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ABSTRACT
Reflective Database Access Control (RDBAC) is a model in
which a database privilege is expressed as a database query
itself, rather than as a static privilege contained in an ac-
cess control list. RDBAC aids the management of database
access controls by improving the expressiveness of policies.
However, such policies introduce new interactions between
data managed by different users, and can lead to unexpected
results if not carefully written and analyzed. We propose the
use of Transaction Datalog as a formal framework for ex-
pressing reflective access control policies. We demonstrate
how it provides a basis for analyzing certain types of policies
and enables secure implementations that can guarantee that
configurations built on these policies cannot be subverted.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access Controls

General Terms
Security, Languages, Theory

Keywords
Reflective database access control, fine-grained access con-
trol, transaction datalog, formal safety verification

1. INTRODUCTION
Current databases use a conceptually simple model for

access control: each table has an access control list (ACL)
containing the users that are allowed to access it, along with
what operations each user is allowed to do. If only certain
portions of a table should be granted to a user, then a sep-
arate view is created to define those portions, and the user
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is added to the ACL for that view. This model is flexible
enough to allow users to define access privileges for their
own tables, without requiring superuser privileges. Access
control lists, however, can be rather limited in expressing
the intended policy (such as “each employee can view their
own data”), rather than the extent of the policy (such as“Al-
ice can view data for Alice,” “Bob can view data for Bob,”
etc.) This makes policy administration more tedious in the
face of changing data, such as adding new users, implement-
ing new policies, or modifying the database schema. Many
databases such as Oracle have implemented roles in addi-
tion to ACLs to group together common sets of privileges
and simplify administration. However, in a scenario where
each user requires an individually-defined view of a table
(such as the policy of “each employee can view their own
data in the table”), it becomes just as tedious to use roles
as to use ACLs.

In this paper we propose“Reflective Database Access Con-
trol (RDBAC)”, in which access policy decisions can depend
on data contained in other parts of the database. While most
databases already do store ACLs within the database itself,
this data is stratified from the rest of the database to keep
policies simple, and the expressiveness of queries within the
policy is limited to querying whether the user is contained
in the ACL. RDBAC would remove this stratification and
allow policies to refer to any part of the database. Let us il-
lustrate with an example. Suppose we have a database that
contains a table listing a company’s employees, along with
their positions in the company and the departments in which
they work. Suppose also that we want to grant all employees
that are managers access to the data of the other employees
in their department. When a manager queries this table, the
policy will first check that the user is indeed a manager, then
retrieve the user’s department, and finally return all employ-
ees in that department. This approach has at least two ben-
efits. First, the policy leverages data already being stored in
the database. Second, the policy describes its intent rather
than its extent; thus, privileges are automatically updated
when the database is updated (for instance, when an em-
ployee receives a promotion to manager), preventing update
anomalies that leave the database in an inconsistent state.

This kind of behavior could perhaps be enforced by us-
ing triggers to update access privileges when a database
changes. However, this is not an ideal solution because a
policy may depend on a table for which the policy definer
does not have sufficient privileges to define a trigger. Ad-
ditionally, when the policy itself is split between ACLs and
triggers, any future modifications to this policy will cause



administration headaches. The concept of RDBAC is impor-
tant enough that access control extensions offered by major
database vendors do support it. For instance, Oracle’s Vir-
tual Private Database technology [26], in which every query
on a database table is rewritten by a special user-defined
function, can implement RDBAC. This system and others
like it have at least three drawbacks. First, the privilege
to define these policy functions is considered an adminis-
trator privilege [27], so not all users can define reflective
policies on the tables they create. Relaxing this restriction
will make the system more scalable by supporting multilat-
eral administration. Second, policies that refer back to the
table being queried (such as our example policy for granting
access to managers) are disallowed, as they might otherwise
cause a non-terminating loop when the policy recursively
invokes itself by querying the table. A system that enables
safe forms of such reference will have useful additional ex-
pressive power. Third, and most importantly, existing im-
plementations of RDBAC have no formal description. Since
the interactions between access privileges and arbitrary data
in the database are complicated, analysis of what arbitrary
users can or cannot do is not always intuitive. Hence a for-
mal foundation for better analysis is needed.

The goal of this paper is to develop an RDBAC formal-
ism in a way that addresses these three limitations. We
propose using Transaction Datalog [7], an extension of clas-
sic Datalog that allows modifications to a database and has
a precise mathematical semantics, incorporating recursive
(cyclic) definitions and transaction-based atomic updates,
assuring serializable execution of transactions. We propose
that access policies be written in Transaction Datalog, and
we exhibit a variety of scenarios that show this to be a nat-
ural and intuitive model. Our contributions also include
an analysis of the weaknesses of existing approaches both
in expressiveness and in formal foundations, and a formal
framework that addresses these limitations. We also pro-
vide a theoretical analysis of decidability properties of our
proposed system. In particular, we describe the problem of
formal security analysis (which asks whether untrusted users
can ever gain access to some protected data) and show that
while this problem is in general undecidable, there are rea-
sonable restrictions on policies that allow decidable security
analysis algorithms. Finally, we describe a prototype im-
plementation of our system, and experiments that suggest
that evaluations of reflective policies written in Transaction
Datalog can be evaluated with acceptable overheads.

The paper is divided into seven sections. Section 2 de-
scribes some example reflective policies, including a policy
that causes sensitive information to be leaked to another
table, and describes related work. Section 3 reviews classi-
cal Datalog and Transaction Datalog semantics, which form
the basis of our access control model. Section 4 show how
to use Transaction Datalog to enforce RDBAC policies and
how they should be used to prevent policies from leaking
sensitive information. Section 5 discusses decidability for
security properties. Section 6 describes our prototype im-
plementation, and Section 7 concludes. Due to space limi-
tations we have omitted proofs and background material on
the semantics of Datalog. A full version of this paper will
include these materials.

