
Adding Nesting Structure to Words

Rajeev Alur1 and P. Madhusudan2

1 University of Pennsylvania, USA
2 University of Illinois at Urbana-Champaign, USA

1 Introduction

We propose nested words to capture models where there is both a natural linear
sequencing of positions and a hierarchically nested matching of positions. Such
dual structure exists for executions of structured programs where there is a
natural well-nested correspondence among entries to and exits from program
components such as functions and procedures, and for XML documents where
each open-tag is matched with a closing tag in a well-nested manner.

We define and study finite-state automata as acceptors of nested words. A
nested-word automaton is similar to a classical finite-state word automaton, and
reads the input from left to right according to the linear sequence. However, at
a position with two predecessors, one due to linear sequencing and one due to
a hierarchical nesting edge, the next state depends on states of the run at both
these predecessors. The resulting class of regular languages of nested words has
all the appealing theoretical properties that the class of classical regular word
languages enjoys: deterministic nested word automata are as expressive as their
nondeterministic counterparts; the class is closed under operations such as union,
intersection, complementation, concatenation, and Kleene-∗; decision problems
such as membership, emptiness, language inclusion, and language equivalence
are all decidable; definability in monadic second order logic of nested words cor-
responds exactly to finite-state recognizability; and finiteness of the congruence
induced by a language of nested words is a necessary and sufficient condition for
regularity.

The motivating application area for our results has been software verifica-
tion. Given a sequential program P with stack-based control flow, the execution
of P is modeled as a nested word with nesting edges from calls to returns. Spec-
ification of the program is given as a nested word automaton A, and verification
corresponds to checking whether every nested word generated by P is accepted
by A. Nested-word automata can express a variety of requirements such as stack-
inspection properties, pre-post conditions, and interprocedural data-flow proper-
ties. If we were to model program executions as words, all of these properties are
non-regular, and hence inexpressible in classical specification languages based
on temporal logics, automata, and fixpoint calculi (recall that context-free lan-
guages cannot be used as specification languages due to nonclosure under inter-
section and undecidability of key decision problems such as language inclusion).
In finite-state software model checking, the data variables in the program are
abstracted into a set of boolean variables, and in that case, the set of nested

words generated by the abstracted program is regular. This implies that algo-
rithmic software verification is possible for all regular specifications of nested
words. We believe that the nested-word view will provide a unifying basis for
the next generation of specification logics for program analysis, software model
checking, and runtime monitoring. As explained in Section 3, another potential
area of application is XML document processing.

Related Work

The finite automata on nested words that we study here have been motivated
by our recent work on visibly pushdown automata [6]. A visibly pushdown au-
tomaton is one in which the input alphabet Σ is partitioned into three parts,
〈Σc, Σi, Σr〉 such that the automaton pushes exactly one symbol when reading
symbols from Σc, pops one symbol from the stack when reading a symbol in Σr,
and does not touch the stack when reading letters of Σi. The input word hence
has an implicit nesting structure defined by matching occurrences of symbols in
Σc with symbols in Σr. In nested words, this nesting is given explicitly, and this
lets us define an automaton without a stack 1. We believe that nested words is
a more appealing and simpler formulation of the insights in the theory of visi-
bly pushdown languages. However, in terms of technical results, this paper only
reformulates the corresponding results for visibly pushdown languages in [6].

Visibly pushdown languages are obviously related to Dyck languages, which
is the class of languages with well-bracketed structure. The class of parenthesis
languages studied by McNaughton comes closest to our notion of visibly push-
down languages [16]. A parenthesis language is one generated by a context free
grammar where every production introduces a pair of parentheses that delimit
the scope of the production. Viewing the nesting relation as that defined by the
parentheses, parenthesis languages are a subclass of visibly pushdown languages.
In [16, 11], it was shown that parenthesis languages are closed under union, inter-
section and difference, and that the equivalence problem for them is decidable.
However, parenthesis languages are a strict subclass of visibly pushdown lan-
guages, and are not closed under Kleene-∗.

