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Abstract We propose a new automaton model, called quantified data automata (QDA)
over words, that can model quantified invariants over linear data structures, and study their
theory, including closure properties, canonical minimality, and decidability of emptiness.
We build poly-time active learning algorithms for them, where the learner is allowed to
query the teacher with membership and equivalence queries. In order to express invariants
in decidable logics, we invent a decidable subclass of QDAs, called elastic QDAs, and show
translations to decidable theories of arrays and lists. We also prove that every QDA has a
unique minimally-over-approximating elastic QDA, showing a robust technique for abstract-
ing QDA-expressible properties to the decidable fragments expressed by elastic QDAs. We
then give an application of these theoretically sound and efficient active learning algorithms to
program verification by building a passive learning framework that efficiently learns adequate
quantified linear data structure invariants from samples obtained from dynamic executions
for a class of programs.
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1 Introduction

Linear data structures, such as arrays and linked lists, are important unbounded data structures
used in computer science. Properties of such linear data structures require quantification due
to the unbounded nature of these structures. For instance, expressing that the data stored in
a linked list is sorted requires quantification. Reasoning with such data structures requires
expressing such properties, especially in program verification where such properties can
encode pre/post conditions or invariants that help prove a program correct.

Inmany fields of logic, automata theory plays an important role as a normal form for logic.
For instance, monadic second order logic on labeled words and trees, both finite and infinite,
is captured using finite-state automata on these structures [18,36]. A connection to automata
theory is often useful as the simple structure of automata in terms of graphs gives a better
arena than logic to study algorithmic problems on the associated logic. Decision procedures
such as satisfiability on logic (and even model-checking of systems) can be translated to
appropriate emptiness-checking algorithms on graphs [37]. Another important algorithmic
procedure that automata yield are learning algorithms—automata-based learning algorithms
give a means to learn the corresponding logical formulae in various learning models [3,17].

In this paper, our main motivation stems from program verification, in particular the
problem of synthesizing loop invariants for programs that express properties of linear data
structures. Synthesizing invariants for programs is one of the most challenging problems
in verification today. While there are several logical theories of linear data structures and
several fragments have a decidable validity problem [7,12,24], our main motivation is to
synthesize invariants using learning. We hence seek an automaton model for linear data
structures that (a) can express properties of the structure as well as the data contained in
the data structure, (b) can express typical quantified properties of such linear data structures
that arise in verification, and (c) has subfragments that can be translated to known decidable
fragments of logics on arrays and lists.

In an active black-box learning framework, we look upon the invariant as a set of con-
figurations of the program, and allow the learner to query the teacher for membership and
equivalence queries on this set. Furthermore, we fix a particular representation class for these
sets, and demand that the learner learn the smallest (simplest) representation that describes
the set. A learning algorithm that learns in time polynomial in the size of the simplest repre-
sentation of the set is desirable. In passive black-box learning, the learner is given a sample
of examples and counter-examples of configurations, and is asked to synthesize the simplest
representation that includes the examples and excludes the counter-examples. In general,
several active learning algorithms that work in polynomial time are known (e.g., learning
regular languages represented as DFAs [3]) while passive polynomial-time learning is rare
(e.g., conjunctive Boolean formulas can be learned but general Boolean formulas cannot be
learned efficiently, automata cannot be learned passively efficiently) [20].

In this paper,we build active learning algorithms for quantified logical formulas describing
sets of linear data structures. Our aim is to build algorithms that can learn formulas of the kind
“∀y1, . . . , yk ϕ”, where ϕ is quantifier-free, and which capture properties of arrays and lists
(the variables range over indices for arrays, and locations for lists, and the formula can refer
to the data stored at these positions and compare them using arithmetic, etc.). Furthermore,
we show that we can build learning algorithms that learn properties that are expressible in
known decidable logics. We then employ the active learning algorithm in a passive learning
setting where we show that by building an imprecise teacher that answers the questions of
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the active learner, we can build effective invariant generation algorithms that learn simply
from a finite set of examples.

We can model linear data structures as data words, where each position is decorated with
a letter from a finite alphabet modeling the program’s pointer variables that point to that cell
in the list or index variables that index into the cell of the array, and with data modeling the
data value stored in the cell, e.g., integers. We hence seek automata models for expressing
quantified properties of such data-words.

1.1 Data-words and quantified data automata (QDA)

Our first technical contribution is a novel representation (normal form) for quantified prop-
erties of linear data structures, called quantified data automata (QDA).

Quantified data automata are a new model of automata over data words that are powerful
enough to express a class of universally quantified properties of data words. A QDA accepts
a data word provided it accepts all possible annotations of the data word with valuations of a
(fixed) set of variables Y = {y1, . . . , yk}; for each such annotation, the QDA reads the data
word, records the data stored at the positions pointed to by Y , and finally checks these data
values against a data formula determined by the final state reached.QDAs are very powerful in
expressing typical invariants of programs manipulating lists and arrays, including invariants
of a wide variety of searching and sorting algorithms, maintenance of lists and arrays using
insertions/deletions, in-place manipulations that destructively update lists, etc.

We study several properties of QDAs. First, QDAs can be viewed as accepting data-words
at one level, but also as acceptors of valuation words at another level, which encode a data-
word as well as an interpretation of the universally quantified variables. We show that unique
minimal (minimal in number of states) QDA do not exist for languages of data-words, but
unique minimal (and hence canonical) QDAs do exist for languages of valuation words. The
view of QDAs as acceptors of valuation words links it closer to classical automata theory,
as we can view QDAs as essentially Moore-machines that read valuation words and output
data-formulas.

Turning to closure properties, we show that the class of languages accepted by QDAs are
not, in general, closed under union and complementation. Quantified data automata implicitly
involve universal quantification on the outermost level, and hence it is not surprising that they
are not closed under union and complementation. However, when the formula lattice is closed
under conjunction, then we prove that the class of languages accepted by such QDAs are
closed under intersection.

