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Abstract
Current theoretical solutions to the classical Church’s synthesis problem are focussed on synthe-
sizing transition systems and not programs. Programs are compact and often the true aim in
many synthesis problems, while the transition systems that correspond to them are often large
and not very useful as synthesized artefacts. Consequently, current practical techniques first
synthesize a transition system, and then extract a more compact representation from it. We
reformulate the synthesis of reactive systems directly in terms of program synthesis, and develop
a theory to show that the problem of synthesizing programs over a fixed set of Boolean vari-
ables in a simple imperative programming language is decidable for regular ω-specifications. We
also present results for synthesizing programs with recursion against both regular specifications
as well as visibly-pushdown language specifications. Finally, we show applications to program
repair, and conclude with open problems in synthesizing distributed programs.

1998 ACM Subject Classification I.2.2 Automatic Programming; F.3.1 Specifying and Verifying
and Reasoning about Programs; F.4.3 Formal Languages

Keywords and phrases Program synthesis, Boolean programs, Automata theory, Temporal logics

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p
1 Introduction
The synthesis problem for reactive systems is a classical problem in computer science, and
stems from a problem posed by Church in 1957 on synthesizing digital circuits from specifi-
cations written in a restricted logic of arithmetic [6]. This problem was solved first by Büchi
and Landweber in 1969 [5] (see [25] for an account of the history of this problem). The 70s
saw the emergence of the elegant theory of automata on infinite trees by Rabin [19], which
has now been well-studied and honed into a beautiful theory that underlies many of the
decidability results in logic and automata theory [24, 8]. Coupled with the temporal-logic
to automata connection on words [16, 27, 20], tree-automata theory gives the most elegant
solution to Church’s problem: compile the specification into a deterministic parity automa-
ton on infinite words [20], using this build a parity tree-automaton that accepts the trees
that correspond to strategies for the system to generate outputs for inputs so that all paths
in the tree are accepted by the specification automaton, and, finally, check the emptiness
of the tree automaton and build a finite-state transition system from a regular tree that’s
accepted by this automaton [17].

The synthesis problem has received a lot of attention in recent years, both in theory as
well as in practice. Theoretical approaches include extensions to branching time specifica-
tions [11, 13], the very non-trivial problem of synthesizing distributed systems [18, 14, 13],
and synthesis with incomplete information where the environment and system may not have
perfect information about the state of each other [10].

Most of the current theoretical techniques in synthesis are geared towards designing
transition systems. In other words, the algorithms for synthesis in the end output transition
systems that meet the specification. While transition systems are appropriate for defining
semantics of systems, systems are seldom designed by explicitly describing their transition
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systems. Systems are instead designed using high-level and succinct representations such as
programs.

The extensive literature on synthesizing transition systems does not help in building di-
rectly the compact programs we seek. Current practical techniques build a transition system
(or an automaton that depicts several different strategies for winning), and implement it in
a symbolic manner such as a program. Several such approaches currently exist; for instance,
the approach in [15] builds automata from which a symbolic algorithm using memory vari-
ables is extracted and the work by Bloem et al [4] reports on practical ways of synthesizing
PSL circuit code from symbolic BDD representations of the solution.

Consider, for instance, the problem of synthesizing a data-structure to maintain subsets
of a fixed set of n elements, where the environment is allowed to maintain the set by adding
or removing elements from it, and querying the set for membership. It is easy to see
that a program for implementing it can be written that uses n Boolean variables, one for
each element, that tracks whether that element belongs to the set or not. Furthermore,
a short while-program (of length about O(n log n)) can be written. On the other hand,
a transition system realizing the specification will necessarily be exponential in n. For
n = 50, a transition system with 250 states is not very useful as a synthesized artefact,
while a program that’s about 150 lines of code is. One can, of course, construct a particular
transition system and then try to synthesize a program from it (as in the works cited above),
but these are not guaranteed to yield small programs.

Another drawback (and a subtle one) in current synthesis techniques is that the systems
that are synthesized depend on how specifications are written, rather than only its semantics.
For instance, assume ϕ1 and ϕ2 are two specifications that are syntactically different but
semantically equivalent. Then the current synthesis algorithms based on tree automata will
produce different sets of (finite) transition systems for these specifications. The reason is
that for a given specification, current synthesis algorithms build an automaton that accepts
unfoldings of transitions systems that satisfy the specification. Though these automata for
ϕ1 and ϕ2 accept precisely the same set of trees, the automata themselves are different, as
they depend on the syntax of the specifications (i.e., on ϕ1 and ϕ2). Consequently, the non-
emptiness algorithm for these automata can synthesize different transition systems for the
two semantically-equivalent specifications. Intuitively, the synthesized finite-state transition
system not only encodes a correct algorithm, but also an elaborate proof as to why it meets
the specification, and this proof grows with the way the specification is formulated. In
particular, the more complex the same specification is written, the more complex will be
the synthesized transition system!

There is some work in the literature (see [21]) that addresses the above problem and can
synthesize transition systems (but not programs) that are within a bound, independent of
the specification. However, we do not know of any work on specification-syntax agnostic
synthesis that works in the unbounded setting.

The main contribution of this paper is a theory of synthesis where imperative programs
(written in a particular syntax, and over a fixed set of Boolean variables) are first-class
objects and where the synthesis algorithms directly synthesize programs that meet reac-
tive regular ω-specifications. We lay out this theory of synthesizing imperative programs,
showing two main results: (a) that imperative program synthesis is decidable against regu-
lar specifications, and (b) that synthesis of imperative programs with recursive functions is
decidable against both regular specifications as well as visibly-pushdown specifications.