The class of visibly pushdown languages, was considered in papers related to
parsing input-driven languages [22, 9]. Input-driven languages are precisely visi-
bly pushdown languages (the stack operations are driven by the input). However,
the papers considered only the membership problem for these languages (namely
showing that membership is easier for these languages than for general context-
free languages) and did not systematically study the class of languages defined
by such automata.

1 It is worth noting that most of the algorithms for inter-procedural program analysis
and context-free reachability compute summary edges between control locations to
capture the computation of the called procedure (see, for example [18]).

2 Nested Words

Definition

A nested relation ν of width k, for k ≥ 0, is a binary relation over {1, 2 . . . k}
such that (1) if ν(i, j) then i < j; (2) if ν(i, j) and ν(i, j′) then j = j′, and if
ν(i, j) and ν(i′, j) then i = i′; (3) if ν(i, j) and ν(i′, j′) and i < i′ then either
j < i′ or j′ < j.

Let ν be a nested relation. When ν(i, j) holds, the position j is called a
return-successor of the position i, and the position i is called a call-predecessor
of the position j. Our definition requires that a position has at most one return-
successor and at most one call-predecessor, and a position cannot have both a
return-successor and a call-predecessor. A position is called a call position if
it has a return successor, a return position if it has a call-predecessor, and an
internal position otherwise.

A nested word nw over an alphabet Σ is a pair (a1 . . . ak, ν), for k ≥ 0, such
that ai, for each 1 ≤ i ≤ k, is a symbol in Σ, and ν is a nested relation of width
k. Let us denote the set of nested words over Σ as NW (Σ). A language of nested
words over Σ is a subset of NW (Σ).

Example: Program Executions as Nested Words

Execution of a program is typically modeled as a word over an alphabet Σ.
The choice of Σ depends on the desired level of detail. As an example, suppose
we are interested in tracking read/write accesses to a program variable x. The
variable x may get redefined, for example, due to a declaration of a local variable
within a called procedure, and we need to track the scope of these definitions.
For simplicity, let’s assume every change in context redefines the variable. Then,
we can choose the following set of symbols: rd to denote a read access to x, wr
to denote a write access to x, en to denote beginning of a new scope (such as a
call to a function or a procedure), ex to denote the ending of the current scope,
and sk to denote all other actions of the program. Note that in any structured
programming language, in a given execution, there is a natural nested matching
of the symbols en and ex. Figure 1 shows a possible execution as a word as well as
a nested word. The nesting edges are shown as dotted edges. A vertical path can
be interpreted as a local path through a procedure. There is a natural connection
between nested words and binary trees, and is also depicted in Figure 1. In this
view, at a call node, the left subtree encodes the computation within the called
procedure, while a path along the right children gives the local computation
within a procedure.

In modeling the execution as a word, the matching between calls and returns
is only implicit, and a pushdown automaton is needed to reconstruct the match-
ing. The tree view makes the hierarchical structure explicit: every matching exit
is a right-child of the corresponding entry node. However, this view loses linear-
ity: the left and right subtrees of an entry node are disconnected, and (top-down)

ex

wr

rd

en rd

en
wr

rd

ex

en

exex

wr

rd

sk

wr

rd

en

wr

wr

en

rd

en

wr

rd

ex

ex

en

rd

ex

sk

sk

ex

en

ex

en

wr

rd

wr

Fig. 1. Execution as a word, as a nested word, and as a tree

tree automata need nondeterminism to relate the properties of the subtrees 2.
Our hypothesis is that the nested-word view is the most suitable view for pro-
gram verification. In this view, a program will be a generator of nested words,
and will be modeled as a language of nested words. For acceptors, linearity is
used to obtain a left-to-right deterministic acceptor, while nesting is exploited
to keep the acceptor finite state.

Operations on Nested Words

Analogs of a variety of operations on words and word languages can be defined for
nested words and corresponding languages. We describe a few of the interesting
ones here.

Given two nested words nw1 = (w1, ν1) and nw2 = (w2, ν2), of lengths
k1 and k2, respectively, the concatenation of nw1 and nw2 is the nested word
nw1.nw2 = (w1.w2, ν) of length k1+k2, where ν is the nested relation ν1∪{(k1+
i, k1 + j) | (i, j) ∈ ν2}. The concatenation extends to languages of nested words.