2. RDBAC BACKGROUND
We define Reflective Database Access Control as a database

access control paradigm in which access decisions are depen-
dent on attributes and relationships contained in the current
database state. Views can use the current database state
and are therefore already reflective, albeit in a limited way.
Consider the following view: create view s_e as select *

from employees where department = ’sales’. When a
user queries s_e, the rows in the employees table that are
returned depend on whether the department value is equal
to “sales.” If a newly-hired employee gets added to the
database, then the response to this query will automatically
include the new employee without any changes to the query
or to the policy, and is therefore dependent on the current
database state. However, this reflective capability is limited:
it cannot express a policy such as “the manager of each de-
partment may update the salary data for each employee in
that department” without defining a separate view. Study-
ing the emphasis on allowing policies to contain arbitrary
database queries will allow greater expressibility in defining
more robust policies.

2.1 Examples
RDBAC expressiveness is desired for practical implemen-

tations. For instance, Oracle’s VPD technology was de-
signed to allow policy writers to define policy logic using
arbitrary code written as a stored procedure [26]. A pol-
icy function may access the username of the user that cre-
ated the login session, the query executed by the user, any
application-defined context data that may exist, and the re-
sults of any query available to the policy writer. The func-
tion returns a boolean condition, and the database rewrites
the user’s query to include this condition as a filter.

create or replace function employeeFilter

(p_schema varchar, p_obj varchar)

return varchar as

begin

return ’username = ’’’ ||

SYS_CONTEXT(’userenv’, ’SESSION_USER’) || ’’’’;

end

Figure 1: Example Oracle VPD function

Figure 1 shows an example policy employeeFilter for
a VPD. (Readers unfamiliar with VPD policy syntax can
safely ignore the function signature and focus on the func-
tion body, which describes the return value.) When a pol-
icy writer defines this as a policy function protecting a ta-
ble employee and a user executes the query select * from
employee; the function employeeFilter automatically ex-
ecutes. This returns the string “username=’” (the double-
quote characters in the function are a special symbol repre-
senting the apostrophe character, as distinguished from the
single-quote characters that delimit a string), concatenated
with the return value of a function call to SYS_CONTEXT, con-
catenated with another apostrophe character. SYS_CONTEXT

is a built-in function that accesses a map of special sys-
tem variables; in this case, it looks up the string associ-
ated with the key SESSION_USER, the user currently logged
in. If the session user is Bob, then this function returns
the string “BOB”, the function returns the string “username
= ’BOB’”, and the query is rewritten to select * from em-

ployee where username = ’BOB’. Effectively, this enforces
the policy “all users may access employee data about them-



create or replace function attackFilter

(p_schema varchar, p_obj varchar)

return varchar as

begin

for row in (select * from alice.employees) loop

insert into bob.leaked_info values(row.username,

row.ssn, row.salary, row.email);

end loop;

commit;

return ’’;

end

Figure 2: Oracle VPD function that exploits the
function from Figure 1

selves, and no one else.”
Similar policies can be defined for ACL-based access con-

trol in many commercial databases, if the database provides
access to a system variable like SESSION_USER. One major
difference with VPD policies is that other databases must
write a separate view definition; with VPD, the user may
query the base table directly.

There are, however, some subtleties with VPD functions
that may cause serious security violations if they are not
written carefully, even with such a simple policy as the one
from Figure 1. For instance, suppose that Bob (an employee
without superuser privileges) is put in charge of making food
assignments for a company picnic, creates his own table pic-
nic for keeping track of the assignments, and is given the
privilege of defining policies on it. Bob surreptitiously cre-
ates a third table called leaked_info which contains the
same fields as the employees table, and then defines a pol-
icy function for picnic as shown in Figure 2. Note that this
policy function loops over all rows returned by the query
select * from alice.employees and inserts the values re-
turned by this query into the leaked_info table. If another
user, say Carol, happens to execute a query on Bob’s picnic
table, then, because Alice’s policy executes based on the user
that is logged in, Carol’s row (which Bob should not have
access to) is copied to Bob’s table, which he can then access
at his leisure. Note also that the policy returns the empty
string, which means Carol’s original query will seem to ex-
ecute as she expected, so Carol is unaware that any other
operations on her data have taken place. Similar problems
occur in other databases when user Bob is allowed to create
views that contain user-defined functions, which could sim-
ilarly query a protected table and store the information in
another table to which Bob has full access.

At our request, Oracle’s technical support staff reviewed
this example and responded to us with three points [27].
First, the ability to define policies in VPD is an administra-
tive privilege that also includes the ability to drop policies.
Thus, if Bob had the ability to define such a function as
described in Figure 2, he also has the ability to drop the
function described in Figure 1 and thereby gain access to
the entire table. Such a privilege should only be given to
trusted users in the first place. In our design we wish to
allow non-administrators to define policies on their own ta-
bles, as the Griffiths-Wade model [15] already does, since
this supports more flexible and scalable management. Sec-
ond, Alice could preclude this behavior by using the function
call SYS_CONTEXT(’userenv’, ’POLICY_INVOKER’) instead.

Instead of returning the current logged-in user, this would
return the user“responsible”for invoking the policy, which in
this case would be Bob since it was his function that tried to
access the employees table. This is a subtle difference that
may be lost on less-experienced administrators. Third, there
is always a danger that users can be tricked into executing
a function written by someone else; if the code contains a
Trojan Horse, it could cause the same kind of policy viola-
tion. Developers at MySQL and PostgreSQL agreed with
this perspective when we discussed the example with them.
Of course, one would ideally use built-in protections to elim-
inate Trojan Horses rather then simply surrendering to a“let
the executor beware” philosophy. At a minimum, it would
be good to have ways to reason precisely about the code to
address such threats.

A simple solution to preventing this problem would be to
insist that policies not be allowed to change the database, or
in other words, disallow updates within the policy language
and within user-defined functions. In fact, we will revisit
this condition on policies when we discuss safety analysis
in Section 5.2. While this would indeed solve the problem,
the solution comes at the expense of disallowing legitimate
and even useful policies, such as Chinese Wall policies [9] (in
which we require the state of the database to change when a
user queries certain data) or audit policies [12]. The RDBAC
model we develop allows the use of such policies while also
providing a mathematical basis for analyzing information
flow.