The technical results are automata-theoretic, are geared towards synthesizing programs
directly, and use two-way alternating ω-automata working on finite trees that represent
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programs. In particular, the synthesis algorithms in this paper build tree automata on finite
trees that accept all programs satisfying a specification, and hence do not depend on the
way the specification is written. We can therefore pull out a program that accords to our
needs (for example, we can pull out the smallest program satisfying the specification, for
some notion of length of a program).

There is a flurry of research in the programming languages community in the last few
years on program synthesis [9, 23, 22]. In general, these algorithms are aimed at practi-
cal synthesis approaches towards solving standard algorithmic problems (such as sorting,
Strassen’s multiplication algorithm, Excel scripts, etc.). In these papers, the prevailing
theme is to fix a template for the program, and use SAT and SMT solvers to find a program
matching the template and simultaneously a proof (which also comes with a template) that
proves the program correct. In these algorithms, the search space of programs for synthesis
is finite, and the focus is on efficiency, programmability, and usability. Hence a theory of
synthesizing programs, albeit finite-state programs, seems worthy of study. In this context,
this paper provides a sound and complete procedure for synthesizing Boolean programs of
arbitrary length that satisfy a specification.

The paper is structured as follows: Section 2 defines imperative programs without recur-
sion and regular specifications, while Section 3 introduces the automata theory on trees that
we will use. Section 4 lays down the results for synthesizing non-recursive programs, and
Section 5 shows how to extend this to synthesize recursive programs against regular as well
as visibly pushdown specifications. Section 6 concludes with a discussion of applications of
our results to program repair, and open problems in distributed program synthesis.

2 Programs and regular specifications
We define in this section the class of imperative programs that we work with, and also define
the class of regular specifications against which we synthesize programs.

Let us fix two numbers NI , NO ∈ N. We will design programs that in every round take
NI bits as input and output NO bits.

Programs are parameterized over a finite set of Boolean variables B that it uses (nat-
urally, we assume |B| ≥ max{NI , NO}). The class of programs over B is given as follows
(where b, bi range over variables in B, and ~b stands for a vector of variables in B):

〈stmt 〉 ::= 〈stmt 〉; 〈stmt〉 | skip | b := 〈expr 〉 | input ~b | output ~b

if (〈expr〉) then 〈stmt〉 else 〈stmt〉 | while (〈expr〉) {〈stmt 〉}
〈expr 〉 ::= b | tt | ff | 〈expr〉 ∨ 〈expr〉 | ¬〈expr〉

We assume that all input and output statements have tuples of width NI and NO,
respectively.

The semantics of a reactive program is the natural one. The “input ~b” statement takes
(reactively) an input in {0, 1}NI from the environment and stores it in the variables ~b, while
“output ~b” outputs the values of the variables in ~b. The program can execute any number
of internal steps between an input and an output statement (though synthesized programs
will have the property that the program eventually does produce an output). During this
internal computation, the program can manipulate its variables using assignments, condi-
tionals, and iteration. Note that programs are, of course, finite in length, though they can
(and typically will) interact with their environment reactively and infinitely often.

Representing programs using finite trees: We will represent programs as finite trees.
Intuitively, the bracketing of blocks of code (as defined by the statements under conditionals
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and while-loops) can be nested arbitrarily, and hence we need trees to capture roughly the
parse-trees of programs according to the grammar given above.

For brevity, we will use binary trees (with every node having zero, one, or two children)
and represent them using terms. A term f(t1, t2) corresponds to a tree with f as the label
of the root, and with the trees corresponding to t1 and t2 as the left and right subtrees of
the root; a unary term g(t) corresponds to a tree with g as the label of the root, and where
the root has only one child (say the left child), and the subtree at this child is isomorphic
to the tree associated with t.

The tree associated with a program P is (root, tree(p)), where tree is inductively defined
as follows:

tree(b) = b tree(s; s′) = ; (tree(s), tree(s′))
tree(tt) = tt tree(skip) = skip
tree(ff) = ff tree(input ~b) = input ~b

tree(ϕ1 ∨ ϕ2) = ∨ (tree(ϕ1), tree(ϕ2)) tree(output ~b) = output ~b

tree(¬ϕ) = ¬ (tree(ϕ1)) tree(b := e) = assign-b (tree(e))
tree(if (e) then s1 else s2) = if (tree(e),

then(tree(s1), tree(s2)))
tree(while (e){s}) = while (tree(e), tree(s))

A program over a set of Boolean variables B is hence encoded as a binary tree over the
alphabet:

Σ = {root,¬,∨, ; , if, then,while} ∪B ∪ {assign-b | b ∈ B}
∪{input ~b | ~b ∈ BNI} ∪ {output ~b | ~b ∈ BNO}

The tree automata we build will accept such trees that represent programs that satisfy
the given specification. Of course, the set of trees corresponding to all programs over a
particular finite set of Boolean variables B is regular; we skip this proof, as it follows pretty
much from the fact that the set of parse trees of any context-free grammar is regular.

I Lemma 1. Let B be a finite set of variables. Then the set of trees corresponding to
programs over variables B is regular. J

Regular specifications:

A (linear-time) specification over (NI , NO) is a subset of ω-sequences L ⊆ ({0, 1}NI +NO )ω
that depicts the correct infinite sequences of input-output behavior allowed by the specifica-
tion. A specification L is said to be regular if there is a non-deterministic Büchi automaton
over the alphabet {0, 1}NI +NO that precisely accepts L (we don’t define word automata in
this paper; we refer the reader to [24]).