2 It is worth mentioning that in program verification, trees are used for a different pur-
pose: an execution tree encodes all possible executions of a program, and branching
corresponds to the choice within the program. It is possible to define nested trees in
which each path encodes a structured execution as a nested word [3].

The Kleene-∗ operation is defined as usual: if L is a language of nested words
over Σ, then L∗ is the set of nested words nw1.nw2 . . . nwi, where i ∈ N, and
each wj ∈ L.

Given a nested word nw = (a1 . . . ak, ν) of length k, its reverse is nwr =
(ak . . . a1, ν

r) where νr = {(i, j) | (k + 1 − j, k + 1 − i) ∈ ν}.
Finally, we define a notion of insertion for nested words. A context is

a pair (nw, i) where nw is a nested word of length k, and 0 ≤ i ≤ k.
Given a context (nw, i), for nw = (a1 . . . ak, ν), and a nested word nw′, with
nw′ = (w′, ν′), (nw, i) ⊕ nw′ is the nested word obtained by inserting the
nested word nw′ at position i in nw. More precisely, (nw, i) ⊕ nw′ is the
nested word (a1 . . . ai.w

′.ai+1 . . . ak, ν′′), where ν′′ = {(π1(j), π1(j
′)) | (j, j′) ∈

ν}∪{(π2(j), π2(j
′)) | (j, j′) ∈ ν′} where π1(j) is j, if j ≤ i, and |w′|+j otherwise,

and π2(j) = i + j.
Note that our definition of nested word requires one-to-one matching between

call and return positions. It is possible to generalize this definition and allow a
nested relation to contain pairs of the form (i,⊥) and (⊥, j) corresponding to
unmatched call and return positions, respectively. Concatenation of two nested
words would match the last unmatched call in the first word with the first
unmatched return in the second one. Natural notions of prefix and suffix exist
in this generalized definition. The results of this paper can be adapted to this
general definition also.

3 Regular Languages of Nested Words

Automata over Nested Words

A nested word automaton (NWA) A over an alphabet Σ is a structure
(Q, Qin , δ, Qf) consisting of

– a finite set Q of states,
– a set of initial states Qin ⊆ Q,
– a set of final states Qf ⊆ Q,
– a set of transitions 〈δc, δr, δi〉 where

• δc ⊆ Q × Σ × Q is a transition relation for call positions, and
• δi ⊆ Q × Σ × Q is a transition relation for internal positions, and
• δr ⊆ Q × Q × Σ × Q is a transition relation for return positions.

The automaton A starts in an initial state, and reads the word from left to right.
At a call or an internal position, the next state is determined by the current
state and the input symbol at the current position, while at a return position,
the next state can additionally depend on the state of the run just before the
matching call-predecessor. Formally, a run ρ of the automaton A over a nested
word nw = (a1 . . . ak, ν) is a sequence q0, . . . , qk over Q such that q0 ∈ Qin , and
for each 1 ≤ i ≤ k,

– if i is a call position of ν, then (qi−1, ai, qi) ∈ δc;

– if i is a internal position, then (qi−1, ai, qi) ∈ δi;
– if i is a return position with call-predecessor is j, then (qi−1, qj−1, ai, qi) ∈ δr.

The automaton A accepts the nested word nw if it has a run q0, . . . , qk over nw

such that qk ∈ Qf . The language L(A) of a nested-word automaton A is the set
of nested words it accepts.

A language L of nested words over Σ is regular if there exists a nested-word
automaton A over Σ such that L = L(A).

Observe that if L is a regular language of words over Σ, then {(w, ν) | w ∈ L}
is a regular language of nested words. Conversely, if L is a regular language of
nested words, then {w | (w, ν) ∈ L for some ν} is a context-free language of
words, but need not be regular.

The fact that a nested automaton at a return position can look at the state
at the corresponding call position is, of course, crucial to expressiveness as it
allows a run to implicitly encode a stack. In automata theory, such a definition
that allows combining of states is quite common. For example, bottom-up tree
automata allow such a join. Various notions of automata on partial-orders and
graphs are also defined this way [20]. In fact, one can define a more general notion
of automata on nested words by giving tiling systems that tile the positions using
a finite number of tiles with local constraints that restrict the tiles that can occur
at a position, given the tiles in its neighborhood. The notion of neighborhood for
a node in a nested word would be its linear successor and predecessor, and its
return-predecessor or call-successor. It turns out that automata defined in this
fashion also define regular nested languages.