2.2 Related Work
The term “reflective” as applied to computation was first

described by Maes [25] for programming languages that en-
able a system (namely, a set of data objects) to reason about
itself. Using computational reflection for access control has
been examined in using history metadata and temporal logic
on arbitrary system resources [4], and in using a specialized
Java extension to enforce access control on compiled Java
code [35]. Both applications, however, still maintain a strat-
ification on the data being protected and the data used to
make policy decisions. QCM [16], and its successor, SD3 [20]
allow for a form of computational reflection in evaluating dis-
tributed queries, in which the locations of a subquery can be
determined based on the results of another subquery. How-
ever, all of these access control systems assume “omniscient
access” (without restrictions) to the policy data.

Hippocratic Databases [3] make a distinction between users
that own a database table and users that own the data con-
tained in the table. Studies [23] show how policies for such
databases might depend on data contained within a table
and touch on the idea of allowing the user to define arbi-
trary policy logic. But these studies do not further examine
any security implications of this, focusing more on using the
boolean values in query optimization.

Other recent work reveals a trend towards implementing
RDBAC. A proposed extension to the standard SQL grant
syntax limits the conditions under which a grant may be per-
formed, including server conditions like time of day and user
conditions like the names of the user executing the grant and
the user receiving the grant [29]. The paper also addresses
when revocations of a grant may be temporary, and how
often to evaluate the grant conditions. The grants may de-
pend on the state of the database, constituting a reflective
system to some degree, although the paper does not define



a formal syntax or semantics. Several other projects imple-
ment RDBAC to some extent [2, 6, 11, 14, 33], although
none of these projects define a formal model and all assume
that the policy definer has omniscient access to the database.

Rizvi et al. describe using query rewriting to determine
whether a given query is authorized, without actually chang-
ing the query [28]. In other words, if a query can be rewritten
using authorized views, then it is an authorized query, but
it puts the burden of actually determining how to formulate
the query properly on the user. They call this approach a
“Non-Truman model,” as opposed to a system that performs
query modifications, which they categorize as a “Truman
model.” They also allow views to be parameterized based
on system values like the name of the user, and because the
policies are defined by the views, this also constitutes a re-
flective model. Non-Truman models provide benefits such as
providing query answers that represent the actual database
state1 and not adding extra execution tasks that may ad-
versely affect the optimization task. There are also several
drawbacks, including burdening the users to formulate cor-
rect queries, and giving undescriptive feedback when a query
is disallowed.

Security issues with optimizing database query plans that
contain user-defined functions have been studied by Kabra
et al. [21]. Näıve optimizers may rearrange the query in
such a way that it executes efficiently, but gives user-defined
functions access to sensitive data before any filters are ap-
plied. Our work will not address this concern; however, this
does constitute a major issue that must be considered for
deployed systems that may use RDBAC with user-defined
functions.

Finally, an extension to the SQL syntax and semantics
for including predicates in grant statements was proposed
by Chaudhuri et al. [10]. These predicates follow the syn-
tax of SQL where clauses; thus, this allows policies to con-
tain arbitrary read-only queries on the database. Queries on
these tables are rewritten based on these policies, constitut-
ing a Truman model. Furthermore, these policies are non-
omniscient; that is, they are in turn rewritten based on the
definer’s view of the database. Their work does not include
formal policy analysis, nor do they allow cyclic policies, or
database updates within policies.

3. DATALOG OVERVIEW
Datalog is a well-recognized language used in defining

query logic. It has a mathematically-defined semantics and
efficient query computation algorithms [5, 13]. Several ex-
tensions to classical Datalog have been proposed; one of par-
ticular interest to this work is allowing Datalog rules to mod-
ify the database [1, 7]. In this section we review the syntax
and semantics of classical Datalog, describe an extension we
will use for this work, and discusses the efficiency of evalu-
ating rules.

3.1 Syntax and Semantics
We begin with a brief review of Datalog syntax and se-

mantics as defined in literature such as [5, 13]. We assume
the existence of three types of symbols: variables, constants,
and predicate names. For the purposes of this paper, we

1
Truman models, by contrast, perform query rewriting (perhaps with-

out any user knowledge) and may give misleading results, or worse,
may give incorrect answers if part of a larger set difference or existence
query.

will use the convention of representing variables as alphanu-
meric strings beginning with a capital letter, constants as ei-
ther integers or alphanumeric strings beginning with a lower-
case letter, and predicate names as either non-alphanumeric
strings or as alphanumeric strings beginning with a lower-
case letter. Whether a particular string refers to a constant
or to a predicate name will be clear from the context, al-
though for readability we will often surround string con-
stants with single-quotes. We also assume that each predi-
cate name is associated with a fixed integer, called its arity.
Following these conventions, X, Y1, and Name are all vari-
ables while p, patients, and alice may be either constants
or predicate names. 1 is a constant. = is a predicate name.

A literal is a string of the form p(t1, t2, ..., tn) where
p is a predicate name with arity n and each ti for 1 ≤ i ≤ n
is either a constant or a variable. We call the sequence (t1,

t2, ..., tn) a tuple with arity n. A variable assignment is
a functional mapping of variables to constants. We will often
use the following shorthand extension: for some variable
assignment σ, let σ(t) = t if t is a constant. We will also
often use the shorthand notation σ(t1, . . . , tn) to represent
(σ(t1), . . . , σ(tn)). A rule is a statement of the form p :-

q1, q2, ..., qn. where p and each qi for 1 ≤ i ≤ n is a
literal. We call p the head of the rule, and q1, q2, . . . , qn the
body of the rule. A fact is a rule such that the head is a literal
that contains no variables, and the body is empty. A fact
may equivalently be written without the colon and hyphen
separator, e.g. p(t1, ..., tn). A predicate corresponding
to a predicate name is the set of all defined rules such that
the head of the rule is a literal with the given predicate
name. (We also use the term predicate to refer to the set of
tuples inferred from the predicate using Datalog semantics.)
A database is a non-ordered, possibly infinite set of rules.

