Certified Program Models for Eventual Consistency

Edgar Pek, Pranav Garg, Muntasir Raihan Rahman, Indranil Gupta, P. Madhusudan
University of Illinois at Urbana-Champaign
{pek1, garg11, mrahman2, indy, madhu}@illinois.edu

Abstract
We present a new approach, certified program models, to establish correctness of distributed protocols. We propose modeling protocols as programs in standard languages like C, where the program simulates the processes in the distributed system as well as the nondeterminism, the communication, the delays, the failures, and the concurrency in the system. The program model allows us to test the protocol as well as to verify it against correctness properties using program verification techniques. The highly automated testing and verification engines in software verification give us the tools needed to establish correctness. Furthermore, the model allows us to easily alter or make new design decisions, while testing and verifying them.

We carry out the above methodology for the distributed key-value store protocols underlying widely used frameworks such as Dynamo [DeCandia et al. 2007], Riak [ria a] and Cassandra [cas b]. We model the read-repair and hinted-handoff table based recovery protocols as concurrent C programs, test them for conformance with real systems, and then verify that they guarantee eventual consistency, modeling precisely the specification as well as the failure assumptions under which the results hold. To the best of our knowledge, this is the first verification technique that shows correctness of these distributed protocols using mostly-automated verification.

1. Introduction
Distributed systems are complex software systems that pose myriad challenges to formally verifying them. While many distributed protocols running in these systems stem from research papers that describe a core protocol (e.g., Paxos), their actual implementations are known to be much more complex (the “Paxos Made Live” paper [Chandra et al. 2007] shows how wide this gap is).

The aim of this paper is to strike a middle-ground in this spectrum by verifying models of actual protocols implemented in systems. We propose a new methodology, called certified programs models, where we advocate that the fairly complex protocols in distributed systems be modeled using programs (programs written in traditional systems languages, like C with concurrency), and certified to be correct against it’s specifications.

The idea is to model the entire distributed system in software, akin to a software simulator of the system. The model captures the distributed processes, their memory state, the secondary storage state, the communication, the delays, and the failures, using non-determinism when necessary.

The salient aspects of this modeling are that it provides:

(a) a modeling language (a traditional programming language) to model the protocols precisely,

(b) an executable model that can be validated for accuracy with respect to the system using testing, where the programmer can write test harnesses that control inputs as well as physical events such as node and network failures, and test using mature systematic testing tools for concurrent software, like CHES [Musuvathi and Qadeer 2007; Musuvathi et al. 2008],

(c) an accurate modeling of specifications of the protocol using ghost state in the program as well as powerful assertion logics, and

(d) a program model that lends itself to program verification techniques, especially using tools such as VCC [Cohen et al. 2009] that automate large parts of the reasoning using logical constraint solvers.

In this paper, we explore the certified model paradigm for modeling, testing, and formally proving properties of core distributed protocols that underlie eventually consistent distributed key-value/NoSQL stores. Eventually consistent key-value stores originated with the Dynamo system from Amazon [DeCandia et al. 2007] and are today implemented in systems such as Riak [ria a], Cassandra [cas b], and Voldemort [vol]. We show how to build program models for them in concurrent C, test them for conformance to the intended properties of the systems by using automated testing tools like CHES [Musuvathi and Qadeer 2007; Musuvathi et al. 2008], and formally verify the eventual consistency property for them using VCC [Cohen et al. 2009], a verification tool for concurrent C.
1.1 Key-value/NoSQL Storage Systems and Eventual Consistency

Key-value/NoSQL stores are on the rise [MRM] and are used today to store Big Data in many companies, e.g., Netflix, IBM, HP, Facebook, Spotify, PBS Kids, etc. rely heavily on the Cassandra key-value store system while Riak is used by BestBuy, Comcast, the NHS UK, and Rovio, the gaming company behind AngryBirds.

Key-value/NoSQL storage systems arose out of the CAP theorem/conjecture, which was postulated by Brewer [Brewer 2000, 2010], and proved by Gilbert and Lynch [Lynch and Gilbert 2002; Gilbert and Lynch 2012]). The conjecture states that a distributed storage system can choose at most two out of three important characteristics—strong data Consistency (i.e., linearizability or sequential consistency), Availability of data (to reads and writes), and Partition-tolerance. Hence achieving strong consistency while at the same time providing availability in a partitioned system with failures is impossible.

While traditional databases preferred consistency and availability, the new generation of key-value/NoSQL systems are designed to be partition-tolerant in order to handle partitions, both within a datacenter as well as across multiple data-centers. As a result, a key-value/NoSQL system is forced to choose between one of either strong consistency or availability—the latter option provides low latencies for reads and writes [Abadi 2012a].

Key-value/NoSQL systems that prefer availability include Cassandra [Lakshman and Malik 2010], Riak [ria a], Dynamo [Decandia et al. 2007], and Voldemort [vol], and support weak models of consistency (e.g., eventual consistency). Other key-value/NoSQL systems instead prefer strong consistency, e.g., HBase [HBa], Bigtable [Chang et al. 2008], and Megastore [Baker et al. 2011], and may be unavailable under failure scenarios.

One popular weak consistency notion is eventual consistency, which roughly speaking, says that if no further updates are made to a given data item, all replicas will eventually hold the same value (and a read would then produce this value) [Decandia et al. 2007; ecb]. Eventual consistency is a liveness property, not a safety property [Bailis and Ghodsi 2013]. The precise notion of what eventual consistency means in these protocols (the precise assumptions under which they hold, the failure models, the assumptions on the environment, etc.) are not well understood, let alone proven. Programmers also do not understand the subtleties of eventually consistent stores; for instance, default modes in Riak and Cassandra can permanently lose writes—this is dangerous, and has been exploited in a recent attack involving BitCoins [bit].