Determinization

A nested-word automaton A = (Q, Qin , (δc, δi, δr), Qf) is said to be deterministic
if |Qin | = 1, and for every a ∈ Σ and q, q′ ∈ Q, |{q′′ | (q, a, q′′) ∈ δc}| = 1
and |{q′′ | (q, a, q′′) ∈ δi}| = 1 and |{q′′ | (q, q′, a, q′′) ∈ δr}| = 1. Thus, a
deterministic nested-word automaton has a single initial state, and the transition
relations δc and δi are functions from Q × Σ to Q, and the transition relation
δr is a function from Q× Q×Σ to Q. Given a nested word nw, a deterministic
nested-word automaton has exactly one run over nw.

Adapting the classical subset construction for determinizing finite automata
over words turns out to be slightly tricky, but possible:

Theorem 1. Given a nested-word automaton A over Σ, there exists a determin-
istic nested-word automaton A′ over Σ such that L(A) = L(A′). Furthermore,

if A has n states, then A′ has at most 2n2

states.

Proof. The deterministic automaton will keep track of summaries of state-
transitions, rather than just the states reached. More precisely, after reading
the first i positions of a nested word nw = (w, ν), if j is the last call position
at or before i (if there is none, choose j = 1), then the automaton will be in a
state S ⊆ Q × Q where S is the set of pairs of states (q, q′) such that A has a

run from q to q′ on reading the nested word starting at position j to i. It hence
starts in the initial state {(q, q) | q ∈ Q}. At an internal position labeled a, the
automaton replaces each pair (q, q′) in the current state by pairs of the form
(q, q′′) such that (q′, a, q′′) ∈ δi. At a call position labeled a, the summary gets
reinitialized: the new state contains pairs of the form (q, q′), where (q, a, q′) ∈ δc.
Consider a return position labeled a, and suppose S denotes the current state
and S′ denotes the state just before the call-predecessor. Then (q, q′) belongs
to the new state, provided there exist states q1, q2 such that (q, q1) ∈ S′ and
(q1, q2) ∈ S and (q2, q1, a, q′) ∈ δr. A state is final if it contains a pair of the
form (q, q′) with q ∈ Qin and q′ ∈ Qf . ⊓⊔

Since the call and internal transition relations are separate, our definition
allows the automaton to check whether the current position is a call or an in-
ternal position. It is easy to verify that this distinction is not necessary for
nondeterministic automata. However, for deterministic automata, removing this
distinction will reduce expressiveness. On the other hand, as the above proof
shows, a deterministic NWA can accept all regular languages of nested words,
even if we restrict the call transition function to depend only on the current
symbol.

Closure Properties

The class of regular nested languages enjoy many closure properties, similar to
the class of regular languages over words.

Theorem 2. The class of regular languages of nested words is (effectively) closed
under union, intersection, complementation, concatenation, Kleene-∗, and re-
verse.

Application: Software Model Checking and Program Analysis

In the context of software verification, a popular paradigm to verification is
through data abstraction, where the data in a program is abstracted using a finite
set of boolean variables that stand for predicates on the data-space [7, 10]. The
resulting models hence have finite-state but stack-based control flow (see Boolean
programs [8] and recursive state machines [1] as concrete instances of pushdown
models of programs). Given a program P modeled as a pushdown automaton, we
can view P as a generator of nested words in the following manner. We choose an
observation alphabet Σ, and associate an element of Σ with every transition of
P . At every step of the execution of P , if the transition of P is a push transition,
then the corresponding position is a call position; if the transition of P does not
update the stack, then the corresponding position is an internal position; and if
P executes a pop transition, then the corresponding position is a return, with a
nesting edge from the position where the corresponding element was pushed. We
assume that P pushes or pops at most one element, and halts when the stack is
empty. Then, the nesting edges satisfy the desired constraints. Let L(P) be the

set of nested words generated by a pushdown model P . Then, L(P) is a regular
language of nested words.