1.2 Learning quantified data automata

Our second main contribution is a an efficient active learning algorithm for QDAs. Using
our result that for any set of valuation words (data words with valuations for the variables
Y ), there is a canonical QDA, we show that learning valuation words can be reduced to
learning formula words (words with no data but paired with data formulas). In this model,
the learner can ask a membership query for any word and the teacher replies with the data
formula corresponding to the word, and the learner can ask an equivalence query giving a
QDA, and the teacher either answers yes (if the QDA accepts the language she has inmind) or
returns a counterexample consisting of a word and the data formula associated with it. Note
that the learning algorithm is not in terms of data words (which have concrete data but no
interpretation for universal variables) nor in terms of valuation words (which have concrete
data and have interpretation of universal variables) but in terms of formula words (which have
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no concrete data but have an interpretation for universal variables). Our learning algorithm
is based on an extension of Angluin’s learning algorithm for DFAs [3], extended to QDAs
by viewing QDAs as Moore machines accepting formula words. The number of queries the
learner poses and the time it takes is bound polynomially in the size of the canonical QDA
that is learned. The learning algorithm we develop can hence be used to learn the quantified
logical formulas that QDAs represent.

1.3 Elastic quantified data automata (EQDA), decidable logics, unique minimal
over-approximations

The class of quantified properties that can be expressed using QDAs is very powerful, and
does not admit decidable satisfiability problems, in general. The validity of the corresponding
logical formulas in the theory of arrays and lists are also undecidable, in general.

In the context of program verification, even if we use QDAs to learn invariants, we will be
unable to verify automatically whether the learned properties are adequate invariants for the
program at hand. Even though SMT solvers support heuristics to deal with quantified theories
(like e-matching [29]), in our experiments, the verification conditions derived from invariants
expressed as QDAs could not be handled by such SMT solvers. The third contribution of this
paper is hence to lift QDAs and the learning algorithms to subclasses that admit decidable
validity problems.

We identify a subclass of QDAs (called EQDAs) and show two main results for them: (a)
EQDAs can be converted to formulas of decidable logics, to the array property fragment [7]
when modeling arrays and the decidable Strand fragment [24] when modeling lists; (b)
a surprising unique minimal over-approximation theorem that says that for every QDA,
accepting say a language L of valuation-words, there is aminimal (with respect to inclusion)
language of valuation-words L ′ ⊇ L that is accepted by an EQDA.

For the former, we identify a common property of the array property fragment and the
syntactic decidable fragment of Strand, called elasticity (following the general terminology
in the literature on Strand [24]). Intuitively, both the array property fragment and Strand
prohibit quantified cells to be tested to be bounded distance away (the array property fragment
does this by disallowing arithmetic expressions over the quantified index variables [7] and
the decidable fragment of Strand disallows this by permitting only the use of→∗ or→+ in
order to compare quantified variables [24,25]). We identify a structural restriction of QDAs
that permits only elastic properties to be stated.

The latter result allows us to learn QDAs and then apply the unique minimal over-
approximation (which is effective) to compute the best over-approximation of it that can
be expressed by EQDAs (which then yields decidable verification conditions in the con-
text of program verification). The result is proved by showing that there is a unique way to
minimally morph a QDA to one that satisfies the elasticity restrictions.

1.4 Application to verification: passive learning of quantified invariants

The active learning algorithm for QDAs can itself be used in a verification framework,
where the membership and equivalence queries are answered using under-approximate and
deductive techniques (for instance, for iteratively increasing values of k, a teacher can answer
membership questions based on bounded and reverse-bounded model-checking, and answer
equivalence queries by checking if the invariant is adequate using a constraint solver). In
this paper, we do not pursue an implementation of active learning as above, but instead
build a passive learning algorithm that uses the active learning algorithm. We also refer
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the reader to recent work on a new learning model called ICE (learning using examples,
counter-examples, and implications), which is a much more robust active learning model for
synthesizing invariants [15].

Our motivation for doing passive learning is that we believe (and we validate this belief
using experiments) that in many problems, a lighter-weight passive-learning algorithmwhich
learns froma few randomly-chosen small data structures is sufficient tofind the invariant.Note
that passive learning algorithms, in general, often boil down to a guess-and-check algorithm
of some kind, and often pay an exponential price in the size of the property learned. Designing
a passive learning algorithm using an active learning core allows us to build more interesting
algorithms; in our algorithm, the inacurracy/guessing is confined to the way the teacher
answers the learner’s questions.

The passive learning algorithm works as follows. Assume that we have a finite set of
configurations S, obtained from sampling the program (by perhaps just running the program
on various random small inputs). We are required to learn the simplest representation that
captures the set S (in the form of a QDA).We now use an active learning algorithm for QDAs;
membership questions are answered with respect to the set S (note that this is imprecise, as
an invariant I must include S but need not be precisely S). When asked an equivalence query
with a set I , we check whether S ⊆ I ; if yes, we can check if the invariant is adequate using
a constraint solver and the program.

It turns out that this is a good way to build a passive learning algorithm. First, enumerating
random small data structures that getmanifest at the header of a loop fixes for themost part the
structure of the invariant, since the invariant is forced to be expressed as a QDA. Second, our
active learning algorithm for QDAs promises never to ask long membership queries (queried
words are guaranteed to be less than the diameter of the automaton), and often the teacher has
the correct answers. Finally, note that the passive learning algorithm answers membership
queries with respect to S; this is because we do not know the true invariant, and hence err
on the side of keeping the invariant semantically small. This inaccuracy is common in most
learning algorithms employed for verification (e.g, Boolean learning [23], compositional
verification [2,11], etc). This inaccuracy could lead to a non-optimal QDA being learnt, and
is preciselywhyour algorithmneednotwork in timepolynomial in the simplest representation
of the concept (though it is polynomial in the invariant it finally learns).

The proof of the efficacy of the passive learning algorithm rests in the experimental evalua-
tion.We implement the passive learning algorithm (which in turn requires an implementation
of the active learning algorithm). By building a teacher using dynamic test runs of the pro-
gram and by pitting this teacher against the learner, we learn invariant QDAs, and then
over-approximate them using EQDAs. These EQDAs are then transformed into formulas
over decidable theories of arrays and lists. Using a wide variety of programs manipulating
arrays and lists, ranging from several examples in the literature involving sorting algorithms,
partitioning, merging lists, reversing lists, and programs from the Glib list library, programs
from the Linux kernel, a device driver, and programs from a verified-for-security mobile
application platform, we show that we can effectively learn adequate quantified invariants in
these settings. In fact, since our technique is a black-box technique, we show that it can be
used to infer pre-conditions/post-conditions for methods as well.