1.2 Contributions of this Paper

The primary contribution of this paper is to precisely reason about the guarantees of eventual consistency that real implementations of key-value stores provide. We model two core protocols in key-value stores as programs, the hinted-handoff protocol and the read-repair protocol, which are anti-entropy mechanisms first proposed in the Amazon Dynamo system [DeCandia et al. 2007], and later implemented in systems such as Riak [ria a] and Cassandra [cas b].

We build certified program models—program models for these protocols written in concurrent C and that are verified for eventual consistency. The program uses threads to model concurrency, where each get/put operation as well as the asynchronous calls they make are modeled using concurrently running threads. The state of the processes, such as stores at replicas and the hinted-handoff tables, are modeled as shared arrays. Communication between processes is also modeled using data-structures: the network is simulated using a set that stores pending messages to replicas, with an independent thread sending them to their destinations. Failures and non-determinism of message arrivals, etc., are also captured programatically using non-determinism (modeled using stubs during verification and using random coin-tosses during testing). In particular, system latency is captured by threads that run in the background and are free to execute anytime, modeling arbitrarily long delays.

In the case of the hinted-handoff protocol, we prove that this protocol working alone guarantees eventual consistency provided there are only transient faults. In fact, we prove a stronger theorem by showing that for any operation based (commutative) conflict-free replicated data-type implementing a register, the protocol ensures strong eventual consistency—this covers a variety of schemes that systems use, including Riak and Cassandra, to resolve conflict when implementing a key-value store. Strong eventual consistency guarantees not only eventual consistency, but that the store always contains a value which is a function of the set of updates it has received, independent of the order in which it was received. We prove this by showing that the hinted-handoff protocol (under only transient failures) ensures eventual delivery of updates—when this is combined with an idempotent and commutative datastructure like CMRDT [Shapiro et al. 2011c,a] , it ensures strong eventual consistency. We model the eventual delivery property in the program model using a ghost taint that taints a particular write at a coordinator (unbeknownst to protocol), and asserts that the taint propagates eventually to every replica. Like eventual consistency, eventual delivery is also a liveness property. It is established by finding a ranking function that models abstractly the time needed to reach a consistent state, and a slew of corresponding safety properties to prove this program correct.

For the read-repair protocol, the literature and documentation of the above systems indicated that a read-repair (issued during a read) would bring the nodes that are alive to a consistent state eventually. However, while attempting to prove this property, we realized that no invariant proved this
property, and that it is false. In fact, a single read is insufficient to reach eventual consistency. Hence we prove a more complex property: beyond a point, if a set of nodes are alive and they all stay alive, and if all requests stop except for an unbounded sequence of reads to a key, then the live nodes that are responsible for the key will eventually converge. In other words, one read is not enough for convergence, and the system needs a long series of reads.

Note that the certification that the program models satisfy their specification is for an unbounded number of threads, which model an unbounded number of replicas, keys, values, etc., model arbitrarily long input sequences of updates and reads to the keys, and model the concurrency prevalent in the system using parallelism in the program. The verification is hence a complete verification as opposed to several approaches in the literature which have used under-approximations in order to systematically test a bounded-resource system [Liu et al. 2014; Newcombe et al. 2015; Newcombe 2014; Merz et al. 2011]. In particular, Amazon has reported modeling of distributed protocols using TLA, a formal system, and used model-checking (systematic testing) on bounded instances of the TLA system to help understand the protocols, check their properties, and help make design decisions. Our results, in contrast, model protocols using C programs, which we believe are much simpler for systems engineers to use to model protocols, and being executable, is easy to test using test harnesses. Most importantly, we have proved the entire behavior of the protocol correct (as opposed to the work using TLA) using the state-of-the-art program verification framework VCC [Cohen et al. 2009] that automates several stages of the reasoning.

The paper is structured as follows. Section 2 describes key-value stores, eventual consistency, and the main anti-entropy protocols that are implemented in systems and that we study in this paper (readers familiar with these topics can choose to skip this section). We describe our main results in Section 3, where we describe the precise property we prove for the protocol models as well as some properties that we expected to be initially true, but which we learned were not true through our experience. Section 4 describes our models of protocols using programs in detail, including the testing processes we used to check that our model was reasonable. The entire verification process, including background on program verification, the invariants and ranking functions required for proving the properties, etc., are given in Section 5. We also give an account of our experience in building certified program models in Section 6. Section 7 describes related work and Section 8 concludes with interesting directions for future work.

2. Background

In this section we describe the read and write paths involved in a key-value store, and the anti-entropy mechanisms which are used to implement eventual consistency by reconciling divergent replicas. Readers familiar with key-value store system internals can skip this section without loss of continuity.

2.1 Key-value stores

Key-value stores have a simple structure. They store pairs of keys and values, and they usually have two basic operations: get(key) for retrieving the value corresponding to the key, and put(key, value) for storing the value of a particular key. Key-value stores typically use consistent hashing [Karger et al. 1997] to distribute keys to servers, and each key is replicated across multiple servers for fault-tolerance. When a client issues a put or get operation, it first interacts with a server (e.g., the server closest to the client). This server plays the role of a coordinator: it coordinates the client and replica servers to complete put and get operations. The CAP theorem [Brewer 2000] implies that under network partitions (the event where the set of servers splits into two groups with no communication across groups), a key-value store must choose either consistency (linearizability) [Herlihy and Wing 1990] or availability. Even when the network is not partitioned, the system is sometimes configured to favor latency over consistency [Abadi 2012b]. As a result, popular key-value stores like Apache Cassandra [Lakshman and Malik 2010] and Riak [riak] expose tunable consistency levels. These consistency levels control the number of processes the coordinator needs to hear from before returning and declaring success on reads and writes. For instance, a write threshold of one, would allow the system to return with success on a write when it has successfully written to just one replica. When the sum of read and write thresholds is greater than the number of replicas, the system will ensure strong consistency. Consistency levels weaker than quorum are the most popular since they achieve low latency (e.g., Amazon [U09]).