The requirements of a program can also be described as regular languages of
nested words. For instance, consider the example of Section 2. Suppose we want
to specify that within each scope (that is, between every pair of matching entry
and exit), along the local path (that is, after deleting every enclosed matching
subword from an entry to an exit), every write access is followed by a read
access. Viewed as a property of words, this is not a regular language, and thus,
not expressible in the specification languages supported by existing software
model checkers such as SLAM [8] and BLAST [10]. However, over nested words,
there is a natural two-state deterministic nested-word automaton. The initial
state is q0, and has no pending obligations, and is the only final state. The
state q1 denotes that along the local path of the current scope, a write-access
has been encountered, with no following read access. The transitions are: for
j = 0, 1, δi(qj , rd) = q0; δi(qj ,wr) = q1; δi(qj , sk) = qj ; δc(qj , en) = q0; and
δr(q0, qj , ex) = qj . The automaton reinitializes the state to q0 upon entry, while
processing internal read/write symbols, it updates the state as in a finite-state
word automaton, and at a return, if the current state is q0 (meaning the called
context satisfies the desired requirement), it restores the state of the calling
context. (Formally, we need one more state q3 in order to make the automaton
complete; when in state q1 and reading a return, the automaton will go to state
q3, and all transitions from q3 will go to q3.)

Further, we can build specification logics for programs that exploit the nested
structure. An example of such a temporal logic is Caret [4], which extends lin-
ear temporal logic by local modalities such as 〈a〉ϕ, which holds at a call if
the return-successor of the call satisfies ϕ. Caret can state many interesting
properties of programs, including stack-inspection properties, pre-post condi-
tions of programs, local flows in programs, etc. Analogous to the theorem that
a linear temporal formula can be compiled into an automaton that accepts its
models [21], any Caret formula can be compiled into a nested word automa-
ton that accepts its models. Decidability of inclusion then yields a decidable
model-checking problem for program models against Caret [6, 4].

Application: XML Document Processing

Turning to XML, XML documents (which resemble HTML documents in struc-
ture) are hierarchically structured data with open- and close-tag constructs used
to define the hierarchy. An XML document is naturally a nested word, where
each open-tag is matched with its corresponding closing tag. Document type def-
initions (DTDs) and their specialized counterparts (SDTDs) are used to define
classes of documents, using a grammar. The grammar however is special in that
the non-terminals always stand for tags. Consequently, type definitions can be
encoded using nested word automata. Though trees and automata on unranked
trees are traditionally used in the study of XML (see [17, 14] for recent surveys),
nested word automata lend more naturally to describing the document espe-
cially when the document needs to be processed as a word being read from left

to right (as in the case of processing streaming XML documents). The closure
and determinization theorems for nested word automata have immediate conse-
quences in checking type-inclusion and in checking streaming XML documents
against SDTDs. Further, minimization theorems for nested word automata can
be exploited to construct minimal machines to process XML documents [13].

4 Alternative Characterizations

We now show alternate characterizations of the class of regular nested word
languages.

Monadic Second Order Logic of Nested Words

Let us fix a countable set of first-order variables FV and a countable set of
monadic second-order (set) variables SV . We denote by x, y, x′, etc., elements
in FV and by X, Y, X ′, etc., elements of SV .

The monadic second-order logic of nested words is given by the syntax:

ϕ := Qa(x) | x = y | x ≤ y | ν(x, y) | ϕ ∨ ϕ | ¬ϕ | ∃x.ϕ | ∃X.ϕ,

where a ∈ Σ, x, y ∈ FV , and X ∈ SV .
The semantics is defined over nested words in a natural way. The first-order

variables are interpreted over positions of the nested word, while set variables
are interpreted over sets of positions. Qa(x) holds if the letter at the position
interpreted for x is a, x ≤ y holds if the position interpreted for x is before the
position interpreted for y, and ν(x, y) holds if the positions x and y are ν-related.
For example,

∀x.∀y. (Qa(x) ∧ ν(x, y)) ⇒ Qb(y)

holds in a nested word iff for every call labeled a, the corresponding return-
successor is labeled b.