The paper is structured as follows. Section 2 informallymotivates and illustrates quantified
invariants over linear data structures, quantified data automata, examples of elastic invari-
ants, and elastic data automata. Section 3 formally introduces the QDA model, data-words,
valuation words, and formula words. In Sect. 4, we explore various properties of QDAs and
the languages accepted by them. In Sect. 5 we present an active learning algorithm, show-
ing how Angluin-style learning of finite automata can be extended to learn QDAs. Section 6
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introduces the subclass of QDAs, called EQDAs, and shows the unique elastification result of
QDA to elastic quantified data automata. In Sect. 7 we describe how linear data structures can
be modeled using data-words and properties of linear data structures using QDAs/EQDAs,
and also gives a translation from EQDAs to decidable fragments of arrays and lists. We
describe an application to passively learning invariants involving arrays and lists in program
verification in Sect. 8, using the active learning algorithm for QDAs/EQDAs, and present
experimental results of our evaluation. Finally, Sect. 9 concludes with some future directions
of research.

1.5 Related work

For invariants expressing properties on the dynamic heap, shape analysis techniques are
the most well known [32], where locations are classified/merged using unary predicates
(some dictated by the program and some given as instrumentation predicates by the user),
and abstractions summarize all nodes with the same predicates into a single node. The
data automata that we build also express an infinite set of linear data structures, but do
so using automata, and further allow n-ary quantified relations between data elements. In
recent work, [5] describes an abstract domain for analyzing list manipulating programs, that
can capture quantified properties about the structure and the data stored in lists. This domain
can be instantiated with any numerical domain for the data constraints and a set of user-
provided patterns for capturing the structural constraints. However, providing these patterns
for quantified invariants is in general a difficult task.

In recent years, techniques based on Craig’s interpolation [27] have emerged as a new
method for invariant synthesis. Interpolation techniques, which are inherently white-box, are
known for several theories, including linear arithmetic, uninterpreted function theories, and
even quantified properties over arrays and lists [1,19,28,33]. These methods use different
heuristics like term abstraction [1], preferring smaller constants [19,28] and use of existential
ghost variables [33] to ensure that the interpolant converges on an invariant from a finite set of
spurious counter-examples. IC3 [6] is another white-box technique for generalizing inductive
invariants from a set of counter-examples.

A primary difference in our work, compared to all the work above, is that ours is a black-
box technique that does not look at the code of the program, but synthesizes an invariant from
a snapshot of examples and counter-examples that characterize the invariant. The black-
box approach to constructing invariants has both advantages and disadvantages. The main
disadvantage is that information regarding what the program actually does is lost in invariant
synthesis. However, this is the basis for its advantage as well—by not looking at the code, the
learning algorithm promises to learn the sets with the simplest representations in polynomial
time, and can also be much more flexible. For instance, even when the code of the program
is complex, for example having non-linear arithmetic or complex heap manipulations that
preclude logical reasoning, black-box learning gives ways to learn simple invariants for them.

There are several black-box learning algorithms that have been explored in verification.
Boolean formula learning has been investigated for finding quantifier-free program invari-
ants [10], and also extended to quantified invariants [23]. However, unlike us, [23] learns a
quantified formula given a set of data predicates as well as the predicates which can appear in
the guards of the quantified formula. Recently, machine learning techniques have also been
explored [34]. Variants of the Houdini algorithm [14] essentially use conjunctive Boolean
learning (which can be achieved in polynomial time) to learn conjunctive invariants over tem-
plates of atomic formulas (see also [35]). The most mature work in this area is Daikon [13],
which learns formulas over a template, by enumerating all formulas and checking which
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ones satisfy the samples, and where scalability is achieved in practice using several heuris-
tics that reduce the enumeration space which is doubly-exponential. For quantified invariants
over data structures, however, such heuristics aren’t very effective, and Daikon often restricts
learning only to formulas of very restricted syntax, like formulas with a single atomic guard,
etc. In our experiments Daikon was, for instance, not able to learn an adequate loop invariant
for the selection sort algorithm.

2 Overview

2.1 List and array invariants

Consider a typical invariant in a sorting program over lists where the loop invariant is
expressed as:

head →∗ i ∧ ∀y1, y2 × ((head →∗ y1∧succ(y1, y2)∧ y2 →∗ i) ⇒ d(y1) ≤ d(y2)) (1)

This says that for all cells y1 that occur somewhere in the list pointed to by head and where
y2 is the successor of y1, and where y1 and y2 are before the cell pointed to by a scalar
pointer variable i , the data value stored at y1 is no larger than the data value stored at y2. This
formula is not in the decidable fragment of Strand [24,25] since the universally quantified
variables are involved in a non-elastic relation succ (in the subformula succ(y1, y2)). Such
an invariant for a program manipulating arrays can be expressed as:

∀y1, y2 × ((0 ≤ y1 ∧ y2 = y1 + 1 ∧ y2 ≤ i) ⇒ A[y1] ≤ A[y2]) (2)

Note that the above formula is not in the decidable array property fragment [7].

2.1.1 Quantified data automata

The key idea in this paper is an automatonmodel for expressing such constraints called QDA.
The above two invariants are expressed by the following QDA:

The above automaton reads (deterministically) data words whose labels denote the posi-
tions pointed to by the scalar pointer variableshead and i, aswell as valuations of the quantified
variables y1 and y2. We use two blank symbols that indicate that no pointer variable (“b”)
or no variable from Y (“−”) is read in the corresponding component; moreover, b = (b,−).
Missing transitions go to a sink state labeled false. The above automaton accepts a data word
w with a valuation v for the universally quantified variables y1 and y2 as follows: it stores the
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value of the data at y1 and y2 in two registers, and then checks whether the formula annotating
the final state it reaches holds for these data values. The automaton accepts the data word
w if for all possible valuations of y1 and y2, the automaton accepts the corresponding word
with valuation. The above automaton hence accepts precisely those set of data words that
satisfy the invariant formula.