2.2 Eventual Consistency

In general, a consistency model can be characterized by restrictions on operation ordering. The strongest models, e.g., linearizability [Herlihy and Wing 1990] severely restrict the possible orderings of operations that can lead to correct behavior. Eventual consistency lies at the opposite end of the spectrum; it is one of the weakest consistency model. Informally, it guarantees that, if no further updates are made to a given data item, reads to that item will eventually return the same value [Vogels 2009]. Thus until some undefined time in the future when the system is supposed to converge, the user can never rule out the possibility of data inconsistency. Despite the lack of any strong guarantees, many applications have been successfully built on top of eventually consistent stores. Most stores use some variation of anti-entropy [De-

1 We use both read/write and get/put terms to mean data fetch and data update operations.
mbers et al. 1987] protocols to implement eventual consistency mechanisms.

2.3 Anti-entropy Protocols

To achieve high availability and reliability, key value stores typically replicate data on multiple servers. For example, each key can be replicated on \(N \) servers, where \(N \) is a configurable parameter. In the weakest consistency setting (consistency level that has read and write thresholds of one), each get and put operation only touches one replica (e.g., the one closest to the coordinator). Thus in the worst case scenario, if all puts go to one server, and all gets are served by a different server, then the replicas will never converge to the same value. To ensure convergence to the same value, key-value stores like Dynamo [DeCandia et al. 2007], Apache Cassandra [cas b], and Riak [ria a] employ anti-entropy protocols. An anti-entropy protocol operates by comparing replicas and reconciling differences. The three main anti-entropy protocols are: (1) Read-Repair (RR), (2) Hinted-Handoff (HH), and (3) Node-Repair (NR). While the first two are real-time protocols involved in the read and write paths respectively, the third one is an off-line background maintenance protocol, which runs periodically (e.g., during non-peak load hours) to repair out-of-sync nodes (e.g., when a node rejoins after recovering from a crash). In this paper we are only concerned with the real-time anti-entropy protocols. Node-repair is mostly an offline process whose correctness lies solely in the semantics of the merge, so we do not consider it in this paper.

2.3.1 Read-Repair (RR)

Read-repair [DeCandia et al. 2007] is a real-time anti-entropy mechanism that ensures that all replicas have (eventually) the most recent version of a value for a given key. In a typical read path, the coordinator forwards read requests to all replicas, and waits for a consistency level (CL out of \(N \)) number of replicas to reply. If read-repair is enabled, the coordinator checks all the read responses (from the nodes currently alive), determines the most recent read value\(^2\), and finally pushes the latest version to all out of date replicas.

2.3.2 Hinted-Handoff (HH)

Unlike read-repair, hinted-handoff [DeCandia et al. 2007] is part of the write path. It offers full write availability in case of failures, and can improve consistency after temporary network failures. When the coordinator finds that one of the replicas responsible for storing an update is temporarily down (e.g., based on failure detector predictions), it stores a hint meta-data for the down node for a configurable duration of time. Once the coordinator detects that the down node is up, it will attempt to send the stored hint to that recovered node. Thus hinted-handoff ensures that no writes are lost, even in the presence of temporary node failures. In other words this mechanism is used to ensure that eventually all writes are propagated to all the replicas responsible for the key.

3. Characterizing and proving eventual consistency

The goal of this paper is to prove eventual consistency of the hinted-handoff and read-repair protocols that systems like Cassandra and Riak implement, delineating precisely the conditions under which they hold. Our effort spanned a period of 15 months, with about 6 person months of effort for modeling and verification. In order to accomplish this task, we abstract away from the particular instantiation of these protocols in these systems, and also abstract away from the various options they provide to users to modify the behavior of the system.

For instance, in Riak, using one set of options, every write is tagged with a vector clock at the client, and every replica responsible for it maps it to a set of values, one for each last concurrent write that it has received. When a read is issued, Riak can return the set of all last concurrently written values to it (these values are called “siblings” in Riak). However, in Cassandra, vector clocks are not used; instead each client labels every write with a timestamp, and despite there being drift amongst the clocks of clients, each replica stores only the last write according to this timestamp. Further, these policies can be changed; for instance in Riak, a user can set options to mimic the Cassandra model.

We will capture these instantiations by generalizing the semantics of how the store is maintained. For the hinted-handoff protocol, we prove eventual consistency under the assumption that the stores are maintained using some idempotent operation-based commutative replicated data-type (CRDT) [Shapiro et al. 2011a,b] that implements a register, while for read-repair, we prove eventual consistency assuming an arbitrary form of conflict resolution.

Failure Models

Let us first discuss the failure models we consider, which are part of the assumptions needed to prove properties of protocols. We consider two failure modes:

- **Transient failure**: Nodes or network edges can fail, but when they come back, they preserve the state at which they crash and resume from there.
- **Permanent failure**: Nodes or network edges can fail, and when they come back, they have lost main memory and start with some default store.

3.1 Properties of the Hinted-Handoff Protocol

The hinted-handoff protocol is an opportunistic anti-entropy mechanism that happens during writes. When a write is issued, and the asynchronous call to write to certain replicas
fail (either explicitly or due to a time-out), the coordinator
knows that these replicas could be out of sync, and hence
stores these update messages in a hinted-handoff table lo-
cally to send them later to the replicas when they come back
alive. However, if there is a memory crash (or a permanent
failure), the hinted-handoff table would be lost, and all repli-
cas may not receive the messages. In practice, the read-repair
(and node-repair) protocols protect against permanent fail-
ures.

Commutative Replicated Data Type for Registers: Our
main abstraction of the key-value store is to view the
underlying protocol as implementing a register using an
operation-based conflict-free replicated datatype (CRDT) [Shapiro
et al. 2011c,b].

As in [Shapiro et al. 2011a], register is a memory cell
storing an opaque content. Register can be queried using a
read operation \(get \) and, updated with a value \(v \) using a
write operation \(put(v) \). The semantics of non-concurrent \(put \)
operations corresponds to the expected sequential semantics.
However, concurrent \(put \) operations do not commute, the
two common conflict resolution approaches that assure that
register is CRDT are (a) one operation takes precedence over
the other (i.e., LWW register) and (b) both operations are
retained (i.e., MV register).