For a sentence ϕ (a formula with no free variables), the language it defines
is the set of all nested words that satisfy ϕ. The corresponding result for visibly
pushdown languages [6] can be used to show that:

Theorem 3. A language L of nested words over Σ is regular iff there is an
MSO sentence ϕ over Σ that defines L.

Finite Congruence

Let L be a language of nested words. Define the following relation on nested
words. For two nested words nw1 and nw2, nw1 ∼L nw2 if for every context
(nw, i), (nw, i) ⊕ nw1 ∈ L iff (nw, i) ⊕ nw2 ∈ L. Note that ∼L is an equiv-
alence relation and a congruence (i.e. if nw1 ∼L nw2 and nw′

1 ∼L nw′

2, then
nw1.nw′

1 ∼L nw2.nw′

2). We can now show that the finiteness of this congruence
characterizes regularity for nested-word languages using the corresponding result
for visibly pushdown languages [5].

Theorem 4. For a set L of nested words, L is regular iff ∼L has finitely many
congruence classes.

Proof. Let L be a regular language of nested words. Let A be a NWA that
accepts L, and let its set of states be Q. Now, define the following relation on
nested words: nw ≈A nw′ if for every q, q′ ∈ Q, A has a run from q to q′ on
nw if and only if A has a run from q to q′ on nw′. It is easy to verify that ≈A

is an equivalence relation and, in fact, a congruence. Clearly there are no more
than |Q|2 congruence classes defined by it. Also, it is easy to see that whenever
nw ≈A nw′, it is the case that nw ∼L nw′. It follows that ∼L is of finite index.

For the converse, assume L is such that ∼L is of finite index, and let us
denote by [nw] the equivalence class of ∼L that a nested word nw belongs to.
Then let A = (Q, Qin , δ, Qf), where:

– Q = {[nw] | nw is a nested word},
– Qin = {[nw0]}, where nw0 is the empty nested word,
– Qf = {[nw] | nw ∈ L}, and
– δ = 〈δc, δi, δr〉 where

• δc = {([nw], a, [(a, ∅)]) | nw ∈ NW (Σ), a ∈ Σ}
• δi = {([nw], a, [nw.a]) | nw ∈ NW (Σ), a ∈ Σ}
• δr([(w1, ν1)], [(w2, ν2)], a) = [w2.w1.a, ν], where, if (w2, ν2).(w1, ν1).a =

(w1.w2, ν
′, then ν = ν′ ∪ {(|w2| + 1, |w2| + |w1| + 1)}.

It can then be proved that A is well-defined and accepts L. ⊓⊔

Visibly Pushdown Word Languages

A nested word over Σ can be encoded as a word over a finite structured alphabet
in the following manner. Let Σ′ = {c, int , r} × Σ. Let the set of well-matched
words over Σ′ (denoted WM (Σ)) be the words generated by the grammar

W := ǫ | (int , a)W | (c, a)W (r, a′) | W.W,

for a, a′ ∈ Σ. Given a nested word (a1 . . . ak, ν) over Σ, we will encode it as the
well-matched word u over Σ′ by setting u = (x1, a1) . . . (xk, ak) where xi = c

if i is a call, xi = r if i is a return, and xi = int otherwise. Let us call this
mapping nw2w : NW (Σ) → WM (Σ). It is also clear that for every well-matched
word over Σ′, there is a unique nested word over Σ that corresponds to it.
Consequently, we can treat languages of nested words over Σ as languages of
words over the structured alphabet Σ′.

A finite automaton on nested words over Σ can be simulated by a pushdown
automaton on the corresponding word over Σ′. The pushdown automaton would
simply push the current state at each call position, and at return positions it
would pop the state to retrieve the state at the corresponding call. Note that
this pushdown automaton is restricted in that it pushes exactly one symbol when
reading symbols of the form (c, a), pops the stack when reading symbols of the
form (r, a), and does not touch the stack when reading symbols (int , a). This
kind of pushdown automaton is called a visibly pushdown automaton [6]. The
automaton accepts if it reaches a final state and the stack is empty.