2.1.2 Decidable fragments and elastic quantified data automata

The emptiness problem for QDAs is undecidable; in other words, the logical formulas that
QDAs express fall into undecidable theories of lists and arrays. A common restriction in
the array property fragment as well as the syntactic decidable fragments of Strand is that
quantification is not permitted to be over elements that are only a bounded distance away. The
restriction allows quantified variables to only be related through elastic relations (following
the terminology in Strand [24,25]).

For instance, a formula equivalent to the formula in Eq. 1 but expressed in the decidable
fragment of Strand over lists is:

head →∗ i ∧ ∀y1, y2 × ((head →∗ y1 ∧ y1 →∗ y2 ∧ y2 →∗ i) ⇒ d(y1) ≤ d(y2)) (3)

This formula compares data at y1 and y2 whenever y2 occurs sometime after y1, and this
makes the formula fall in a decidable class. Similarly, a formula equivalent to the formula
Eq. 2 in the decidable array property fragment is:

∀y1, y2 × ((0 ≤ y1 ∧ y1 ≤ y2 ∧ y2 ≤ i) ⇒ A[y1] ≤ A[y2]) (4)

The above two formulas are captured by a QDA that is the same as in the figure above, except
that the b-transition from q2 to q5 is replaced by a b-loop on q2.

We identify a restricted form of QDA, called elastic quantified data automata (EQDA)
in Sect. 6, which structurally captures the constraint that quantified variables can be related
only using elastic relations (like →∗ and ≤). Furthermore, we show in Sect. 7 that EQDAs
can be converted to formulas in the decidable fragment of Strand and the array property
fragment, and hence expresses invariants that are amenable to decidable analysis across loop
bodies.

It is important to note that QDAs are not necessarily a blown-up version of the formulas
they correspond to. For a formula, the corresponding QDA can be exponential, but for a QDA
the corresponding formula can be exponential as well (QDAs are like BDDs, where there is
sharing of common suffixes of constraints, which is absent in a formula).

3 Preliminaries

We model lists (and finite sets of lists) and arrays that contain data over some data domain
D as finite words, called data words, encoding the pointer variables and the data values.

Definition 1 (Data words) Let PV = {p1, . . . , pr } be a finite set of pointer variables, � =
2PV , and D a data domain. A data word over PV and D is a word u ∈ (� × D)∗ where
every p ∈ PV occurs exactly once in u (i.e., for each u = a1 . . . an and p ∈ PV , there exists
precisely one j ∈ {1, . . . , n} such that a j = (X, d) and p ∈ X ).

The empty set in the first component of a data word corresponds to a blank symbol
indicating that no pointer variable occurs at this position. We also denote this blank symbol
by the letter b.
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Let Y = {y1, . . . , yk} be a nonempty, finite set of universally quantified variables. The
automata we build accepts a data word if for all possible valuations of Y over the positions of
the data word, the data stored at these positions satisfy certain properties. For this purpose,
the automaton reads data words extended by valuations of the variables in Y , called valuation
words. The variables are then quantified universally in the semantics of the automaton model
(as explained later in this section).

Definition 2 (Valuation word) A valuation word is a word v ∈ (� × (Y ∪{−})×D)∗ where
v projected to its first and third component forms a data word and where each y ∈ Y occurs
exactly once in v.

We use the symbol “−” to denote positions in valuation words where no universally
quantified variable occurs. Note that the choice of the alphabet ensures that all universally
quantified variables have to occur at different positions and is technically convenient.

A valuation word corresponds to a data word with a valuation of Y . This is formalized by
the following definition.

Definition 3 Given a valuationword v ∈ (�×(Y ∪{−})×D)∗, the corresponding data word
is the word dw(v) ∈ (� × D)∗ resulting from projecting v to its first and third components.

Later, we will also consider a third type of words, called symbolic words. In contrast to
data and valuation words, symbolic words only capture the structure of a list or array but do
not contain data.

Definition 4 (Symbolic word) Let � = 2PV and � = � × (Y ∪ {−}). A symbolic word is a
word w ∈ �∗ where each p ∈ PV occurs exactly once in w and each y ∈ Y occurs exactly
once in w.

We denote the symbol in � representing neither a pointer nor a universally quantified
variable by b = (b,−). The next definition establishes a connection between symbolic and
valuation words.

Definition 5 Given a valuation word v ∈ (�×(Y ∪{−})×D)∗, the corresponding symbolic
word is the word sw(v) ∈ �∗ resulting from projecting v to its first two components.

To express the properties on the data, let us fix a set of constants, functions and relations
over D. We assume that the quantifier-free first-order theory over this domain is decidable;
we encourage the reader to keep in mind the theory of integers with constants (0, 1, etc.),
addition, and the usual relations (≤, <, etc.) as a standard example of such a domain.

QDAuse a finite set F of formulas over the atoms d(yi ), i ∈ {1, . . . , n}, whichwe interpret
as the data values of the cells pointed to by the variables y1, . . . , yn . We assume that this set
is organized in a (bounded semi-)lattice, which leads to the following definition.

Definition 6 (Formula lattice) A formula lattice F = (F,,�, false, true) is a tuple con-
sisting of a finite set F of formulas over the atoms d(y1), . . . , d(yn), a partial-order relation
 over F , a least-upper bound operator�, and the formulas false and true, which are required
to be in F and correspond to the bottom and top elements of the lattice. Furthermore, we
require that whenever α  β, then α ⇒ β. Also, we require that the formulas in the lattice
are pairwise inequivalent.

One example of such a formula lattice over the data domain of integers can be obtained
by taking a set of representatives of all possible inequivalent Boolean formulas over the
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atomic formulas involving no constants, defining α  β if and only if α ⇒ β, and taking the
least-upper bound of two formulas as the disjunction of them. Such a lattice would be of size
doubly exponential in the number of variables n, and consequently, in practice, we may want
to use a different coarser lattice, such as the Cartesian formula lattice. The Cartesian formula
lattice is formed over a set of atomic formulas and consists of conjunctions of literals (atoms
or negations of atoms). The least-upper bound of two formulas is taken as the conjunction
of those literals that occur in both formulas. For the ordering, we define α  β if all literals
appearing in β also appear in α. The size of a Cartesian lattice is exponential in the number
of literals.

We are now ready to introduce the automaton model.