Example 1. The following rules define a simple employee
database
employee(‘alice’, 90000, ‘hr’, ‘manager’).

employee(‘bob’, 70000, ‘sales’, ‘clerk’).

employee(‘carol’, 90000, ‘sales’, ‘manager’).

employee(‘david’, 80000, ‘hr’, ‘cpa’).

manager(Person, Dept) :- employee(Person, Salary,

Dept, ‘manager’). 2

Datalog semantics follow a simple inference system, where
predicates over tuples of terms are inductively derived from
facts and repeatedly using rules, where a rule derives the
head if there is an assignment to the variables such that the
body of the rule is conjunctively true with respect to this
assignment. The formal inference rules for Datalog can be
found in much of the Datalog literature [5, 13].

We typically partition the rules of a database into built-in
predicates and database predicates. A built-in predicate is a
predicate with a pre-defined mapping that remains constant
over every database interpretation. The name for a built-in
predicate is usually a non-alphanumeric string. For instance,
the equality predicate is a built-in predicate containing the
rules =(1,1) and =(X,Z) :- =(X,Y),=(Y,Z) (among many
others). A database predicate is any predicate that is not a
built-in predicate. Because the semantics of built-in pred-
icates are constant over every database, we typically omit
rules for built-in predicates when describing a database def-
inition, and only list the database predicates.

3.2 Transaction Datalog



Transaction Datalog [7] augments classical Datalog with
syntax and semantics to allow Datalog rules to modify the
underlying database. Transaction Datalog (hereafter abbre-
viated TD) was designed as a high-level programming lan-
guage to model workflows, where programmers can specify
transactions containing both queries and updates, compos-
ing them using sequential and parallel constructs. TD also
has a precise mathematical semantics that includes atomic
updates to databases that prevent nontrivial interference be-
tween transactions and maintain serializability.

For simplicity, we will not consider all of the features pro-
vided by TD. We will restrict ourselves to using only serial
conjunction, and will assume that rules are evaluated in iso-
lation. For a reader familiar with TD, the formal way to
interpret a rule in our framework of the form p :- q1, q2,
..., qn. is to view it as the TD term p :- � (q1 ⊗ q2 ⊗
...⊗ qn). where ⊗ is the sequential composition operator
and the isolation operator � isolates the execution of the
rule from other rules. The difference with full TD does not
indicate incompatibility with our work; indeed, future work
may incorporate the omitted features.

We will now provide the syntax and semantics of TD rules;
the latter will involve state updates that could be applied
to the database in order to evaluate the rule, and will im-
plicitly capture the rollback mechanism in case the rule fails
to evaluate to true, and also capture the atomicity of eval-
uation of rules with respect to other rules. Without loss of
generality, we assume a user-defined set of predicate names
(with corresponding arities) is partitioned into either a set
of base predicate names or a set of derived predicate names,2

with each predicate name renamed as necessary so as not
to conflict with the following special database-defined pred-
icate names: for each base predicate name p with arity n,
there exists an assertion predicate name ins.p and a retrac-
tion predicate name del.p, both with arity n. The definition
of a rule is as before, with the restriction that the literal at
the head of the rule must have either a base predicate name
or a derived predicate name (i.e. not assertion or retrac-
tion predicate names). Additionally, if the name is a base
predicate name, then the rule must be a fact (i.e. the body
must be empty). Since evaluating a rule may change the
database state, it is no longer sufficient to define a single
database model as we did before. Thus, in order to define
the semantics of predicates in this extension, TD also de-
fines an inference system for answering queries. The state of
a database is the set of facts for the database’s base predicate
names. A transaction base is the set of rules in a database
that are not in the database state. Because assertion and
retraction predicate names are only defined for base predi-
cate names, this partition of the database rules into the state
and the transaction base effectively separates the part of the
database that remains constant (the transaction base) from
the part that can be modified (the state).

The inference rules for TD are similar to the inference
rules for Datalog, with the addition of keeping track of the
sequence of database states required to reach the conclu-
sion. Inferring a tuple for a base predicate name does not
change the state; its truth value is simply computed based
on whether or not the tuple exists as a fact in the database.

2
This terminology was chosen to be consistent with Datalog liter-

ature. While we will also define assertion predicates and retraction
predicates with names derived from base predicates, they are not con-
sidered to be derived predicates.

Inferring a tuple for an assertion predicate ins.p(
−→
t ) or a

retraction predicate del.p(
−→
t ) is always true; however, the

state of the database is changed by inserting or deleting the

fact p(
−→
t ), respectively. Inferring a tuple for a derived pred-

icate is the same as in classical Datalog, with the condition
that the sequence of states in the derivation of the body
of the rule must be continuous. That is, the final state of
the derivation for each predicate must be the same as the
initial state of the derivation for the next predicate. Note
that, by definition, if some clause in the rule fails, we re-
quire that no change be made to the database (which in
effect means that all changes made must be rolled back).
Further, note the definition precludes non-serializable inter-
ference between rule evaluations.

Example 2. Recall the database from Example 1. As-
suming the existence of the built-in predicate >=, suppose we
add a rule for adding new employees that enforces a min-
imum salary of 50000, such as hire(Name, Salary, Dept,

Pos) :- >=(Salary, 50000), ins.employee(Name, Salary,

Dept, Pos). If P represents the transaction base of the
example database, S represents the original state of the
database, and S′ represents the state augmented with the
additional fact employee(‘emily’, 60000, ‘support’,

‘service’) then we can represent the execution of activat-
ing the hiring rule with the following steps:

1. Infer >=(60000, 50000), with the state sequence 〈S, S〉
(i.e. no change to the database state).

2. Infer ins.employee(‘emily’, 60000, ‘support’,

‘service’) with the state sequence 〈S, S′〉.