When implementing a simple key-value store, the vector-
clock based updates in Riak and the simpler time-stamp
based update in Cassandra can in fact be both seen as idem-
potent CmRDTs, the former being a multi-valued (MV) reg-
ister, and the latter being a last write wins (LWW) register
(see [Shapiro et al. 2011a]). (However, since a global wall-
clock time is not available, in general, this strategy in Cas-
sandra can lose updates [may]). The CmRDTs for both Last
Write Wins (LWW) and Multi-valued (MV) registers are in
fact idempotent—the systems tags each write with a times-
tamp, and the conflict-resolution will ignore the future deliv-
eries of a message with same time-stamp (see [Shapiro et al.
2011a], Section 3.2).

We also assume another property of these CmRDTs,
namely idempotency— we assume that all messages are
tagged with a unique id, and when a message is delivered
multiple times, the effect on the store is the same as when
exactly one message is delivered. Let us call these idempot-
ent CRDTs\(^3\).

The main property we prove about the hinted-handoff
protocol is a property called *eventual delivery*, which says
that every successful write eventually gets delivered to every
replica at least once (under assumptions of kinds of failure,
assumptions on replicas being eventually alive, etc.). Hence,
instead of eventual consistency, we argue eventual deliv-
ery, which in fact is the precise function of these protocols,
as they are agnostic of the conflict resolution mechanism
that is actually implemented in the system. Furthermore,
assuming that each replica actually implements an idempotent
operation-based CmRDT register, and update procedures for
these datatypes are terminating, eventual delivery ensures
eventual consistency, and in fact strong eventual consist-
ency [Shapiro et al. 2011b] (the proof in [Shapiro et al.
2011b] proves that when there are reliable broadcast chan-
nels that ensure messages are delivered exactly once, Cm-
RDTs give strong eventual consistency; this proof is read-
ily adapted to show that when messages are delivered at
least once, idempotent CmRDTs give strong eventual con-
sistency). Strong eventual consistency guarantees not only
eventual consistency, but that the store always contains a
value that is a function of the set of updates it has received,
independent of the order in which it was received.

Our first result is that a system running only hinted-
handoff-based repair provides eventual delivery of updates
to all replicas, provided there are only transient faults.

Result 1. The hinted-handoff protocol ensures eventual de-
livery of updates to all replicas, provided there are only tran-
sient faults. More precisely, if there is any successful write,
then assuming that all replicas recover at some point, and
reads and write requests stop coming at some point, the write
will get eventually propagated to every replica.

We formally prove the above result (and Result 2 men-
tioned below) for arbitrary system configurations using pro-
gram verification techniques on the program model (see Sec-
tion 4 and Section 5 for details).

The following is an immediate corollary from the prop-
ties of eventual delivery and idempotent CRDTs:

Corollary 1. A system following the hinted-handoff pro-
tocol, where each replica runs an operation-based idem-
potent CRDT mechanism that has terminating updates, is
strongly eventually consistent, provided there are only tran-
sient faults.\(^4\)

3.2 Properties of the Read-repair Protocol

Our second result concerns the read-repair protocol. Read-
repair is expected to be resilient to memory-crash failures,
but only guarantees eventual consistency on a key provided
future reads are issued at all to the key. Again, we abstract
away from the conflict resolution mechanism, and we as-
sume that the coordinator, when doing a read and getting
different replies from replicas, propagates some consistent
value back to all the replicas. This also allows our result to
accommodate anti-entropy mechanisms [Demers et al. 1987]

\(^3\)Standard definitions of Operation-based CRDTs do not guarantee
idempotency— instead they assume the environment delivers every mes-
source precisely once to each replica (see [Shapiro et al. 2011b], text after
Definition 5). Note that state-based CRDTs are defined usually to be idem-
potent.

\(^4\) The corollary may lead us to think that we can use any operation-based
CmRDT for counters at stores to obtain strong eventually consistent coun-
ters in the presence of transient failures. However, CmRDTs for counters are
in fact *not* idempotent (and the CmRDT counters in [Shapiro et al. 2011b]
assume that the system will deliver messages precisely once, which hinted
handoff cannot guarantee).
that are used instead of read-repair, in a reactive manner after a read. Note that this result holds irrespective of the hinted-handoff protocol being enabled or disabled.

It is commonly believed [Ellis] that when a read happens, the read repair will repair the live nodes at the time of the read (assuming they stay alive), bringing them to a common state. We modeled the read-repair protocol and tried to prove this property, but we failed to come up with appropriate invariants that would ensure this property. This led us to the hypothesis that the property may not be true.

To see why, consider the time-line in Figure 1. In this scenario, the client issues a put request with the value 2, which is routed by the coordinator to all three replicas– A, B, and C (via messages \(w_A(2), w_B(2),\) and \(w_C(2)\)). The replica C successfully updates its local store with this value. Consider the case when the write consistency is one and the put operation succeeds (inspite of the message \(w_B(2)\) being lost and the message \(w_A(2)\) being delayed). Now assume that the replica C crashes, and the last write (with value 2) is in none of the alive replicas– A and B. If we consider the case where B has the latest write (with value 1) amongst these two live nodes, a subsequent read-repair would write the value 1 read from B to A’s store (via message \(rrw_A(1)\) in Figure 1). But before this write reaches A, A could get a pending message from the network \(w_A(2)\) and update its value to a more recent value– 2. In this situation, after replica A has updated its value to 2, the two alive replicas \(A\) and \(B\) do not have consistent values. Due to the lack of hints or processes with hints having crashed \(B\) may never receive the later write (message \(w_B(2)\)).

We therefore prove a more involved property of read-repair:

Result 2. After any sequence of reads and writes, if all operations stop\(^5\) except for an infinite sequence of reads of a key, then assuming the set \(R\) of replicas are alive at the time of the first such read and thereafter, the replicas in \(R\) will eventually converge to the same value.