Definition 7 (Quantified data automata) Let PV be a finite set of program variables, Y a
finite, nonempty set of universally quantified variables, D a data domain, and F a formula
lattice over a finite set F of formulas. A quantified data automaton (QDA) is a tuple A =
(Q,�, q0, δ, f ) where Q is a finite, nonempty set of states, � = � × (Y ∪ {−}) is the
input alphabet, δ : Q × � ��� Q is the (partial) transition function, and f : Q → F is the
final-evaluation function, which maps each state to a data formula.

Intuitively, a QDA is a register automaton that reads the data word extended by a valuation
that has a register for each y ∈ Y , which stores the data stored at the positions evaluated for
Y , and checks whether the formula decorating the final state reached holds for these registers.
It accepts a data word u ∈ (� × D)∗ if it accepts all possible valuation words v extending u
with a valuation over Y . We formalize this below.

A configuration of a QDA A = (Q,�, q0, δ, f ) is a pair (q, r) where q ∈ Q and
r : Y ��� D is a partial variable assignment. The initial configuration is (q0, r0) where the
domain of r0 is empty.

The run ofA on a valuationword v = (a1, y1, d1) . . . (an, yn, dn) ∈ (�×(Y ∪{−})×D)∗
is a sequence (q0, r0), . . . , (qn, rn) of configurations that satisfies δ(qi , (ai , yi )) = qi+1 and

ri+1 =
{
ri {yi ← di } if yi ∈ Y ;
ri if yi = −;

where i ∈ [0, n), the configuration (q0, r0) is the initial configuration, and ri {yi ← di }
corresponds to the mapping ri in which the argument yi is mapped to the value di . We use
A : (q0, r0)

v−→ (qn, rn) as a shorthand-notation.
The QDA A accepts a valuation word v if A : (q0, r0)

v−→ (q, r) with r |� f (q); that
is, after reading the valuation word, the data stored in the registers satisfies the formula
annotating the state finally reached. The language Lval(A) is the set of valuation words
accepted by A.

The QDA A accepts a data word u ∈ (� × D)∗ if A accepts all valuation words v with
dw(v) = u. The language Ldat(A) is the set of data words accepted by A.

To ease working with QDAs and to obtain the intended semantics, we assume throughout
this chapter that each QDA satisfies two further constraints:

– Each QDA verifies that its input satisfies the constraints on the number of occurrences
of variables from PV and Y . All inputs violating these constraints (i.e., all inputs that
are not valuation words) either do not admit a run due to missing transitions or lead to a
dedicated state labeled with the data formula false. This property implies that the states of
an QDA are “typed” with the set of variables that have been read so far. As a consequence,
cycles in the transition structure of an QDA can only be labeled with b-symbols. Note that
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this assumption is no restriction because both the language of valuation words and the
language of data words are defined in terms of words that satisfy the correct occurrence
of variables from PV and Y .

– Each QDA verifies that the universally quantified variables occur in its input in the same
fixed order, say y1 ≺ · · · ≺ yk . All valuation words violating this order lead to a dedicated
state labeled with the data formula true (i.e., all such valuation words are accepted). The
rationale behind this assumption is the following: since the variables y ∈ Y are universally
quantified, it is sufficient to check a property with respect to a fixed order and a different
order should not change the accepted language of data words. Although this assumption is
a restriction in general, each QDA can be transformed into one that accepts the same data
language and respects the predetermined variable ordering if the formula lattice is closed
under conjunction. The idea for such a construction is to use a subset construction that
follows all paths that only differ in the order of Y . For each state in a set of states reached
like that, one remembers in which order the variables in Y have occurred. At the final
states, one uses the conjunction of all formulas in the set with the appropriate renaming
of the variables in Y . Due to the universal semantics of QDAs, this captures a QDA that
accepts the same data language as original automaton. Since most natural formula lattices,
such as the full lattice and the Cartesian lattice (which we use in this chapter), are closed
under conjunction, we can without loss of generality assume that each QDA respects a
fixed ordering of the universally quantified variables.

4 Properties of QDAs

In this section, we study properties of QDAs, such as whether QDAs allow for canonical
representations, closure under Boolean operations, and decidability results.

4.1 Viewing QDAs as Moore machines

Moore machines are extensions of deterministic finite automata that are equipped with output
at their states and define a mapping rather than accept a language. On a syntactical level,
QDAs can be viewed as such machines, where the output corresponds to the formulas at the
final states of the QDA. Taking this view of QDAs allows us to derive some results by using
the theory of Moore machines. Formally, Moore machines are defined as follows.

Definition 8 (Moore machine) AMoore machine is a tupleM = (Q, �, �, q0, δ, λ) where
Q is a nonempty, finite set of states, � is the input alphabet, � is the output alphabet, q0 ∈ Q
is the initial state, δ : Q × � → Q is the transition function, and λ : Q → � is the output
function that assigns an output-symbol to each state.

The run of a Moore machine M on a word u = a1 . . . an is a sequence q0, . . . , qn of
states that satisfies δ(qi , ai+1) = qi+1 for all i ∈ [0, n); as in the case of QDAs, we use
the shorthand-notation M : q0 u−→ qn to denote the run of M on u. Each Moore machine
defines a total function fM that maps an input-word u ∈ �∗ to the output of the state that

M reaches after reading u; more precisely, we define fM(u) = λ(q) where M : q0 u−→ q .
Finally, we call a function f : �∗ → � Moore machine computable if there exists a Moore
machine M such that f = fM.

Let us now describe how one can viewQDAs asMooremachines. Recall that QDAs define
two kind of languages, a language of data words and a language of valuation words. On the
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level of valuation words, we can understand a QDA as an automaton that reads the structural
part of a valuation word (i.e., a symbolic word) and outputs a data formula capturing the
data. To make this intuition more precise, let us introduce another type of words, which we
call formula words.

Definition 9 (Formula words) Let PV be a finite set of pointer variables, Y a finite set of
universally quantified variables, and F a lattice over a set F of formulas. A formula word is
a finite word (w, ϕ) ∈ (�∗ × F) where, as before, � = � × (Y ∪ {−}), and each p ∈ PV
and each y ∈ Y occurs exactly once in w.