We will assume that regular specifications L are given by a non-deterministic automaton
that accepts the set of sequences not in L, i.e., by a non-deterministic Büchi automaton
accepting L = ({0, 1}NI +NO )ω \ L. This is without loss of generality as regular languages
are effectively closed under complement.

For any linear-time temporal logic (LTL) specification ϕ over a set of NI + NO propo-
sitions can be seen as defining a regular specification Lϕ = {α ∈ ({0, 1}NI +NO )ω | α |= ϕ}.
Furthermore, given an LTL specification ϕ, we can construct a Büchi automaton A accepting
L in time exponential in |ϕ| and whose size is exponential in |ϕ|, by building the automaton
accepting the models of ¬ϕ, using the now-classic temporal-logic–automata connection [27].
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We will work with regular ω-specifications given by automata accepting L in the sequel,
derive the complexity results for synthesis in terms of the size of this automaton, and, as a
corollary, derive the complexity of synthesis for LTL specifications.

3 Trees and Alternating automata
We use labeled binary finite trees throughout this paper. Given a finite set of labels Σ, an
Σ-labeled tree is a pair T = (V, λ), where V ⊆ {L,R}∗ that is finite and prefix closed, and
λ : V → Σ. The edges of the tree are implicit: for every v ∈ V , if v.L ∈ V , then v.L is the
left-child of v, and if v.R ∈ V , then v.R is the right-child of v; the node ε is the root of the
tree. The function λ assigns a label in Σ to each node of the tree.

For convenience, let us overload the concatenation operator so that for any v ∈ {L,R}∗,
v.U = v′ if v′.L = v or v′.R = v; i.e., v.U refers to the parent of v in the tree, obtained by
going up from v.

Non-deterministic finite automata on trees are the classic top-down tree-automata, with
different transition functions defined for nodes that have a left-child only, a right-child only,
or has both children. We refer the reader to a textbook on tree automata for details [7]; we
fix here only a brief definition and notation.

A non-deterministic finite tree automaton on Σ-labeled trees is a structure A =
(Q, q0, δL, δR, δLR, F ), where Q is a finite set of states, q0 ∈ Q, δL, δR : Q × Σ → 2Q,
δLR : Q× Σ→ 2Q×Q, and F ⊆ Q.

A run of such a tree automaton on a finite tree (V, λ) is a Q-labeled tree (V, ρ) where:
ρ(ε) = q0, and for every v ∈ V , (i) if v has a left-child but no right-child, then ρ(v.L) ∈
δL(q, λ(v)); (ii) if v has a right-child but no left-child, then ρ(v.R) ∈ δR(q, λ(v)); and (iii) if
v has both children, then (ρ(v.L), ρ(v.R)) ∈ δLR(q, λ(v))

A run (V, ρ) is accepting if for every leaf v of V , ρ(v) ∈ F . A tree is accepted by the
automaton if there is an accepting run on it. The language of the tree automaton is the set
of all Σ-labeled trees accepted by it.

Two-way alternating ω-automata on finite trees:
We now define two-way alternating ω-automata on finite trees. This is a bit unusual; ω-
automata are usually defined on infinite trees, not on finite ones. However, we will deal with
only accepting finite-trees in this paper, which will be used to encode programs (which have
a finite description, of course). However, in order to simulate these programs on ω-length
sequences of inputs, we would need tree automata working on finite trees for infinitely many
steps, going up and down the tree.

For any set S, let B+(S) denote the set of all positive Boolean formulas over S; i.e., the
set defined by the grammar:

ϕ ::= true | false | s | ϕ ∨ ϕ | ϕ ∧ ϕ

where s ∈ S.
A two-way alternating Büchi tree automaton over Σ-labeled trees, is a tuple A =

(Q, q0, δL, δR, δLR, δ∅, F ), where Q is a finite set of states, q0 ∈ Q, F ⊆ Q, and where:

δL : Q× Σ× {L,D} → B+(Q× {L,U})
δR : Q× Σ× {R,D} → B+(Q× {R,U})
δLR : Q× Σ× {L,R,D} → B+(Q× {L,R,U})
δ∅ : Q× Σ× {D} → B+(Q× {U})
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Intuitively, δLR(q, a, dir) = ϕ denotes the actions the automaton can take when in state
q, reading a node n whose label is a, and when the last move it did is given by dir, where
dir=L (dir=R) means that in the last move the tree automaton came up from the left child
(respectively, right child) of n, and dir=D means that in the last move the tree automaton
came down from the parent of n. The tree automaton, at such a point, is allowed to choose
any Boolean valuation of the set (Q× {L,R,U}) that satisfies the formula ϕ, and for every
(q′, g) that it sets to true, it must pass a copy of itself in state q′ along the direction g,
where g = L,R,U is interpreted as left-child, right-child, and up to the parent, respectively.
The transitions δL and δR (for nodes with only a left-child or only a right-child) and δ∅
(for leaves of the tree) are similarly interpreted. By convention, we assume that at the
beginning, the tree automaton starts at the root with the last move set to dir=D. The tree
automaton accepts the tree if all its branches formed by the implicit infinite tree it defines
by propagating states meet the set F infinitely often.

Two-way alternating co-Büchi automata are similarly defined; here the tree automaton
accepts if all its branches meet F only finitely often.

Semantics of two-way alternating automata:
Formally, let us define the acceptance of a tree by an automaton A =
(Q, q0, δL, δR, δLR, δ∅, F ) using a game, played between two players, the automaton-player
(player 0) and the path-finder player (player 1) (we can also equivalently define acceptance
using infinite trees).