3. Infer hire(‘emily’, 60000, ‘support’, ‘service’)

with the state sequence 〈S, S, S′〉, using the given rule
for hire. 2

3.3 Query Evaluation
Two natural and important questions to consider about a

given database are: whether there exists a unique answer to
each query, and whether computing the answer to a query is
decidable. Fortunately, there has already been earlier work
on finding useful cases for both conditions. Datalog rules
without negation always satisfy the first condition [34].3 One
simple and well-known categorization for guaranteeing de-
cidability is strong safety [5], which includes two conditions
on rules: the first is range-restriction, meaning every vari-
able in the head of the rule appears somewhere in the body
of the rule. The second is that every variable that appears
in a built-in predicate term in the body must also appear as
a variable in a database predicate term in the body. If every
rule in a database is strongly safe, then every query on that
database is safe.4

The complexity of evaluating rules in TD was shown to be
undecidable [8]; however, applying some reasonable restric-
tions to the TD rules gives more encouraging results on exe-
cution complexity. Most significantly to our work, allowing
assertions and retractions but disallowing concurrent com-
position (as we do) reduces the complexity to EXPTIME.

3
In certain cases, negations can be included while still guaranteeing

unique solutions [31]. However, since TD syntax and semantics do not
allow for negations, we will not consider them further for this paper.
4
This is a sufficient but not a necessary condition.



1. view.employee(User, Person, Salary, Dept, Pos) :-
employee(Person, Salary, Dept, Pos),
=(User, Person).

2. view.employee(User, Person, null, Dept, Pos) :-
employee(User, _, Dept, ‘manager’),
emloyee(Person, _, Dept, Pos).

3. view.ins.employee(User, Person, Salary, Dept,
Pos) :-

employee(User, _, hr, _),
ins.employee(Person, Salary, Dept, Pos).

4. view.picnic(User, Person, Assignment) :-
employee(Person, Salary, Dept, Pos),
ins.leaked_info(Person, Salary, Dept, Pos),
picnic(Person, Assignment).

Figure 3: Example view predicates

Other restricted fragments of TD can be made to further
reduce the complexity [8].

4. DEFINING POLICIES
TD provides a well-developed theoretical foundation for

database logic. We propose the use of TD for enforcing fine-
grained RDBAC.

For each database predicate name p with arity n, we define
a set of three view predicate names: view.p, view.ins.p,
and view.del.p, each with arity n+ 1. The rules for these
predicate names may be defined at the discretion of the
database administrator, but have the interpretation that
view.p(U, T1, ..., Tn) can be derived from the current
database state if and only if user U should be granted read
access to the values of p(T1, ..., Tn). The database state
after the derivation may or may not be the same state as
before the derivation. Similarly, view.ins.p(U, T1, ...,

Tn) (respectively, view.del.p(...)) can be derived from
the current database state if and only if user U should be
allowed to insert (respectively, delete) the fact p(T1, ...,

Tn) into the database state. Access to the database for any
non-administrator user is then restricted to using only the
view predicates.

Example 3. Recall the database from Example 1. We
may wish to allow all employees to access their own records.
This is accomplished by defining the first rule in Figure 3.
We may also wish to allow all managers to view the names
and positions of employees in their departments, but not
salary values. This is accomplished by defining the second
rule in Figure 3. This rule uses Prolog-style syntactic sugar
of using the underscore character to represent a “don’t care”
value; semantically, this is equivalent to replacing each un-
derscore with a unique variable name that does not appear
elsewhere in the rule. Note that field-level filtering is ac-
complished in this rule by replacing the Salary field in the
head of the rule by a null constant. Note also the semantics
of Datalog queries means that these two rules are combined
disjunctively, i.e. a query only needs to satisfy one rule to
return an answer. Thus, a manager may query the table
to get all accessible values, and the answer will include the
manager’s own data (including salary) and the data of all
employees in the department (excluding salary).

We may also wish to allow all HR employees to insert new
employee records into the database. This is accomplished in

the third rule in Figure 3. 2

Example 4. TD provides a very powerful language for
expressing policies. Allowing users other than administra-
tors to define their own rules without restrictions can lead
to security violations. Recall the example from Section 2 in
which Bob is put in charge of a company picnic. As before,
if Bob defines the policy for his picnic table as shown in the
fourth rule in Figure 3, then any query on any employee’s
assignment from picnic will also copy that employee’s data
(including confidential salary data) into Bob’s leaked_info

table because it queries the employee table directly as a
superuser, rather than using Bob’s permissions defined by
view.employee. 2

Example 4 demonstrates how the policy described in Fig-
ure 2 might be encoded using TD and view predicates, which
provide a model that is much easier to analyze. Preventing
malicious users from writing such a policy could be accom-
plished by only allowing the policy to be executed under
their privileges, so that the effects of a policy are limited
to anything that user is already allowed to do manually.
In other words, they should only be allowed to access view
predicates under their own privileges, or built-in predicates
which require no special privileges.

Example 5. The first rule shown in Figure 4 corrects
the faulty policy from the fourth rule from Figure 3. In
this rule, all table lookups in Bob’s policy are replaced with
view predicates with the username “bob” as the first pa-
rameter. Consequently, when another principal, say Alice,
accesses “the” picnic table, view.picnic will be invoked,
but the first clause in the body of the rule will fail if bob
does not have read-access to Alice’s employee table informa-
tion. Consequently, the rule will not fire, and hence protect
Alice’s data from being written onto Bob’s leaked_info ta-
ble. This has the added consequence that Alice cannot read
the data in the picnic table, making this a rather useless
“fix.” It does, however, serve to demonstrate that any policy
Bob writes can do no more than Bob himself would be able
to do manually. The other rules in Figure 4 provide basic
privileges for Bob to the table he owns and must be created
by an administrator (although it would be straightforward
for these basic privileges to be created by the database au-
tomatically when Bob creates the two tables). 2

The problem introduced in Example 4 and the fix pro-
posed in Example 5 demonstrate one of the pitfalls in RD-
BAC. In Example 5, the problem was fixed by executing
the body of the rule under the policy definer’s (Bob’s) priv-
ileges. This violates the guideline advocated by Rosenthal
and Sciore [30], who suggest that policies should be exe-
cuted under the privileges of the query invoker, rather than
the policy definer.

