference on Embedded Software. pp.
3:1–3:10. EMSOFT ’14, ACM, New York, NY, USA (2014)

3. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (Apr 1988)
4. Bemporad, A., Garulli, A., Paoletti, S., Vicino, A.: A bounded-error approach to

piecewise affine system identification. IEEE Trans. Automat. Contr. 50(10), 1567–
1580 (2005)

5. Ferrari-Trecate, G., Muselli, M., Liberati, D., Morari, M.: A clustering technique
for the identification of piecewise affine systems. Automatica 39(2), 205–217 (Feb
2003)

6. Mitchell, T.M.: Machine learning. McGraw Hill series in computer science,
McGraw-Hill (1997)

7. Paoletti, S., Juloski, A.L., Ferrari-Trecate, G., Vidal, R.: Identification of hybrid
systems: A tutorial. Eur. J. Control 13(2-3), 242–260 (2007)

8. Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)
9. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
10. Solar-Lezama, A.: Program sketching. STTT 15(5-6), 475–495 (2013)
11. Solar-Lezama, A., Tancau, L., Bodík, R., Seshia, S.A., Saraswat, V.A.: Combi-

natorial sketching for finite programs. In: Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2006, San Jose, CA, USA, October 21-25, 2006. pp. 404–415
(2006)

12. Vidal, R., Soatto, S., Sastry, S.: An algebraic geometric approach to the identifi-
cation of a class of linear hybrid systems. In: Proceedings of the IEEE Conference
on Decision and Control. vol. 1, pp. 167–172 (December 2003)

	Alchemist: Learning Guarded Affine Functions