A finite-state two-player Büchi arena is a tuple G = (P0, P1, E, p0, F ) where P0 and
P1 are two finite disjoint sets representing the positions from where players 0 and 1 play,
respectively, E ⊆ (P0 × P1) ∪ (P1 × P0) is a set of edges that defines a bipartite graph over
P0 and P1, p0 ∈ P0 is the initial position, and F ⊆ P0 ∪ P1 is a set of Büchi positions.

A strategy for player 0 is a function f0 : (P0P1)∗ → P1, such that for any σ ∈ (P0P1)∗
and p ∈ P1, (p, f0(σ.p)) ∈ E. In other words, f0 encodes a strategy for player 0 to choose a
successor vertex after any finite sequence of moves that is a partial play in the game.

A play is a finite or infinite path in the graph defined by the arena, and denoted by a
sequence in {p0}.(P1P0)∗(ε + P1) ∪ {p0}.(P1P0)ω. A maximal play is a play that cannot
be extended (an ω-length play is maximal; a finite-length play is maximal only if the final
vertex has no out-going edges). A play σ conforms to a strategy f0 for player 0 if for every
proper prefix σ′ ∈ (P0P1)∗P0 of σ, σ′f(σ′) is also a prefix of σ. A strategy for player 0, f0,
is said to be winning if for all maximal plays σ that conform to f0, σ is not finite and some
position in F occurs infinitely often in σ. We say that player 0 wins the game on the arena
if it has a winning strategy.

Intuitively, a strategy for player 0 is winning if along any play conforming to the strategy
player 1 gets “stuck” (cannot make a move) or the play is infinite and meets the Büchi final
state set infinitely often.

We can now define when a two-way alternating automaton A = (Q, q0, δL, δR, δLR, δ∅, F )
accepts a tree (V, λ). Let us define the arena corresponding to A and the tree as
(P0, P1, E, p0, F

′) where:

P0 = (V ×Q× {L,R,D})
P1 = (V × 2Q×{L,R,U})
E contains the following edges:

An edge from (v, q, dir) to (v, S) iff setting S to true and the other elements in Q ×
{L,R,U} to false satisfies δh(q, λ(v), dir), where h=L if v has only a left-child, h=R
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if v has only a right-child, and h=LR if v has two children, and h = ∅ if v is a leaf.
An edge from (v, S) to (v′, q′, dir) iff (q′, g) ∈ S and v′ = v.g and either g ∈ {L,R}
and dir = D, or g = U and v′.dir = v

The initial position is p0 = {(ε, q0, D)}. The set of Büchi states is F ′ = V × F × {L,R,D}.
Then the automaton A accepts the tree (V, λ) if player 0 has a winning strategy on the

corresponding arena. The language of the automaton A is the set of trees accepted by it.
We can similarly define co-Büchi automata; here player 0 wins iff if the set F is met only

finitely often.
The size of a two-way alternating automaton is the length of its description encoded as

a string.
Two-way alternating automata to one-way non-deterministic automata:
It is well-known that two-way alternating tree automata can be converted to non-
deterministic tree automata with an exponential blow-up in the state-space (see [26] for
example, where such a construction is shown for automata on infinite trees). We can do
a similar construction to convert alternating Büchi or co-Büchi tree automata over finite
trees to an equivalent non-deterministic automaton over finite trees, with an exponential
blow-up. We omit the proof here; a gist of the proof can be found in [12]. Consequently
two-way Büchi and co-Büchi alternating tree automata on finite trees capture only regular
tree languages, and their emptiness problem can be decided in exponential time.

As an auxiliary notation, in the sequel, we sometimes write transitions of the form
δ(q, a, dir) = (q′, LR), where we mean by (q′, LR) that the automaton passes the state q′ to
the right-child of the left-child of the current node. We do this for brevity; such transitions
can easily be converted to standard transitions using intermediate states.

4 Synthesizing Reactive Programs
In this section, we prove our first main result: for any regular specification and a set of
Boolean variables B, we can build a tree automaton that precisely accepts the class of all
tree-encodings of programs over B that satisfy the specification. By checking emptiness
of this tree automaton, we can synthesize programs that satisfy the specification, and in
particular, synthesize the smallest programs satisfying the specification.

Let us fix input and output arities NI , NO ∈ N for the rest of this section. Let Aspec be
a non-deterministic Büchi automaton that accepts the set of sequences in ({0, 1}NI +NO )ω
that do not satisfy the specification. Let us also fix a set of Boolean variables B.

Consider the set of all trees corresponding to programs over the variables B with input
and output arities NI and NO. By Lemma 1, this is a regular set of trees, and let’s assume
that Apgm is a tree automaton that accepts precisely these trees.

We now build a two-way alternating Büchi tree automaton that accepts a tree encoding
a program iff the program does not respect the specification. Intuitively, this automaton A
will guess a particular run of the program by non-deterministically choosing a sequence of
inputs, simulating the program on these inputs, and checking whether there is a run of the
specification automaton Aspec that accepts this execution; if so, it will accept the tree.

The two-way alternating tree automaton will have as states two kinds of tuples. The
first kind are tuples of the form 〈s, q, i,m, t〉 where s is the current state of the program’s
simulation (i.e., the valuation of the variables B), q is the current state of the specification
automaton Aspec that is simultaneously simulated on the input-output sequence observed, i
is the last input received by the program, and m is a mode m ∈ {inp, out} that remembers
whether the next I/O operation the program must do is an input or an output. The final
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bit t ∈ {0, 1} is a toggle that switches to 1 each time the specification state is updated, and
then gets set back to 0.