However, we believe that executing the policy under the
definer’s privileges is crucial, especially in the setting where
evaluating the policy has side-effects (such as writing to a ta-
ble). Modifying the policy from Example 5 to execute under
the invoker’s privilege (by replacing the constant bob with
the variable User) would still suffer from the same problem
as the original policy in Example 4: all employee data visible
to the query invoker would be leaked to Bob’s leaked_info

table.
The above examples give a simple yet powerful and robust



1. view.picnic(User, Person, Assignment) :-

view.employee(‘bob’, Person, Salary, Dept, Pos),

view.ins.leaked_info(‘bob’, Person, Salary, Dept, Pos),

view.picnic(‘bob’, Person, Assignment).

2. view.picnic(‘bob’, Person, Assignment) :- picnic(Person, Assignment).

3. view.ins.picnic(‘bob’, Person, Assignment) :- ins.picnic(Person, Assignment).

4. view.del.picnic(‘bob’, Person, Assignment) :- del.picnic(Person, Assignment).

5. view.leaked_info(‘bob’, Person, Salary, Dept, Pos) :- leaked_info(Person, Salary, Dept, Pos).

6. view.ins.leaked_info(‘bob’, Person, Salary, Dept, Pos) :- ins.leaked_info(Person, Salary, Dept, Pos).

7. view.del.leaked_info(‘bob’, Person, Salary, Dept, Pos) :- del.leaked_info(Person, Salary, Dept, Pos).

Figure 4: Corrected policy rule from Figure 3 with basic privilege rules

scheme to write policies in a straight-forward manner using
TD, simply by making sure that all accesses in untrusted
user policies are replaced by appropriate view-predicates.
The power of having rules with side-effects is useful in a
variety of scenarios, like auditing/logging accesses to the
database, and also in certain policies like the Chinese Wall
policy, where accessing one category in a database automat-
ically causes a side-effect that prevents the same user from
accessing another category [9]. TD semantics provides a
sound semantics to the policies and algorithmic solutions to
evaluate access-rights.

5. SECURITY ANALYSIS

5.1 Security Analysis and Decidability
Formal security analysis can intuitively be described as

answering the question “can user u ever gain privilege p on
object o?” This is substantially different than simply analyz-
ing whether a given action should be allowed or disallowed—
it requires us to examine not just the current system state,
but all future system states. The well-known “HRU model”
describes a simple matrix-based access control model, with
the surprising property that even if every policy in a system
can be efficiently evaluated, security analysis can be unde-
cidable [18]. This is not the case for every access control
model; security analyses of some existing access control sys-
tems without the same expressiveness as the HRU model
can be decidable while still allowing useful policies to be ex-
pressed [24, 32]. Unfortunately, it is easy to show that the
HRU model can be simulated in TD:

Theorem 1. There exists a set of non-recursive TD rules
that can simulate the HRU model. 2

In spite of the undecidability result of the general case, it
is possible to make restrictions on the policies that enable
decidable security analysis algorithms. To show this, we will
follow the formalism for access control systems defined by Li
and Tripunitara [24] as a four-tuple 〈Γ,Ψ, Q,`〉 where Γ is
the set of possible system states, Ψ is a set of rules that may
be used to change the state, Q is a set of logical formulas for
determining access privileges, and ` is a function mapping
Γ×Q→ {true, false} that indicates whether a given logical
formula is true for a given system state. A security analysis
instance is a four-tuple of the form 〈γ, ψ, T ,2φ〉 where γ ∈
Γ, ψ ∈ Ψ, T is a set of trusted users, φ ∈ Q, and 2 is a
temporal logic operator [22] meaning “in the current and in
all future states.” This instance is true if and only if for any
sequence of state changes starting with γ using transitions in
ψ and not initiated by any user in T , φ holds in each state.

To express RDBAC systems in this formalism, let Γ be the
set of possible databases, including both possible database
states and the transaction base, as defined in Section 3.2.
Let Ψ be the set of transaction bases for these databases.
Q and ` must be defined in terms of what security prop-
erties we wish to prove about our system. For the pur-
poses of this paper, Q will be the set of formulas of the form
canRead(U,P, T1, . . . , Tn) or ¬canRead(U,P, T1, . . . , Tn) where
U is a given principal, P is a given predicate name with arity
n, and {T1, . . . , Tn} are either variables or constants.5 For
a database D ∈ Γ, D = 〈S, ψ〉, and a given formula

φ = canRead(U,P, T1, . . . , Tn) ∈ Q,

we will define ` (D,φ) = true if and only if there exist a
variable substitution σ and a sequence of database states S
such that view.P (U, σ(T1), . . . , σ(Tn) can be inferred using
the sequence S. For negated formulas, ` (D,¬φ) = true if
and only if ` (D,φ) = false. In each of the following the-
orems, security analysis will entail calculating whether the
canRead formula can ever be true in any future database
state resulting from a non-trusted user executing any se-
quence of rules.

5.2 Side-Effect-Free Policies
The first class of policies for which we show security anal-

ysis is decidable is a restricted class in which untrusted
users cannot execute policies that cause side-effects on the
database (i.e., contain neither assertions nor retractions).

Note that this is a very reasonable restriction, as there are
many policies whose evaluation does not require any side-
effects on the database. Also, notice that this precludes
the possibility of untrusted users to expand the domain of
the database (introduce new subjects/principals, new at-
tributes, etc.)

Theorem 2. Security analysis is decidable for a database
with state S and transaction base P with all rules containing
no side-effects. 2

While this may initially seem very restrictive, it is impor-
tant to note that we only need to consider untrusted users
not in T . If a policy in the transaction base contains an
assertion or retraction, but that policy can only be invoked
by trusted users in T , and no operations initiated by other
users will cause that policy to be invoked, then we need not
consider that policy for the purpose of security analysis, al-
lowing us to use Theorem 2. Checking whether users not in

5
Adding formulas for expressing other access privileges, such as

canInsert or canDelete, would follow this same pattern.