We prove the above result also using program verification on the program model. Intuitively, as long as an indefinite number of reads to the key happen, the system will ensure that the subset of live replicas responsible for the key converge to the same value, eventually. A read-repair may not bring the live replicas to sync if there are some pending messages in the system. However, since there is only a finite amount of lag in the system (pending messages, pending hints, etc.), and once the system is given enough time to finish its pending work, a read-repair will succeed in synchronizing these replicas.

3.3 Read-repair and CRDT

It is tempting to think that one could implement any CRDT and reach eventual consistency of the CRDT store using solely read-repair, similar to the Corollary we obtained for Result 1. However, this is tricky when clients send operations to do on the CRDT and the conflict-resolution in read-repair happens using state-based merges.

For instance, assume that we implement a counter CRDT, where state-merges take the maximum of the counters, and operations increment the counter [Shapiro et al. 2011b]. Then we could have the following scenario: there are 7 increments given by clients, and the counter at replica A has the value 7 and replica B has 5 (with two increments yet to reach B), and where a read-repair merges the values at these replicas to 7, after which the two pending increments arrive at B incrementing it to 9 (followed by another read-repair where B also gets updated to 9). Note that consistency is achieved (respecting our Result 2), but the counter stores the wrong value.

Systems such as Riak implement CRDTs [ria b] using these underlying protocols by not propagating operations (like increments) across replicas, but rather increment one replica, and pass the state to other replicas, and hence implement a purely state-based CRDT [Ria].

4. Program Models for Protocols

In this section we describe how we model the anti-entropy protocols used in eventually consistent key-value stores. The architecture of our model is depicted in Figure 2.

Our model consists of several methods \((get, put, write, read)\, etc.\) for each replica, that run concurrently as threads, make asynchronous calls to each other, and keep

\(^5\)The assumption that updates stop coming is the original definition of eventual consistency [Terry et al. 1995]. There are other formalizations that do not assume that updates stop coming [Sivaramakrishnan et al. 2015]; however, it turns that that read-repair protocol does not satisfy eventual consistency without this assumption.
The methods in our model include:

- The get and put methods at coordinators that forms the interface to clients for reading and writing key-values.
- An internal method handoff_hint for each replica that runs all the time and removes hints from the hinted-handoff table and propagates them to the appropriate replicas (provided they are alive).
- An internal method read_repair which is part of the read path, waits for all the replicas to reply, and on detecting replicas with inconsistent values writes the consistent value to those replicas.
- Internal methods read_ls and write_ls, that read from and write to the local stores (provided they are alive).
- An internal method network that runs all the time and delivers messages in the pending store to replicas.
- An internal method permanent_failures, which when permanent failure is modeled, runs all the time, and can remove elements from the pending set (modeling loss of messages), restore any local store to its default value (modeling store crashes), and destroy hinted-handoff tables.

We use the following data-structures: (a) an array LocalStore[] that stores the local store for each replica and each key that the replica maintains, (b) an array HintStore[] that stores, for each replica, the set of hints stored at the replica, (c) an array PendingStore[] that stores a set of pending messages on the network between replicas.

Note that the modeling of these methods using fine-grained concurrency ensures arbitrary interleaving of these processes as well as arbitrary delays in them. Also, transient failures, where nodes fail but resume later with the correct state, can be seen as delays in processes, and hence are captured in this concurrency model. The thread that delivers messages in the pending set models arbitrary delays in the network.

The read_ls and write_ls methods are modeled abstractly as idempotent CRDTs by defining them as stubs which maintain properties. When testing, these methods need to be instantiated to particular conflict-resolution strategies (like MV and LWW).

Modeling the get operation: When a client issues a get request for a key, in our model the request is routed to the coordinator that is determined for this key according to an abstract map (our verification hence works for all possible hashing schemes). Every key-value datum is replicated across multiple nodes, where the number of nodes that contain the key-value datum is determined by a replication factor. The coordinator maintains a preference list of replicas that contain data values for keys that are mapped to it. Along the read path, the coordinator asynchronously issues the read request to all replica threads (an asynchronous call to a replica is depicted in Figure 2 as an arrow from the get method to read_ls). As shown in Figure 2, the coordinator blocks for a non-deterministic amount of time or until it receives enough responses (the arrow directed from read_ls to get) as specified by the read consistency level R. On receiving responses from R replicas, it returns the read value(s) to the client. If read repair is enabled, the coordinator also spawns a background thread (depicted as a call to read_repair from get in Figure 2) which will wait for responses from the other replicas (it already knows about re-
sponses from the R replicas) for a non-deterministic amount of time. This thread determines the most recent data value of all the values stored in various replicas, and writes it to the replicas with stale values.

Modeling the put operation: When a client issues a put request to store a key-value pair, the request is routed to the appropriate coordinator, as explained before. The coordinator asynchronously issues write requests to all replica threads in its preference list. The coordinator then blocks for a non-deterministic amount of time or until it receives enough responses, as specified by the write consistency level W. To model arbitrary network delays or failures of the replicas, the write operations to these replicas are inserted by the coordinator into the pending store data structure (in Figure 2 this is depicted as an arrow from put to the pending_store). If the coordinator receives responses from W replicas, it informs the client about the successful put operation.

Modeling the network: A background network thread models arbitrary network delays or failure scenarios as it removes a write operation from the pending store data structure and, non-deterministically, either updates the local store of the appropriate replica with the write or simply loses the operation. When the hinted-handoff protocol is enabled and read-repair is disabled, we assume that the write operations are not lost. In this scenario, when losing/removing the write operation from the pending store, the network thread inserts the operation as a hint in the hinted-handoff table of the appropriate coordinator. The permanent_failures thread does not execute in this case and data in the global data structures is not lost.

Testing Program Models: Once we devised a model of the anti-entropy protocols, we tested it to make sure that it corresponds to actual systems. In our testing model we provide implementations for the stubs that model failure and non-determinism in message arrivals. In particular, for testing we use random coin-tosses instead of non-deterministic choices present in the verification model. Besides this, we also provide concrete implementations for conflict-resolution strategies for operations on CRDTs based on the last write wins (LWW) and vector clocks (MV).