Proposition 1. A language L of nested words over Σ is regular iff nw2w(L) is
accepted by a visibly pushdown automaton over the structured alphabet Σ′.

Regular Tree Languages

Given a nested word over Σ, we can associate it with a Σ-labeled (ranked)
binary tree that represents the nested word, where each position in the word
corresponds to a node of the tree. Further, the tree will encode the return position
corresponding to a call right next to the call. See Figure 1 for an example of a
tree-encoding of a nested word. Formally, we define the map from nested words
to trees using the function nw2t that maps nested words to sets of trees (we allow
more than one tree to correspond to a nested word since we do not differentiate
the left-child from a right-child when a node has only one child):

– For the empty nested word nw = (ǫ, ν), nw2t(nw) is the empty tree.
– For a nested word nw = (a1.w1, ν) such that the first position is internal,

let nw1 be the nested word corresponding to w1. Then nw2t(nw) is any tree
whose root is labeled a1, the root has one child, and the subtree at this child
is in nw2t(nw1).

– For a nested word nw = (a1.w1.a2.w2, ν) such that (1, |w1| + 2) ∈ ν, let
nw1 = (w1, ν1) be the nested word corresponding to the w1 portion, and
nw2 = (w2, ν2) be the nested word corresponding to the w2 portion. Then
nw2t(nw) is any tree whose root is labeled a1, the subtree rooted at its left-
child is in nw2t(nw1), its right-child u is labeled a2, and u has one child and
the the subtree rooted at this child is in nw2t(nw2).

We can now show that the class of regular nested word languages precisely
corresponds to regular languages of trees:

Theorem 5. A language T of trees is a regular tree language iff the set of nested
words {nw2t−1(t) | t ∈ T } is a regular nested word language.

Note that the closure of nested languages under various operations as stated
in Theorem 2 can be proved using this connection to regular tree languages.
However, the determinization result (Theorem 1) does not follow from the theory
of tree automata.

5 Decision Problems

The emptiness problem (given A, is L(A) = ∅?) and the membership problem
(given A and nw, is nw ∈ L(A)?) for nested word automata are solvable since we
can reduce it to the emptiness and membership problems for pushdown automata
(using Proposition 1).

If the automaton A is fixed, then we can solve the membership problem in
simultaneously linear time and linear space, as we can determinize A and simply
simulate the word on A. In fact, this would be a streaming algorithm that uses at

most space O(d) where d is the depth of nesting of the input word. A streaming
algorithm is one where the input must be read left-to-right, and can be read
only once. Note that this result comes useful in type-checking streaming XML
documents, as the depth of documents is often not large [19, 13]. When A is
fixed, the result in [22] exploits the visibly pushdown structure to solve the
membership problem in logarithmic space, and [9] shows that membership can
be checked using boolean circuits of logarithmic depth. These results lead to:

Theorem 6. The emptiness problem for nested word automata is decidable in
time O(|A|3).

The membership problem for nested word automata, given A and w, can be
solved in time O(|A|3.|w|). When A is fixed, it is solvable (1) in time O(|w|)
and space O(d) (where d is the depth of the nesting in w) in a streaming setting;
(2) in space O(log |w|) and time O(|w|2.log |w|); and (3) by (uniform) Boolean
circuits of depth O(log |w|).

The inclusion problem (and hence the equivalence problem) for nested word
automata is decidable. Given A1 and A2, we can check L(A1) ⊆ A2 by checking
if L(A1) ∩ L(A2) is empty, since regular nested languages are effectively closed
under complement and intersection. It follows from the results in [6] that:

Theorem 7. The inclusion and equivalence problems for nested word automata
are Exptime-complete.

6 Conclusions

Nested words allow capturing linear and hierarchical structure simultaneously,
and automata over nested words lead to a robust class of languages with ap-
pealing theoretical properties. This theory offers a way of extending the expres-
siveness of specification languages supported in model checking and program
analysis tools: instead of modeling a boolean program as a context-free language
of words and checking regular properties, one can model both the program and
the specification as regular languages of nested words.