Note that a formula word does not contain elements of the data domain—it simply consists
of the symbolic word that depicts the pointers into the list (modeled using�), a valuation for
the quantified variables (modeled using Y ∪ {−}), as well as a formula over lattice F over
the data domain. For example, (({h}, y1)(b,−)(b, y2)({t},−), d(y1) ≤ d(y2)) is a formula
word, where h points to the first element, t to the last element, y1 points to the first element,
and y2 to the third element; and the data formula is d(y1) ≤ d(y2).

We can now view a QDA as an acceptor of formula words.

Definition 10 A QDA A = (Q, q0,�, δ, f ) over the set F of data formulas accepts a
formula word (w, ϕ) ∈ �∗ × F ifA reaches a state q ∈ Q on reading the symbolic word w

and f (q) = ϕ. Given a QDAA, we define the language L f (A) ⊆ �∗ × F of formula words
accepted by A in the usual way. Moreover, we call a language Lfor ⊆ �∗ × F of formula
words QDA-acceptable if there exists a QDA A with L f (A) = Lfor .

Note that not every language of formula words is QDA-acceptable; for instance, consider
the language

L

for = {(bi (h, y)bi , true) | i ≥ 1}.

Astandard pumping argument shows that L

for cannot be accepted by aQDA since the number

of blanks at the beginning and at the end of a word have to match. Furthermore, words whose
symbolic component is not of the formbi (h, y)bi are not present in L


for but aQDAnecessarily
assigns a unique formula to every symbolic word. In fact, every QDA-acceptable language
Lfor of formula words has to fulfill the following constraints:

– For every symbolic word w ∈ �∗, there exists a formula ϕ such that (w, ϕ) ∈ Lfor .
– If (w, ϕ) ∈ Lfor and (w, ϕ′) ∈ Lfor , then ϕ = ϕ′.
– There are only finitely many different formulas occurring in formula words in Lfor .

These constraints allow us to treat QDAs as Moore machines that read symbolic words
and output data formulas. In fact, we make the following observation.

Observation 1 AQDA-acceptable language Lfor ⊆ �∗ × F is an alternative representation
of a Moore machine-computable mapping f : �∗ → F (in the sense that (w, ϕ) ∈ Lfor if
and only if f (w) = ϕ).

One easily deduces that two QDAs A and A′ (over the same lattice of formulas) that
accept the same set of valuation words also define the same set of formula words (assuming
that all the formulas in the lattice are pairwise non-equivalent). Thus, we can easily reduce
the problem of actively learning QDAs to the problem of actively learning Moore machines,
as we show in Sect. 5.
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Fig. 1 A QDA expressing that the data on even list positions is sorted. A QDA expressing the property over
lists that the data on even positions is sorted. Missing transitions lead to a sink-state labeled with false, which
is not shown for the sake of readability. All states depicted as a single circle are implicitly labeled with the
formula false

4.2 Canonical QDAs

Recall that QDAs define two kinds of languages, namely a language of data words and a
language of valuation words. We begin by observing that we cannot hope for unique minimal
QDA on the level of data words.

To see why, consider the QDA A in Fig. 1 over PV = ∅ and Y = {y1, y2}. It accepts all
valuation words in which

– d(y1) ≤ d(y2) if y1 occurs before y2 and y1, y2 are both on even positions; or
– y2 < y1; or
– at least one of y1 and y2 does not occur at an even position.

Hence,A accepts the language of data words that consist of all data words such that the data
on even positions is sorted. Since each QDA has to ensure that each variable occurs exactly
once, the number of states of A is minimal for defining this language of data words.

However, a QDA in which we replace the transition δ(q6, b) = q5 by the transition
δ(q6, b) = q1 accepts the same language of data words. This newQDA checks the sortedness
only for all y1, y2 with y2 = y1+2, which is sufficient. This shows that the transition structure
of a state-minimal QDA for a given language of data words is not unique.

On the level of valuation words, on the other hand, there exists a minimal canonical QDA,
which is formalized next. This is because the automaton model is deterministic and, since all
universally quantified variables are in different positions, the automaton cannot derive any
relation on the data values during its run. Formally, we can state the following theorem.

Theorem 1 For each QDA A there is a unique minimal QDA Amin that accepts the same
set of valuation words.

Proof Consider a language Lval of valuation words that can be accepted by a QDA, and let
w ∈ �∗ be a symbolic word. Then there must be a formulaψw in the lattice that characterizes
precisely the valuation words v ∈ Lval that extend w with data (i.e., that satisfy sw(v) = w).
Since we assume that all the formulas in the lattice are pairwise non-equivalent, this formula
is uniquely determined. This formula ψw is obtained by considering for each valuation word
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v with sw(v) = w the greatest-lower bound ϕv of all formulas in the lattice that are satisfied
in v, and then taking the least-upper bound of all these ϕv .

In fact, the formula ψw is independent of the actual QDA. To prove this, take any QDA
A that accepts Lval. Then w leads to some state q inA that outputs the formula f (q), where
f is the final-evaluation function in A. If w leads to any other formula in another QDA A′,
then A′ accepts a different language of valuation words.

Thus, a language of valuationwords can be seen as a function that assigns to each symbolic
word a uniquely determined formula, and a QDA can be viewed as a Moore machine that
computes this function. For each such Moore machine, there exists a unique minimal one
that computes the same function (see [22]), hence the theorem. ��
4.3 Boolean operations

Because of the universal semantics of QDAs, it is easy to see that the class of QDA-definable
data languages is not closed under complement. Since the universal quantifier does not
distribute over disjunctions, the class is also not closed under union.

Proposition 1 There is a lattice F that is closed under all Boolean operations, such that
the class of QDA-definable languages of data words over this lattice is not closed under
complement and union.

Proof Take the data domain of the integers, and all Boolean formulas using the binary
predicate≤. The set of pointer variables is empty. We have already seen that the set L of data
words inwhich the data is sorted in ascending order isQDAdefinable. The complement of this
language is the set of data words in which there are two positions y1 and y2 such that y1 < y2
and d(y1) > d(y2). Assume that there is a QDA A accepting this language. We assume
here that the QDA uses only two variables y1, y2 but the argument can easily be extended
to any number of variables. Consider the two data words w1 = (b, 2)(b, 1)(b, 3)(b, 4)
and w2 = (b, 1)(b, 2)(b, 4)(b, 3). Both have to be accepted by A. However, A then also
accepts the data word w = (b, 1)(b, 2)(b, 3)(b, 4) because for each valuation y1, y2 in w

there is a valuation in w1 or w2 that cannot be distinguished from the valuation of w by
A (i.e., the valuation word leads to the same state and satisfies the same data formulas);
for instance, the valuation (b, y1, 1)(b,−, 2)(b, y2, 3)(b,−, 4) in w cannot be distinguished
from (b, y1, 2)(b,−, 1)(b, y2, 3)(b,−, 4) in w1. Thus, all valuations of w are accepted but
w is in L and not in its complement.