We wrote a test harness that arbitrarily issues put and get operations for various key-value pairs. We then checked if the results of these operations can be realized by the actual eventually consistent key-value stores. We also used CHESS [Musuvathi et al. 2008], which is a systematic testing tool for concurrent programs, to systematically enumerate all possible thread schedules. Using CHESS we were able to ensure that our model realized strange but possible behaviors of the eventually-consistent stores.

We exhaustively tested a number of possible scenarios. Here, we discuss a configuration with three replicas, where the write consistency level is set to two, and the read consistency level is set to one. One interesting scenario is where the client successfully performs a write operation on a key with a value 0, followed by an unsuccessful write on the same key with a value 1. A subsequent read of the key returns the value 1. This is a nonintuitive scenario, but it can manifest in a real system because failures are not guaranteed to leave the stores unaffected and an unsuccessful write can still write to some of the replicas.

In another scenario, the client successfully performs two consecutive write operations to a key with values 0 and 1. Subsequently, one read returns the value 1, while a subsequent read returns the stale value 0. This behavior can happen in a real system where the client gets staler values over time. In particular, this scenario occurs when the two replicas store the value 1 after the second write operation (remember the write consistency level is two) and the third replica still stores the stale value 0.

Finally, we consider a scenario where there are four consecutive successful writes to a key with values 0, 1, 2, and 3. (As above, consider a configuration with three replicas but where both read and write consistency levels are set to one.) If the subsequent two reads for the same key return values 2 followed by 1, then a following third read cannot return the value 0. This scenario cannot happen because the three replicas must have values 1, 2, and 3 at the time of the last read (the reader is invited to work this case out on paper).

We used CHESS to confirm the realizability of the first three scenarios, and infeasibility of the last scenario. CHESS took from less than a second to up to 10 minutes to exhaustively explore all interleavings corresponding to these four test harnesses. We were also able to observe some of these scenarios in a real installation of Cassandra.

5. Verification of Anti-entropy protocols

In this section we first describe our verification methodology, followed by our verification of the hinted-handoff and read-repair anti-entropy protocols.

5.1 Verification Methodology

Verification process: We use the deductive verification style for proving programs correct. For sequential programs, this style is close to Hoare logic style reasoning [Hoare 1969; Apt 1981]. It proceeds by the programmer annotating each method with pre/post conditions and annotating loops with loop invariants in order to prove assertions in the program. Furthermore, in order to prove that functions terminate, the user provides ranking functions for loops (and recursive calls) that are mappings from states to natural numbers that must strictly decrease with each iteration [Turing 1989; Apt 1981]. Reasoning that these annotations are correct is done mostly automatically using calls to constraint solvers (SMT solvers), with very little help from the user.

There are several different approaches to verify concurrent programs, especially for modular verification. We use VCC [Cohen et al. 2009] tool to verify our models. VCC is a
verifier for concurrent C programs6. The basic approach we take to verify our models is to treat each concurrent thread as a sequential thread for verification purposes, but where every access to a shared variable is preceded and succeeded by a havoc that entirely destroys the structures shared with other threads. However, this havoc-ing is guarded by an invariant for the global structures that the user provides. Furthermore, we check that whenever a thread changes a global structure, it maintains this global invariant. This approach to verification is similar to rely-guarantee reasoning [Jones 1983], where all threads rely and guarantee to maintain the global invariant on the shared structures.

Specifications: Another key aspect of the verification process is writing the specification. Though the specification is written mainly as assertions and demanding that certain functions terminate, specifications are often described accurately and naturally using ghost code [Apt 1981; Cohen et al. 2009]. Ghost code is code written purely for verification purposes (it does not get executed) and is written as instructions that manipulate ghost variables. It is syntactically constrained so that real code can never see the ghost state. Hence this ensures that the ghost code cannot affect the real code.

In our framework, we use ghost code to model the taint-based specification for eventual delivery (see Section 5.2). It is important that the protocol does not see the tainted write, because we do not want a flow of information between the executable program and the specification. We also use ghost code to maintain mathematical abstractions of concrete data-structures (like the set associated with an array, etc.).

Testing annotations: We extensively used testing, especially in early stages, to assert invariants that we believe held in the system at various points in the code. Prior to verification, which requires strong inductive invariants, testing allowed us to gain confidence in the proof we were building (as well as the model we were constructing). These invariants then were the foundation on which the final proof was built upon.

5.2 Verifying the hinted-handoff protocol

As explained in Section 3, verification that hinted-handoff protocol maintains strong eventual consistency under transient failures and for idempotent operation-based CRDT reduces to verification of eventual delivery (Result 1 in Section 3.1). Recall that, eventual delivery is the property that every successful write eventually gets delivered to every replica at least once.

Taint-based specification of eventual delivery: We model eventual delivery using a ghost field taint, that records a particular (exactly one) write operation issued to the coordinator.

We now assert the specification that this taint will eventually propagate to each replica’s local store. Intuitively, the write that was chosen to be tainted will taint the value written, and this taint will persist as the value moves across the network, including when it is stored in the hint store and the pending store, before being written to the local store. Taints are persistent and will not disappear once they reach the local store. Hence demanding that the local stores eventually get tainted captures the property that the chosen write is eventually delivered at least once to every local store.

Note that the tainted values are ghost fields which the system is agnostic to, and hence proving the above property for an arbitrary write in fact ensures that all writes are eventually delivered.

Proving the taint-based specification: To prove the specification we introduce several ghost fields: (a) $ls_{\text{tainted_nodes}}$, the set of replicas that have updated their local store with the tainted write, (b) $hs_{\text{tainted_nodes}}$, the set of replicas for which the coordinator has stored the tainted write operation as a hint in its hint store, and (c) $ps_{\text{tainted_nodes}}$, the set of replicas for which the tainted write has been issued, but its delivery is pending on the network.