T can invoke the policy could at worst be done by trying
each user one by one to see whether the policy is satisfiable
for that user, although in many cases this can be made sim-
pler (such as if the policy contains a condition to check for
a constant set of users). Checking whether operations initi-
ated by other users will cause the policy to be invoked can
be done by recursively examining the other policies in the
transaction base. If the policy in question appears in the
body of any other policy, then that policy must similarly
only be invokable by trusted users, and cannot be invoked
by operations initiated by other users.

We can similarly extend the usefulness of this class of
policies by separating write privileges on the database. If an
assertion or retraction to a predicate p’ does not affect the
policies on another predicate p, then policies that change p’

can also be effectively removed for the purposes of security
analysis on p. This check can also be done with a recursive
process. We will say that p depends on p’ if there exists a
rule for p such that at least one of the literals in the body
of the rule either has predicate name p’, or depends on p’.
If p does not depend on p’, then no invocation of any rule
for p will access values in p’, and thus will not be affected
by changes made to p’.

In Section 6 we describe an implementation of the above
security analysis for a side-effect free policy by encoding the
analysis as the evaluation of a query.

5.3 Append-Only Policies
Allowing untrusted users to make updates to the database

complicates security analysis. Understanding the effect of a
set of policies on a changeable database state has already
been shown to be undecidable. However, we can simplify
the problem if the policies impose limits on the kinds of
changes an untrusted user may make.

We describe below a class of policies that satisfy two
conditions— they allow adding new facts to the database
but allow no retractions, and secondly, they disallow poli-
cies to change the domain of possible values that appear
anywhere in the database, the latter being formalized as a
condition called “safe rewritability.” For this class of poli-
cies, Theorem 4 shows that security analysis is decidable,
and Theorem 5 shows that it can be approximately decided
using a simple Datalog query.

We define the rewrite operation . as a function mapping
a retraction-free and empty-predicate-free rule to a set of

rules, defined recursively as follows: given a rule r = p(
−→
t )

:- p1(
−→
t1), ..., pn(

−→
tn)., if the body of r contains no as-

sertion predicates, then .(r) = {r}. Otherwise, let pi(
−→
ti )

be the first assertion predicate ins.q(
−→
ti ), so that no pj(

−→
tj )

for j < i is an assertion predicate. Let r1 be the rule q(
−→
ti )

:- p1(
−→
t1), ..., pi−1(

−−→
ti−1). and r2 be the same as rule r

but with pi(
−→
ti ) omitted. That is, r2 = p(

−→
t ) :- p1(

−→
t1),

..., pi−1(
−−→
ti−1), pi+1(

−−→
ti+1), ..., pn(

−→
tn). Then .(r) =

{r1} ∪ .(r2).
For example, if r = p :- p1, p2, ins.p3, p4, ins.p5,

p6., then .(r) consists of the following three rules:
p3 :- p1, p2.

p5 :- p1, p2, p4.

p :- p1, p2, p4, p6.

Note that the rewrite operator is well defined, because r
may only have a finite number of assertion predicates, and r2
has one fewer assertion predicates than r. Observe that since

.(r) removes all assertions, it constitutes a classic Datalog
program and can be evaluated as such. However, note that
the rules of .(r) are not semantically equivalent to r; in fact
.(r) allows all inferences that r does, and possibly more.

We call a set of TD rules {r1, . . . , rn} safely rewritable if
each of {.(r1), . . . , .(rn)} is safe (in the classical Datalog
sense). Safe rewritability prohibits expanding the domain of
a database, and allows us to compute a single, finite model
for the Datalog database derived from rewriting each rule
in a TD database. Note also that the Datalog database is
not a simulated execution of every rule in the TD database.
The inference rules for TD require that all predicates in a
given rule hold, not just the predicates occurring before an
assertion. It is, however, a maximal database in terms of set
containment. (We will say that a literal q ∈ D if q can be
inferred from D.)

Lemma 3. For any TD database with safely rewritable
rules and initial state S and transaction base P and any
finite sequence of rule invocations, the final state is a subset
of the model of the Datalog database derived from the union
of S and the rewritten rules from P (i.e. .(P )). 2

Theorem 4. Security analysis is decidable for a database
with state S and transaction base P with rules that contain
no retractions and are safely rewritable, given a finite num-
ber of users. 2

It is worth noting that security analysis of a limited vari-
ation of the HRU model that uses only monotonically in-
creasing operations is still undecidable [17]. The difference
with our result is that we require the append-only policies
to be safely rewritable, which limits the domain from being
expanded.

Just as in Section 5.2, we can extend the usefulness of
this class by allowing unrestricted assertions and retractions
only by trusted users, and by separating the write privileges
on the database.

While security analysis is decidable for this case, it is clear
that simulating every possible sequence of commands would
be an expensive analysis. An alternative to this detailed
analysis would be to make a conservative estimate of what
privileges are possible. All of the semantics discussed for
this paper are monotonic; that is, if a rule can be executed
under a given database state, it can still be executed under
a larger database state. This enables us to use the maximal
database computed for Lemma 3 to make this estimate. This
may disallow some safe database configurations, but because
computing a Datalog model is very efficient, this solution
may be preferable.

Theorem 5. For a database with state S and transaction
base P with rules that contain no retractions and are safely
rewritable, if a given permission does not exist in the model
of the Datalog database derived from the union of S and
the rewritten rules from P (i.e. .(P )), then it will not be
accessible in any future state of the current database if all
rules are monotonic. 2

6. IMPLEMENTATION
As a preliminary evaluation of this model, we have im-

plemented a proof-of-concept prototype query engine using
SWI-Prolog version 5.6.25. The prototype only provides
rudimentary database functionality, as it loads all of the



Query Database 1 Database 2

100 empl. 1000 empl.