The second kind of state is of the form 〈s, v〉 where s is the current state of the program’s
simulation and v is a Boolean value; these states are used on subtrees that encode Boolean
expressions (right-hand sides of assignments and conditionals in if- and while-statements),
and are meant to check whether the expression evaluates to the value v in the current state
of the program s.

Intuitively, the automaton walks over the program tree, interpreting every statement, and
computing the current state of the variables in s. In this process, it may have to move up
and down the tree as while-loops require traversing the same blocks of statements multiple
times. When it meets an output-statement, it updates the specification automaton’s state
on the last input i and the output valuation. When it meets an input statement, it stores
it in the appropriate variables in s, and updates the component i.

We now define the automaton formally. Let Bool = {0, 1}. For such a valuation s of B,
we denote by s[b/v], where b ∈ B and v ∈ Bool, the valuation that s′ such that s′(b) = v

and for every b′ ∈ B, b′ 6= b, s′(b′) = s(b). We extend this to tuples of replacements: s[~b/val]
where val is a valuation of ~b is defined as the valuation s modified so that ~b evaluates to val.

Let S denote the set of all valuations of the variables B. Let I = {0, 1}NI denote the set
of all inputs. Let Aspec = (Q, q0, δspec, Fspec).

The two-way alternating automaton is A = (P, p0, δL, δR, δLR, δ∅, F ) is defined as follows.
The set of states is:

P = (S × Bool) ∪ (S ×Q× I × {inp, out} × Bool)
The transitions are defined as follows, where s ∈ S, v ∈ Bool, q ∈ Q, i ∈ I, m ∈

{inp, out}, and t ∈ {0, 1}.
Transitions from root:
δL(p0, root, D) = (p0, L); δL((s, q, i,m, t), root, U) = true;
Transitions to evaluate Boolean expressions:
δ∅((s, 1), tt, D) = true; δ∅((s, 0), tt, D) = false
δ∅((s, 1),ff, D) = false; δ∅((s, 0),ff, D) = true
δ∅((s, v), b,D) = true if s[b] = 1

= false otherwise.
δLR((s, 1),∨, D) = ((s, 1), L) ∨ ((s, 1), R)
δLR((s, 0),∨, D) = ((s, 0), L) ∧ ((s, 0), R)
δL((s, v),¬, D) = ((s, 1−v), L)

Transitions to evaluate non I/O statements:
δ∅((s, q, i,m, t), skip, D) = ((s, q, i,m, 0), U)
δL((s, q, i,m, t), assignb, D) =
( (s[b/0], q, i,m, 0), U) ∧ ((s, 0), L) ) ∨ ( (s[b/1], q, i,m, 0), U) ∧ ((s, 1), L) )
δLR((s, q, i,m, t), if, D) =
( ((s, 1), L) ∧ ((s, q, i,m, 0), RL) ) ∨ ( ((s, 0), L) ∧ ((s, q, i,m, 0), RR) )
δLR((s, q, i,m, t),while, D)
= δLR((s, q, i,m, t),while, R)
= ( ((s, 1), L) ∧ ((s, q, i,m, 0), R) ) ∨ ( ((s, 0), L) ∧ ((s, q, i,m, 0), U) )

Transitions to evaluate input and output:
δ∅((s, q, i, inp, t), input ~b ) =

∨
valuations val over ~b((s[~b/val], q, val, out, 0), U)

δ∅((s, q, i, out, t),output ~b) =
∨
q′∈δAspec (q,~i,s[~b])((s, q

′, i, inp, 1), U)
Transitions to move to next statement in program:
δLR((s, q, i,m, t), ;, D) = ((s, q, i,m, t), L)
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δLR((s, q, i,m, t), ;, L) = ((s, q, i,m, t), R)
δLR((s, q, i,m, t), ;, R) = ((s, q, i,m, t), U)
δLR((s, q, i,m, t), then, L)
= δLR((s, q, i,m, t), then, R)
= ((s, q, i,m, t), U)
δLR((s, q, i,m, t), if, R) = ((s, q, i,m, t), U)

All other transitions evaluate to false.

The initial state is p0 = (s0, q0, i0, inp, 0) where s0 is the function that maps every
variable in b to F (to reflect the initial state of the variables), q0 is the initial state of
the specification automaton Aspec, i0 = 0NI and where the mode is set to receive an input
(which will overwrite i0). This state is passed on from the root to the first statement of the
program.

The set of Büchi final states is F = {(s, q, i,m, 1) | s ∈ S, q ∈ Fspec, i ∈ I,m ∈M}. Since
the toggle t is 1 in all these states, the automaton is forced to truly hit a Büchi final state
of Aspec infinitely often (as long as it runs forever), which in turn forces it to infinitely-often
react with its environment.

A state of the form (s, v) is meant to check whether the state s satisfies the expression
encoded at the subtree of the node the tree is reading. The transitions reflect this check:
the expression b checks if it matches the value of v, and disjunctive and negated expressions
are checked by sending appropriate copies to check sub-expressions. Note that these copies
always go down the tree, and terminate at the leaves.

The processing of non-I/O statements requires walking up and down the tree. A skip-
statement at a leaf is handled simply by going up. An assignment to a variable b is handled
by guessing a Boolean value v, sending a copy down the tree to check that the expression
evaluates to v, and sending another copy up with the value of b updated to v in the state.
Conditionals are handled by again guessing whether the value of the expression is true or
not, sending a copy to the left-child to check if this is correct, and sending a copy to the
appropriate child of the right-tree to execute the if-branch or the else-branch. Recursive
while-loops are handled similarly; the value of the condition is guessed, a copy is sent down
the left-branch to check it, and another copy is either sent down to the right-branch to
execute the body of the loop, or sent up to exit the loop.