We add ghost-code to maintain the semantics of the taint in various methods, including put, network and handoff_hint. Every time any of these methods transfers values, we ensure that the taints also get propagated. At local stores, when a value is written, the value at the local store is tainted if it either already had a tainted value or the new value being written is tainted; otherwise, it remains untainted. (In fact, the taint-based store can itself be seen as an operation based CRDT which never loses the taints.) Furthermore, the ghost fields described above, which are set abstractions of the related stores, are also kept up to date using ghost updates.

For eventual delivery we want to prove that, when all replicas remain available and all the read/write operations have stopped, the tainted write operation is eventually propagated to the local stores of all the replicas.

We prove eventual taintedness of stores by proving a global termination property. We model the point where inputs stop arriving using variable stop and by making all nodes alive, and this disables the methods get and put. We then prove, using a ranking function, that the model will eventually reach a state where all nodes corresponding to the tainted key are tainted.

We first specify a (safety) invariant for the shared state and specify a ranking function on the state for arguing eventual taintedness. The invariant of the shared state asserts that for every replica responsible for the tainted key, either its local store is tainted or there is a tainted write pending in the network for it, or there is a hint in the corresponding coordinator which has a tainted write for it. More precisely, for each replica responsible for the tainted key, we demand

6 Even though our model and invariants apply to unbounded number of instances, verification of C programs, strictly speaking, assumes integer manipulations to MAX_INT (i.e., typically 2^{31} on 32-bit architectures).
that the replica is present in one of the ghost-sets, namely, \(ps\text{_tainted_nodes } , hs\text{_tainted_nodes } , \text{ and ls_tainted_nodes} \):

\[
\forall r (r \in ps\text{_tainted_nodes } \lor r \in hs\text{_tainted_nodes } \lor r \in ls\text{_tainted_nodes })
\]

where the quantification is over replicas \(r \) responsible for the tainted key.

The ranking function a function that quantifies, approximately, the time it would take for the system to reach a consistent state. In our case, the ranking function \(\text{ [hint_store]+2 \cdot [pending_store] }\) suffices. Note that we prove that the rank decreases every time a method executes. Intuitively, a taint that is pending in the network may take two steps to get to the local store, since it may first be transferred to the hint-store and then to the local store, while tainted messages in the hint-store go in one step to the local store. Furthermore, we assert and prove that when the rank is zero, all nodes corresponding to the tainted key are tainted.

5.3 Verifying the read-repair protocol

As explained in Section 3, we want to verify that the read-repair protocol maintains eventual consistency in the presence of permanent failures (as stated in Result 2 in Section 3.2). We prove this result both when hinted-handoff is turned on as well as when it is disabled (we capture whether hinted-handoff is enabled/disabled using a macro directive, and prove both versions correct). For simplicity of presentation we only explain here the case when the hinted handoff protocol is disabled.

Recall that permanent failures could: (a) modify the local store by setting them to default values, (b) remove an operation from the pending store, and (c) destroy the hint store.

For eventual consistency we want to prove that when all the write operations have successfully returned to the client, then after only a finite number of read operations on a key, the read-repair mechanism ensures that the set of \(R \) available replicas will converge.

When the writes stop and only the read of a particular key occurs (infinitely often), we disallow the scheduling of \(\text{ put } \) and disallow \(\text{ get } \) on all but the tainted key, and also bring all nodes alive and disable the methods that model failure of nodes.

We verify eventual consistency again by specifying safety invariants and a ranking function. The main component of the ranking function is the size of the pending store, \(|\text{ pending_store }| \), which decreases whenever the network executes. Intuitively, once the pending messages in the network get delivered, the subsequent execution of \(\text{ get } \) will issue a read-repair that will bring the nodes of the tainted key to convergence.

5.4 Verification Statistics

We performed the verification on an Intel CORE-i7 laptop with 8 GB of RAM, running Windows 8 and using Visual Studio 2012 with VCC v2.3 as a plugin. Our verification model consists of about 1500 lines of code and annotations, where about 900 lines are executable C code and the rest are annotations (not seen by the C compiler). The annotations comprise ghost code (20%) and invariants (80%) \(^7\). The total time taken for the verification of the whole model is around a minute.

6. Discussion: Experience and Lessons

We now describe our experience and lessons learned while modeling and verifying the protocols.

Lesson 1: Don’t believe the online documentation of systems, and properties it appears to imply. Proving them formally is important, and may lead to surprising new results. The result that a single read-repair does ensure eventual consistency of the stable live nodes was a result we wrongly believed in before the verification.

Lesson 2: Formal verification can explain trends in industry, and if used early, could help drive good systems design. During our exercise, we realized that CRDTs for counters in the literature are not idempotent [Shapiro et al. 2011b]—these CRDTs assume that messages are delivered precisely once (as opposed to at least once), and we realized that systems like Riak and Cassandra do not assure delivery precisely once, even when only transient failures are present. This explained to us the predominance of purely state-based implementation of CRDTs in systems such as Riak [Ria]. In fact, in earlier versions of Cassandra transferred delta updates, for counter objects, among the replicas. Recent releases of Cassandra (v2.1 and onwards) have completely revamped these mechanisms so that state is exchanged among the replicas, and not purely deltas [cas a]. These changes were based on developer experience, over a long period of time.

\(^7\) Link to repository removed for double blind review.
usage, when they observed counters losing some updates. This is a more painful process of improving systems than proving properties and using results to drive systems design decisions.

Lesson 3: Models should be written early in the system development process, and be used to define vocabulary and drive systems design decisions. Based on the experience of some of the co-authors, system design projects involve multiple meetings over long durations (interleaved with periods of software development). The significant gaps between these meetings leads to a loosening of terminology, and leads to miscommunication, which eventually translate to bugs in the implementation. The building of our model and testing this model was useful in both building a faithful model as well as in understanding it, in expressing assumptions on the failure model, and figuring out the correct specifications. The model gave us a concrete vocabulary (especially data-structures like the pending set, which captures the messages in the network, etc.) to reason more formally even in discussions (similar to the way a formal modeling on paper gives such a vocabulary). We believe that if models are built early in the development lifecycle they can result in a consistent vocabulary for the developers to use in talking about their system and its internals. Such consistent vocabulary holds the potential to minimize bugs arising out of miscommunication.