The theory of regular languages of nested words is a reformulation of the the-
ory of visibly pushdown languages by moving the nesting structure from labeling
to the underlying shape. Besides the results reported here, many results already
exist for visibly pushdown automata: visibly pushdown languages over infinite
words have been studied in [6]; games on pushdown graphs against visibly push-
down winning conditions are decidable [15]; congruence based characterizations
and minimization theorems for visibly pushdown automata exist [5]; and active
learning, conformance testing, and black-box checking for visibly pushdown au-
tomata are studied in [12]. The nested structure on words can be extended to
trees, and automata on nested trees are studied in [3, 2]. Finally, a version of the
µ-calculus on nested structures has been defined in [3], and is shown to be more
powerful than the standard µ-calculus, while at the same time remaining robust
and tractable [3, 2].

Acknowledgments We thank Swarat Chaudhuri, Kousha Etessami, Viraj Kumar,

Leonid Libkin, Christof Löding, Mahesh Viswanathan, and Mihalis Yannakakis for

fruitful discussions related to this paper. This research was partially supported by

ARO URI award DAAD19-01-1-0473 and NSF award CCR-0306382.

References

1. R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, and M. Yannakakis.
Analysis of recursive state machines. ACM Transactions on Programming Lan-

guages and Systems, 27(4):786–818, 2005.
2. R. Alur, S. Chaudhuri, and P. Madhusudan. Automata on nested trees. Under

submission, 2006.
3. R. Alur, S. Chaudhuri, and P. Madhusudan. A fixpoint calculus for local and global

program flows. In ACM POPL, pages 153–165, 2006.
4. R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and

returns. In TACAS, LNCS 2988, pages 467–481, 2004.
5. R. Alur, V. Kumar, P. Madhusudan, and M. Viswanathan. Congruences for visibly

pushdown languages. In ICALP, LNCS 3580, pages 1102–1114, 2005.
6. R. Alur and P. Madhusudan. Visibly pushdown languages. In ACM STOC, pages

202–211, 2004.
7. T. Ball, R. Majumdar, T.D. Millstein, and S.K. Rajamani. Automatic predicate

abstraction of C programs. In AACM PLDI, pages 203–213, 2001.
8. T. Ball and S. Rajamani. Bebop: A symbolic model checker for boolean programs.

In SPIN Workshop, LNCS 1885, pages 113–130, 2000.
9. P. Dymond. Input-driven languages are in log n depth. Inf. Process. Lett.,

26(5):247–250, 1988.
10. T.A. Henzinger, R. Jhala, R. Majumdar, G.C. Necula, G. Sutre, and W. Weimer.

Temporal-safety proofs for systems code. In CAV, LNCS 2404, 526–538, 2002.
11. D.E. Knuth. A characterization of parenthesis languages. Information and Control,

11(3):269–289, 1967.
12. V. Kumar, P. Madhusudan, and M. Viswanathan. Minimization, learning, and

conformance testing of boolean programs. Under submission, 2006.
13. V. Kumar, P. Madhusudan, and M. Viswanathan. Visibly pushdown languages for

XML. Technical Report UIUCDCS-R-2006-2704, UIUC, 2006.
14. L. Libkin. Logics for unranked trees: An overview. In ICALP, LNCS 3580, pages

35–50, 2005.
15. C. Löding, P. Madhusudan, and O. Serre. Visibly pushdown games. In FSTTCS,

LNCS 3328, pages 408–420, 2004.
16. R. McNaughton. Parenthesis grammars. Journal of the ACM, 14(3):490–500, 1967.
17. F. Neven. Automata, logic, and XML. In CSL, pages 2–26, 2002.
18. T. Reps, S. Horwitz, and S. Sagiv. Precise interprocedural dataflow analysis via

graph reachability. In ACM POPL, pages 49–61, 1995.
19. L. Segoufin and V. Vianu. Validating streaming XML documents. In ACM PODS,

pages 53–64, 2002.
20. W. Thomas. On logics, tilings, and automata. In ICALP, LNCS 510, pages 441–

454, 1991.
21. M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information

and Computation, 115(1):1–37, 1994.
22. B. von Braunmühl and R. Verbeek. Input-driven languages are recognized in log

n space. In FCT, LNCS 158, pages 40–51, 1983.