Baseline 0.42 ms 4.82 ms

(a) Table owner 0.43 ms 4.84 ms

(b) Non-manager access 0.44 ms 4.97 ms

(c) Manager access 0.66 ms 7.51 ms

(d) Insurance access with audit 0.57 ms 6.01 ms

(e) Without Chinese Wall 0.12 ms 1.22 ms

(f) Chinese Wall 0.13 ms 1.43 ms

(g) Security check, one user 1.67 ms 17.27 ms

(h) Security check, all users 171.80 ms 17,390.00 ms

Figure 5: Timing results from Prolog prototype

data (both for base predicates and for policies) into mem-
ory, rather than storing the data on the disk and retrieving
only when necessary; and no query optimizations are used,
other than any automatic optimizations applied by the Pro-
log compiler. However, this basic design is helpful in deter-
mining the feasibility of evaluating reflexive access policies
and performing security analysis.

Using this prototype, we tested a set of policies on two
simple employee databases, the first containing 100 employ-
ees and the second containing 1000 employees. The example
policies are given in the Appendix, and results of running
each policy are shown in Figure 5. All tests were run on
a 1.6GHz Pentium-M with 768 MB of RAM running Win-
dows XP. The baseline query accesses the employees table
directly to provide a measure of the cost of the extra logic of
enforcing view predicates. Query (a) accesses the employee
table as the table owner (rule 1 from the appendix). Query
(b) accesses the table as a regular employee that is granted
access to his own data and to the public data of all other
employees (rules 2 and 4). Query (c) accesses the table as
a manager, who is granted access to her own data, the data
for employees in her department, and the public data of all
other employees (rules 2, 3, and 4). Query (d) accesses the
table as an external insurance agent who is granted access
to some public data, but ensures that all accesses are logged
(rule 5). These results indicate that while the RDBAC func-
tionality does incur a cost, most of this cost is inherent to
executing extra queries on the database.

In order to demonstrate the expressiveness of using TD as
a policy language, query (e) provides a baseline access to a
table with 50 records in the first database, 500 records in the
second. Query (f) defines a Chinese Wall policy on this table
(rules 6, 7, 8, 9, and 10). These policies assume that the data
to be separated exists on separate tables. They also require
that both tables be accessible by a single administrator (in
this case, Bob).

The final three queries perform a security analysis check.
This check only examines the policies without side effects
(rules 1, 2, 3, and 4). Query (g) determines which users
are allowed to access the data of a single employee, and
query (h) performs a full security analysis, enumerating all
permissions available through the side-effect-free policies.

For a future prototype, we plan on testing a different strat-
egy by compiling the Datalog policies into functions that can
be executed directly by the database, such as Oracle VPD
functions. This strategy would give us two advantages: it
would allow us to take advantage of any query optimizations
that a commercial database offers, and it would demonstrate

that RDBAC policies can be used with existing database in-
stallations.

7. CONCLUSION AND FUTURE WORK
We have described a model for reflective database access

control based on the semantics of Transaction Datalog. This
model provides a clear description of how access control poli-
cies should be evaluated, and under whose privileges, and
can be extended to users that do not have omniscient access
to the database. The TD model also inherits the ability to
effect changes to the database during policy evaluation. We
have shown that formal analysis may be performed on cer-
tain classes of reflective policies to guarantee security prop-
erties.

Much work still needs to be done to establish a usable
reflective access control system. Many useful policies, such
as Chinese Wall policies, require removing data from the
database. Formal analysis of such policies has not yet been
done. Additionally, while we have shown analysis of append-
only policies to be decidable, it may be more desirable to find
other more efficient algorithms, possibly using fast model-
checking based techniques [19].

Negations in TD could also provide useful policies. Indeed,
the rewriting algorithm from Section 5.3 does not preclude
the existence of negations in the resulting Datalog rules.
However, TD does not define semantics for negations. The
model also does not define a basic“update”operation. While
updates are effectively equivalent to a deletion followed by
an insertion, many policies are defined on the entire update
operation that cannot simply be enforced on the deletion
and insertion individually.

Finally, Example 5 showed how unsafe information flows
can be prevented by only allowing policies to be executed
under the definer’s privilege. More thorough information
flow analysis could allow us to relax this restriction and allow
other privileges to be used.
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APPENDIX
These are the sample policies from the prototype.

1. view_employee(‘alice’, Person, SSN, Salary, Email,
Dept, Position, Bday) :-

employee(Person, SSN, Salary, Email, Dept,
Position, Bday).

2. view_employee(User, Person, SSN, Salary, Email,
Dept, Position, Bday) :-

User=Person,
view_employee(‘alice’, Person, SSN, Salary,

Email, Dept, Position, Bday).

3. view_employee(User, Person, SSN, Salary, Email,
Dept, Position, Bday) :-

view_employee(‘alice’, User, _, _, _, Dept,
‘manager’, _),

view_employee(‘alice’, Person, SSN, Salary,
Email, Dept, Position, Bday).

4. view_employee(User, Person, SSN, Salary, Email,
Dept, Position, Bday) :-

view_employee(‘alice’, User, _, _, _, _, _, _),
SSN = null, Salary = null,
view_employee(‘alice’, Person, _, _, Email, Dept,

Position, Bday).

5. view_employee(User, Person, SSN, Salary, Email,
Dept, Position, Bday) :-

insurance(User), SSN = null, Salary = null,
Email = null, Dept = null, Position = null,
view_employee(‘alice’, Person, _, _, _, _, _, Bday),
ins.logtable(User, Person, ‘birthday field’).

6. view_cwPriv(‘bob’, Person, Bank1Priv, Bank2Priv) :-
cwPriv(Person, Bank1Priv, Bank2Priv).

7. view_bank1(‘bob’, Data1, Data2) :-
bank1(Data1, Data2).

8. view_bank1(User, Data1, Data2) :-
view_cwPriv(‘bob’, User, 1, _),
del.cwPriv(User, 1, _), ins.cwPriv(User, 1, 0),
view_bank1(‘bob’, Data1, Data2).

9. view_bank2(‘bob’, Data1, Data2) :-
bank2(Data1, Data2).

10. view_bank2(User, Data1, Data2) :-
view_cwPriv(‘bob’, User, _, 1),
del.cwPriv(User, _, 1), ins.cwPriv(User, 0, 1),
view_bank2(‘bob’, Data1, Data2).