The input-statement is handled only when in input mode (inp), and the automaton
evaluates the input variables to an arbitrary valuation, stores this both in the state s and
the input component i, and switches the mode to output (out). An output-statement does
not change the state of the system, but changes the state of the specification, which is
updated by simulating the specification automaton Aspec non-deterministically on the last
input and the current output.

Notice that the last toggle bit t always gets set to 0, except when processing an output
statement, where it gets set to 1. This ensures that specification states seen at intermediate
points while simulating the program do not count towards meeting the Büchi specification
in Aspec. Also note that if the program halts after a finite input sequence, the automaton
will reach the root, and accept the tree; hence the automaton accepts also all programs that
have a terminating computation.

There are also several other transitions that help move between statements. When a “;”
is met going down a tree, the control goes to the left-child to process the first statement,
when it comes up from left-child, it goes to the right-child to process the second statement,
and when that comes up, the control passes to the parent. When control comes up to an if-
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or then- node, the control moves up the tree.
We build a second two-way Büchi alternating automaton Anon-reactive that accepts all

programs that do not infinitely interact with the environment (i.e., those programs that
never produce an output after a finite sequence of interactions with the environment). We
skip this construction, as it is very similar and simpler than the construction of A above.

Finally, we take the union of the two two-way Büchi alternating tree-automata A and
Anon-reactive, complement it (by dualizing the transition relation and making the accep-
tance condition co-Büchi), and intersect it with the automaton Apgm. This gives a two-way
alternating co-Büchi automaton that accepts precisely those programs that continually in-
teract with the environment on all possible input sequences and satisfy the specification.
This is then transformed to an equivalent non-deterministic tree-automaton, incurring an
exponential blow-up.

The following theorem captures the correctness and complexity of the construction (note
that |B| dominates NI and NO); a gist of its proof can be found in [12].

I Theorem 2. Let B be a finite set of Boolean variables, and let NI , NO ∈ N. Let Aspec be a
non-deterministic Büchi automaton over the alphabet {0, 1}NI +NO . Then we can construct a
non-deterministic tree automaton B that precisely accepts the trees corresponding to reactive
programs over B and with input/output type (NI , NO) that on all executions generate I/O
sequences that are not in L(A). Furthermore, this tree-automaton can be constructed to be
of size O(exp (|Aspec|, exp(B))). J

Note that the final automaton is doubly-exponential in B and singly exponential in the
size of the specification automaton. For a fixed B, NI , NO, this gives an ExpTime decision
procedure. As a corollary, it follows that for specifications given in Ltl, the synthesis pro-
cedure is in 2ExpTime. Recall that the transition-system synthesis problem for LTL (with
no parametrization like the variables B in program synthesis) is 2ExpTime-complete [17].

5 Synthesizing Recursive Reactive Programs

We extend the results of the previous section to synthesizing Boolean reactive programs
with function-calls and recursion, provided the number of functions and their signatures are
fixed. The proof strategy is similar but more complex: we encode programs with recursion
also as trees, where functions are encoded as subtrees of the program tree, and show that
the class of recursive programs that meet a regular specification is regular.

The idea of synthesizing recursive programs for regular specifications is motivated by
three reasons. First, we are interested in synthesizing the smallest programs that satisfy a
specification, and the smallest programs may involve recursion. Second, there may be no
programs that satisfy a regular specification R over a set of Boolean variables B, while there
exist recursive programs over B that satisfy R. This issue does not apply in the classical
case of synthesizing transition systems as if there is a transition-system at all that satisfies
a regular specification, there is always a finite-state transition system that satisfies it. In
the program synthesis setting, the additional parametrization of B causes a smaller search
space of programs. Finally, in applications to program repair (see Section 7 for a discussion),
where we want to repair an existing recursive program against a regular specification, the
natural problem that is required is one that synthesizes all recursive programs that satisfy
a specification.

Our proof procedure also extends smoothly to synthesizing recursive programs against
visibly pushdown automata [3] specifications, which are a class of specifications larger than
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that of regular specifications. This includes the class of temporal logics for recursive pro-
grams that can be compiled into visibly pushdown Büchi automata, such as CaRet [2] and
and NWTL [1]. We note that we are unaware of any natural analog in the transition-system
world corresponding to the results on synthesizing recursive programs against non-regular
specifications in this section.

Recursive programs: Boolean programs with recursion are defined as sequential pro-
grams, except that we have functions that can call each other (with call-by-value semantics),
functions have local variables that they can manipulate and can return a tuple of Boolean
values, and can have side-effects by changing the valuation of globally declared variables.

Let us fix B = (BG, Bl), where BG is a finite set of global Boolean variables and BL and
a finite set of local Boolean variables. Let us also fix a finite number of function-names F
with a special function main in F . Let Inp : F → N and Ret : F → N be two functions that
give the number of input parameters and the number of return values for each function, and
let us fix NI , NO ∈ N.