There is corroborating evidence from Amazon researchers [Newcombe 2014; Newcombe et al. 2015] that building such models and verifying them gives additional benefits of understanding protocols, making design decisions, and adding features to protocols. Note that Amazon used TLA+ to model protocols (in [Newcombe 2014], they discuss why they chose TLA, and find VCC also met most of their requirements). However, in their work, they did not verify the protocols, but only model-checked them (i.e., systematically tested them) for all interleavings for small instantiations of the system.

Lesson 4: Modeling in a high-level language closer to implementation (like C) is programmer-friendly, testable, and supports verification. We believe that modeling in C offers many advantages (in particular, in comparison with languages such as TLA). First, systems engineers understand C, and the modeling entails building a simulator of the system, which is something engineers do commonly for distributed systems anyway. Being executable, the model can be subject to standard testing, where engineers can write test harnesses, tweaking the environment’s behavior and fault models, simply by writing code. Third, for systematic testing (model-checking), we have powerful tools such as CHeSS that can systematically explore the behavior of the system, exploring non-determinism that arises from interleavings. Fourth and finally, the ability to prove programs using pre/post conditions and invariants, using VCC, gives a full fledged verification platform to prove the entire protocol correct, where most reasoning is pushed down to automated logic-solvers.

We advocate certified program models as a sweet-spot for modeling, testing, and verification. It abstracts from the real system, but in doing so captures many instantiations and versions of these systems. And yet it is written in code, allowing for easier model-building and testing. Finally, it affords full fledged verification using mostly-automated verification platforms.

7. Related Work

Amazon’s use of formal techniques [Newcombe et al. 2015; Newcombe 2014] for increasing confidence in the correctness of their production systems is in the same spirit as this work. The engineers at Amazon have successfully used TLA+ [Lamport] to formally specify the design of various components of distributed systems. The formal TLA+ specifications are executable like our program models and these design specifications have been systematically explored using a model checker to uncover several subtle bugs in these systems. However, instead of modeling distributed algorithms in TLA+, we model them as C programs. Newcombe et al. [Newcombe et al. 2015; Newcombe 2014] acknowledge that modeling systems in a high-level language like C increases the productivity of the engineers. More importantly, in addition to checking the models using model checkers up to a certain trace length, a model written in C lends itself to mostly automated verification using tools like VCC that utilize automated constraint solvers, and that can verify unbounded instances of the system.

There have also been efforts towards formally modeling key-value stores like Cassandra using Maude [Liu et al. 2014]. In this work, consistency properties are expressed in Maude using linear temporal logic (LTL) formulae. This model checking approach either is not exhaustive or is exhaustive on bounded instances while ours is exhaustive on unbounded instances.

Recently, there has been work on programming languages that ease development of distributed systems, in particular, with respect to consistency properties at the application level [Alvaro et al. 2011; Sivaramakrishnan et al. 2015; Burkhardt et al. 2012] and failfree idempotence [Ramalingam and Vaswani 2013]. Also, work by Sivaramakrishnan et al. introduces a declarative programming model for eventually consistent data stores, that includes contract language which can express fine-grained application level consistency properties. Lesani et al. [Lesani et al. 2016] developed a framework for for modular verification of causal consistency for replicated key-value stores.

In a recent work [Wilcox et al. 2015], the authors have used Coq to implement distributed algorithms that are verified. They have developed a framework that formalized various network semantics with different fault assumption.
In [Burckhardt et al. 2014; Burckhardt 2014], the authors explore logical mechanisms for specifying and verifying properties over replicated data types. In particular, Burckhardt in his book [Burckhardt 2014] gives an extensive treatment of the principles of consistency of distributed systems. Also, Burckhardt et al. [Burckhardt et al. 2014] propose a framework for specifying replicated data types using relations over events and verifying their implementation using replication-aware simulations.

Deductive verification using automatic tools, such as VCC [Cohen et al. 2009] and Dafny [Leino 2010] has been extensively used for verifying systems in domains other than distributed systems. Some of the examples are: verifying a hypervisor for the isolation property [Leinenbach and Santen 2009], verifying operating systems like Verve [Yang and Hawblitzel 2011] and ExpressOS [Mai et al. 2013] for security, verifying the L4 microkernel for functional correctness [Klein et al. 2009, 2010] and verifying high-level applications for end-to-end security [Hawblitzel et al. 2014]. Recently, a blend of TLA-style state-machine refinement and Hoare-logic verification was used in [Hawblitzel et al. 2015] for verification of distributed systems.

8. Conclusions

In this paper we have shown how the philosophy of certified program models can be used to verify and find fault-tolerance violations in distributed systems, with a specific focus on key-value/NoSQL storage systems. We have verified both eventual delivery of the hinted-handoff protocol under transient failures (which ensures strong eventual consistency for any store maintained as a CmRDT register) as well as eventual consistency of the read-repair protocol when arbitrary number of reads are issued. We also discovered several surprising counter-examples during the verification for related conjectures, and the experience helped us develop a firm understanding of when and how these protocols guarantee eventual consistency.

Based on our experience, we believe the notion of certified program models is applicable to a broad swathe of distributed systems properties beyond hinted-handoff and read repair. For instance, while we have assumed a CRDT abstraction, some artifacts of the way they are implemented in systems deserve verification—for instance, Riak’s use of vector clocks (now called Causal Context) and the associated conflict resolution and pruning mechanisms are worth verifying for correctness, even in the case where there are no failures.
References

M. Shapiro, N. Preguiça, C. Baquerio, and M. Zawirski. A comprehensive study of Convergent and Commutative Replicated