For the non-closure under union consider the set L from above, and the set L ′ of data
words in which the data is sorted in descending order. An argument similar to the one from
above shows that the union of these two languages is not QDA definable. ��

Since universal quantification distributes over conjunction, we obtain a positive result for
intersection of data languages.

Proposition 2 Let F be a formula lattice. If F is closed under conjunction, then the class
of QDA-definable languages of data words is closed under intersection.

Proof A standard product construction for A1 and A2 with f (q1, q2) = f (q1) ∧ f (q2)
results in a QDA for the desired language. ��

As for the case of canonical QDAs, we now consider closure properties on the level of
valuation words.
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Proposition 3 LetF be a formula lattice. The class ofQDA-definable languages of valuation
words is closed under

1. Complement if F is closed under negation;
2. Union if F is closed under disjunction; and
3. Intersection if F is closed under conjunction.

Proof For the complement, just take the negation of the final formulas. For union and inter-
section use a product construction and combine the formulas by disjunction for union, and
conjunction for intersection. ��
This shows that, on the level of valuation words, QDAs behave much more like standard
automata, given that the lattice has the corresponding properties. For the case of union and
intersection, we additionally obtain the following weaker version of the results if we do not
assume the corresponding closure properties of the lattice.

Proposition 4 LetF be a formula lattice (with least upper bound and greatest lower bound
operators), and let A1,A2 be two QDAs. There exists a unique minimal QDA-definable
language of valuation words containing Lval(A1)∪ Lval(A2), and there is a unique maximal
QDA-definable language of valuation words contained in Lval(A1) ∩ Lval(A2).

Proof As in Proposition 3, we use product constructions, now combining the final formulas
using the least upper bound and greatest lower bound instead of disjunction and conjunction.��
4.4 Decidability results

The expressive power of QDAs depends on the data domain and the formula lattice for testing
properties of the data. The formula lattices used for expressing nontrivial properties of data
words usually lead to the undecidability of the emptiness problem for QDAs. For instance,
using the integers as data domain, and an appropriate signature, it is easy to reduce the halting
problem for two-counter machines to the emptiness problem of QDAs. Using blocks of three
successive positions, one encodes the line number, and the two counter values in the data.
The formulas at the final states are used to check that the data encoding the configurations
faithfully simulates the computation of the given two-counter machine (a data domain with
linear arithmetic would suffice). With a bit more effort, this result can even be extended to
formulas that only use Boolean combinations of equality tests.

In contrast, the universality problem, that is, whether a given QDA accepts all data words
(with the appropriate restrictions on the labeling by pointer variables), is decidable, provided
the quantifier-free fragment used to express the data formulas is decidable. This amounts to
a simple check whether there is a symbolic word that does not admit a run, or leads to a final
state with a formula which is not true (i.e., not a tautology). In this case, one can construct
a valuation word that is not accepted by the QDA, and thus the corresponding data word is
also rejected.

5 Learning QDAs

The goal of this section is to develop an learning algorithm for QDAs that operates in
Angluin’s active learning setting [3]. To this end, we proceed as follows: we begin this sec-
tion by recapping Angluin’s active learning setting for regular languages. Then, we briefly
describe how to learn Moore machines in an Angluin-style active learning setting. Finally,
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we reduce the problem of actively learning QDAs to the problem of actively learning Moore
machines.

5.1 Angluin’s active learning setting

Angluin’s active learning setting, which she has introduced in [3], is a framework in which
the task is to “learn” a regular language L ⊆ �∗ over a fixed alphabet �—called target
language—by actively querying an external source for information. The learning takes place
between a learning algorithm—abbreviated learner—and the information source—called
teacher. The teacher can answer two types of queries: membership and equivalence queries.

Membership query On a membership query, the learner provides a word u ∈ �∗ and the
teacher replies “yes” if u ∈ L and “no” if u /∈ L .

Equivalence query On an equivalence query, the learner provides a regular language, usually
given as a DFA A, and the teacher checks whether A is equivalent to
the target language. If this is the case, he returns “yes”. If this is not the
case, he returns a counterexample u ∈ L(A) ⇔ u /∈ L as a witness that
L(A) and L are indeed different.

Given a teacher for a regular target language L , the learner’s task is to find a DFA (usually
of minimal size) that passes an equivalence query.

In [3], Angluin has not only introduced the active learning framework but also developed
a learning algorithm that learns the unique minimal deterministic automaton that accepts the
target language in polynomial time. This algorithm is based on theMyhill–Nerode congruence
of the target language: given a language L ⊆ �∗, the Myhill-Nerode congruence is the
equivalence relation ∼L over words defined by u ∼L v if and only if uw ∈ L ⇔ vw ∈
L for all w ∈ �∗. Angluin’s pivotal idea is to start with a coarse approximation of the
Myhill-Nerode congruence and refine the approximation, usingmembership and equivalence
queries, until the Myhill-Nerode congruence has been computed exactly; since the number
of equivalence classes is finite for every regular language, this approach is guaranteed to
terminate eventually.

Internally, Angluin’s algorithm stores the data learned so far in a so-called observation
table O = (R, S, T ); the set R ⊆ �∗ is a finite, prefix-closed set of representatives that
serve to represent equivalence classes, the set S ⊆ �∗ is a finite set of samples that are used
to distinguish representatives, and T : (R ∪ R · �) · S → {“yes”, “no”} is a mapping that
stores the actual table entries and is filled using membership queries.