Then the set of recursive Boolean programs over 〈B,F, In,Out, NI , NO〉 is given by:
〈pgm 〉 ::= f(~b) { 〈stmt 〉 } | 〈pgm 〉 〈pgm 〉
〈stmt 〉 ::= 〈stmt 〉; 〈stmt〉 | skip | b := 〈expr〉 | input ~b | output ~b |

if (〈expr〉) then {〈stmt〉} else {〈stmt〉} | while (〈expr〉) {〈stmt 〉} |
〈b1, . . . , bk〉 = f(b′

1, . . . , b′
i) | return (b1, . . . , br)

〈expr 〉 ::= b | tt | ff | (〈expr〉 ∨ 〈expr〉) | (¬〈expr〉)

Programs consist of a series of definitions of the functions, where each function, in addi-
tion to the usual statements, is allowed to call other functions and assign the returned values
to variables, as well as return a tuple of Boolean values. We assume natural restrictions on
programs: each function is defined precisely once, and the arities of its input parameters
and returns match the In and Ret functions.

The semantics is once again the natural one. When a function f1 calls f2, its local vari-
ables are pushed onto an (unbounded) stack along with the program counter at which the
call occurred, and the control switches to the beginning of f2, with its local variables reset
to default initial values. When the function f2 executes a return-statement, the stack is
popped to retrieve the state of the caller function, the control switches to the caller at the
appropriate program counter, and the returned values get stored in the appropriate variables
mentioned in the statement that called f2. The valuations of global variables can change
across a call.

Representing recursive programs as finite trees: We can represent recursive programs
using finite trees by essentially encoding each function as a sub-tree. Intuitively, we build a
tree whose right-most path is labeled with a special symbol $, and the sub-trees that hang
from these nodes as left-children encode the various functions in the program.

Formally, we extend the function tree defined in the previous section with the following
definitions, where p, p′ ∈ 〈pgm〉.

tree(p p′) = $(tree(p), tree(p′)) tree(~b := f(~b′)) = call-f -~b-~b′

tree(f(~b){〈stmt〉} = f−~b(tree(〈stmt〉)) tree(return ~b) = ret-~b

Synthesizing recursive programs: The synthesis procedure is similar to that of
non-recursive programs. We show that the class of all recursive programs over
〈〈BG, BL〉, F, In,Out, NI , NO〉 that satisfy a specification (given by an automaton Aspec that
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accepts the sequences that do not confirm to the specification) is regular. The construction
of the tree-automaton accepting the set of correct programs is considerably more complex.
We give a gist of it below, highlighting the main parts of the construction.

Intuitively, when simulating the program, when we are at a state s, and the specification
automaton state is q, and we process a call to a function f (i.e., a statement of the form
~b = f(~b′)), the tree automaton guesses the precise state s′ and precise state q′ the program
and specification automaton would be in after returning from f , and sends two copies,
one to continue computation in the current function from s′ and q′, and another to check
whether the call to f does indeed transform the state from (s, q) to (s′, q′). Note that the
tree automaton is also guessing the input to the program on-the-fly as it simulates it; since
the tree automaton is guessing only one input sequence on which the program responds, the
methodology above to handle function calls works.

Recall the construction of the automaton in Section 4. The states there are of the form
(s, q, i,m, t). In the new construction, the states will be of the form (s, q, i,m, t, s′, q′, i′,m′, h)
where s, s′ ∈ S, q, q′ ∈ Q, m,m′ ∈ {inp, out}, and t, h ∈ {0, 1}. Intuitively, this state means
that the program is in state (s, q, i,m, t) (as before) and is supposed to return from the
current function at the state (s′, q′,m′, t′) (for some t′ ∈ {0, 1}), and, if h = 1, it must see
in the interim a Büchi final state.

The details of the construction are much more tedious, and we skip the construction here;
a detailed construction can be found in [12]. The intent is however fairly straightforward:
in a state (s, q, i,m, t, ŝ, q̂, î, m̂, h), reading a call to a function f (i.e., a statement of the
form ~b := f(~b′), the automaton will non-deterministically pick a quadruple (s′, q′, i′,m′) and
t′, h′, h′′ ∈ {0, 1}, and will (a) send a copy (s′′, q, i,m, s′, q′, i′,m′) up the tree to the first
statement in the definition of the function f , where s′′ is the appropriate state with formal
parameters updated according to ~b′, and will send another copy to the next statement in the
current function in the state (s′′′, q′, i′,m′, 0, ŝ, q̂, î, m̂, h′′), where h′′ = h+ h′, and s′′′ is the
state obtained from s by replacing ~b with the values returned at state s′. The latter copy
will also have to pass through a transient intermediate Büchi final state if h′′ = 1 (i.e., if
f promises to meet a Büchi final state). Furthermore, we also need to provide a possibility
for the function call f to never return; this will involve sending the current state to f with
the proviso that if it meets a return-statement, then the tree would be rejected. We skip
further details, and conclude with the main theorem for this section:

I Theorem 3. Let B = 〈BG, BL〉 be a finite set of global and local Boolean variables, let F be
a finite set of function-names, with arity functions In and Ret as above, and let NI , NO ∈ N.
Let Aspec be a non-deterministic Büchi automaton over the alphabet {0, 1}NI +NO . Then we
can construct a non-deterministic automaton that accepts precisely the trees corresponding
to recursive reactive programs over 〈B,F, In,Ret, NI , NO〉 that on all executions generate
I/O sequences that are not in L(A). Furthermore, this tree-automaton can be constructed to
be of size O(exp (|Aspec|, |F |, exp(B))). J

Handling visibly pushdown automata specifications:
The results in the above section smoothly extend to specification given as non-deterministic
visibly pushdown Büchi automata on ω-words. [3].

Given a set of function-names F , a visibly pushdown automaton is over a triple alphabet
〈Σc,Σr,Σi〉 of calls, returns, and internal actions, respectively. A program’s behavior is
redefined to be such that its function-calls and returns are made visible. More precisely, let
us assume that Σc = F , Σr = {f | f ∈ F}, and let Σi = {0, 1}NI ∪ {0, 1}NO . Given a run
of a program, we note down not just the input-output sequences it does (which have now
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been split), but also record the calls and returns the program makes. A visibly pushdown
automaton is a pushdown automaton (a finite automaton with a stack) that is restricted so
that it can only push on calls, only pop on returns, and cannot touch the stack on internal
actions. Visibly pushdown automata can specify properties of the runs of a program: for
example, given a pre- and post-condition for a function f , the visibly pushdown automaton
can specify that f computes a function that conforms to it; such a specification is not regular
but is a visibly pushdown language. Again, we assume that specifications are given by a
visibly pushdown automaton that accepts the set of sequences that do not conform to the
specification (visibly pushdown languages are closed under complement [3]).

Since the visibly pushdown automaton’s stack is synchronous with the program’s stack,
the above synthesis procedure for recursive programs can be extended; at a call, the tree
automaton will send an updated state of the specification (on the corresponding call) and
update the automaton state on the corresponding return. We skip the construction, as it is
almost identical to the the previous one save for the update of the specification automaton’s
state. The complexity of the construction also remains the same.

6 Discussion and Future Directions
While we have focussed on imperative programs in this paper, the synthesized artefacts can
be other compact representations in other domains as well: for example, synthesis problems
can be targeted towards functional programs, towards non-reactive programs that compute
one output from one input, or even hardware designs in a high-level hardware description
language, like Verilog, RTL, or SystemC. We hope that the work presented here will inspire
extending existing transition-system synthesis algorithms to artefact-oriented synthesis.

Program Repair: The results we have presented in this paper are extremely well-suited
for repairing programs. Given a program P (with or without recursion) that does not satisfy
a specification ϕ, the program-repair problem is to change P (in certain minimally allowed
ways) so that it satisfies the specification ϕ.

Given a program P , let us assume that the set of repaired versions of the program that
we want to search over is S. Repaired versions of programs may be defined as versions of the
program obtained in certain ways, for example, changing only the conditionals in particular
parts of the program, redefining only a particular function f , or having a hole in a program
that needs to be filled by arbitrary code. Let us further assume that the trees corresponding
to the programs in S defines a regular class of trees (this is a reasonable assumption; many
repair conditions for programs are regular).

We can now synthesize a repair by constructing the class of all programs over the ap-
propriate set of variables and functions (as defined by P and S), and construct a tree
automaton T that accepts the trees of all these programs. The emptiness of the intersection
of the languages of S and T gives the repaired versions of P that meet the specification.

A future direction we see is to apply Boolean program repair (facilitated by this paper)
along with abstraction to repair programs over unbounded data domains.

Designing programs from automata accepting transition systems: One point worth
making is that we can build programs from automata that accept transition systems. More
precisely, assume that a transition-system synthesis procedure builds a tree-automaton A
that accepts precisely the set of all trees that satisfy a particular specification. Then, we
can build a tree automaton B that accepts precisely the set of all trees that correspond
to (non-recursive or recursive) programs whose transition-system unfolding is accepted by
A (we skip the details here). Hence any synthesis procedure that builds a tree-automaton
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accepting unfoldings of transition systems can be turned into a synthesis procedure that
constructs programs. However, the procedures laid out in the previous sections directly syn-
thesize programs, and avoid the extra exponential blow-up that would be incurred by first
building a tree automaton for transition systems followed by one for synthesizing programs.

Distributed synthesis: The above remark on synthesizing programs using a synthesizer
of transition systems tempts us to think that any tree-automata based decision procedure
for the synthesis problem for transition systems can be transformed to a synthesizer for
programs. However, this is not clear for distributed synthesis, where we are required to
synthesize programs at different sites of a distributed architecture with synchronous com-
munication between sites [18].

First, the distributed transition-system synthesis problem is undecidable even in the
simple architecture where there are two disconnected sites P1 and P2, each receiving inputs
from the environment. It is not hard to adapt the undecidability proofs given in [18] to show
that program synthesis for this architecture (as well as all other undecidable architectures
for transition-system synthesis [18]) remain undecidable for program synthesis.

The classic decidable architecture for transition-system synthesis is that of a pipeline ar-
chitecture, where the architecture consists of n processes, P1, . . . , Pn, where only P1 receives
input from its environment, where all processes have outputs, and where there are channels
from Pi to Pi+1, for every 1 ≤ i < n. Pnueli and Rosner showed that this architecture
has a decidable transition-system synthesis problem [18]. Their procedure (slightly modi-
fied) works by first taking the process P1 and generating a tree-automaton accepting the
set of all communication trees over the first channel from P1 to P2 such that there is some
strategy for P1 to generate this tree and there is a strategy for the rest of the system (i.e.,
P2, . . . Pn) to generate outputs by reading this tree so as to satisfy the specification. The
procedure then walks down the pipeline, producing at each point an automaton that accepts
communication trees for the channels that admit a feasible synthesis. When we reach the
last process, the procedure creates a transition system for Pn, and then walks back creating
transition systems for the processes Pn−1 all the way up to P1.

The above decision procedure, however, does not seem adaptable for program synthesis.
We can, of course, synthesize the program for Pn. But fixing a particular program for Pn
restricts the choices we have for other sites. Consequently, when walking back, we may find
that there is no program that satisfies the communication tree that we need for synthesis.

The distributed program-synthesis problem for pipelines is hence an open problem. Other
decidable distributed synthesis problems, such as transition system synthesis for doubly-
flanked pipelines against local specifications [14, 13]), also do not readily adapt to program
synthesis, and remain open questions.
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