Angluin’s algorithm proceeds in rounds: In each round, the algorithm extends the observa-
tion table until it is closed and consistent, which roughly corresponds to the situation that the
data stored in the table forms a congruence. Then, Angluin’s algorithm derives a conjecture
DFA from the table (similar to the construction of the minimal DFA from the Myhill-Nerode
congruence) and submits this conjecture on an equivalence query. If the teacher replies “yes”,
the learning terminates; if the teacher returns a counterexample, on the other hand, Angluin’s
algorithm adds the counterexample along with all of its prefixes as new representatives to
the table and proceeds with the next iteration.

We refer the reader to [3] for an in-depth presentation of Angluin’s active learning setting
and Angluin’s algorithm. Here, we just want to summarize the main results.

Theorem 2 (Angluin [3]) Given a teacher for a regular target language L ⊆ �∗, Angluin’s
algorithm learns theminimalDFAaccepting L in time polynomial in the size n of thisDFAand
the length m of the longest counterexample returned by the teacher. It asksO(n) equivalence
queries and O(mn2) membership queries.
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5.2 Actively learning QDAs as Moore machines

For actively learning QDAs we take the view of QDAs as Moore machines, as described
in Sect. 4.1. We first describe how to adapt Angluin’s setting to Moore machines and then
explain how to apply this to learning QDAs.

In the context of actively learningMoore machines, the target concept is aMoore machine
computable function f : �∗ → �. Note that we obtain Angluin’s original setting for learning
regular languages by letting � = {0, 1}.

Given A Moore machine computable function f : �∗ → �, a teacher for f answers
queries as follows.

Membership query On a membership query with a word u ∈ �∗, the teacher replies the
classification f (u).

Equivalence query On an equivalence query with a Moore machineM, the teacher checks
whether fM = f is satisfied. Is this the case, he returns “yes”. If this is
not the case, he returns a counterexample u ∈ �∗ with fM(u) �= f (u).

Note that the learner and the teacher do not need to agree a priori on the output alphabet since
the learner can obtain this knowledge through membership queries.

One can, in a straight forward manner, adapt Angluin’s algorithm—in fact any obser-
vation table-based learning algorithms, such as Rivest and Schapire’s algorithm [31]—to
learn Moore machines. The idea is to lift the Myhill–Nerode congruence to Moore machine
computable mappings f : �∗ → � by defining

u ∼ f v if and only if ∀w ∈ �∗ : f (uw) = f (vw),

where u, v ∈ �∗. Then, it is indeed enough to adapt the mapping T of an observation table
to T : (R ∪ R · �) · S → � and the way conjectures are generated. For the latter, we do no
longer produce a DFA as a conjecture but a Moore machine whose output is defined by the
function value f (u) of the representatives u ∈ R. Chen et al. [9] demonstrate this adaptation
for the case |�| = 3.

In analogy to Angluin’s algorithm (see Theorem 2), an algorithm adapted this way learns
the uniqueminimalMoore machine for the target function in time polynomial in this minimal
Moore machine and the length of the longest counterexample returned by the teacher. Thus,
we obtain the following remark.

Remark 1 Given a teacher for a Moore machine computable function that can answer mem-
bership and equivalence queries, the unique minimal Moore machine for this function can
be learned in time polynomial in the size of this minimal Moore machine and the length of
the longest counterexample returned by the teacher.

We can now simply apply this setting to QDAs viewed asMooremachines. Reformulating
the setting for this specific case, we assume that the teacher has access to a QDA-acceptable
language Lfor ⊆ �∗ × F of formula words and answers queries as follows.

Membership query On a membership query, the learner provides a symbolic word w ∈ �∗,
and the teacher returns the unique formula ϕ ∈ F with (w, ϕ) ∈ Lfor .
Note that such a formula word is guaranteed to exist since Lfor is a
QDA-acceptable language.

Equivalence query On an equivalence query with a QDA A, the teacher checks whether
L f (A) = Lfor is satisfied. If this is the case, he returns “yes”. If this is
not the case, then there exists a formula word (w, ϕ) such that (w, ϕ) ∈
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L f (A) ⇔ (w, ϕ) /∈ Lfor (since both L f (A) and Lfor contain a formula
word of the form (w′, ϕ′) for every w′ ∈ �∗), and the teacher returns w

as counterexample.

Such a teacher for QDAs answers queries in the same manner as a teacher for Moore
machines, hence we have reduced the learning of QDAs to learning of Moore machines
(using the correspondence from Observation 1 in Sect. 4.1). This allows us to adapt off-
the-shelf learning algorithms, such as Angluin’s or Rivest and Schapire’s algorithm, and we
immediately obtain the following result.

Theorem 3 Given a teacher for a QDA-acceptable language of formula words that can
answer membership and equivalence queries, the unique minimal QDA for this language
can be learned in time polynomial in the size of this minimal QDA and the length of the
longest counterexample returned by the teacher.

6 Elastic quantified data automata

Our aim is to translate the QDAs that are synthesized into decidable logics such as the
decidable fragment of Strand or the array property fragment. A property shared by both
logics is that they cannot test whether two universally quantified variables are bounded
distance away. We capture this type of constraint by the subclass of elastic QDAs (EQDAs)
that have been already informally described in Sect. 2.

Definition 11 (Elastic quantified data automata) A QDA A = (Q,�, q0, δ, f ) is called
elastic if each transition on b is a self-loop (i.e., whenever δ(q, b) = q ′ is defined, then
q = q ′).

If a state in anEQDAdoes not have any outgoing b-transition, itmight seem that the EQDA
could still test whether two universally quantified variables, say y1 and y2, are bounded
distance away (which is the reason for the undecidability of the emptiness problem for
QDAs). However, because of the universal semantics of the automaton model, such a test is
not possible. This is discussed in more detail in the translation from EQDAs to logic formulas
in Sect. 7, where we introduce the notion of irrelevant self-loop.

The learning algorithm that we use to synthesize QDAs does not construct EQDAs in
general. However, we can show that every QDA uniquely over-approximated by a language
of valuation words that can be accepted by an EQDA, as stated in the following theorem.
This result crucially relies on the particular structure that elastic automata have, that forces
a unique set of words to be added to the language in order to make it elastic. We will refer to
the construction in Definition 12 as elastification.

To ease the following definition, we introduce a few auxiliary notations: Given a QDA
A = (Q,�, q0, δ, f ), let Rb(q) be the set of state reachable from q via a (possibly empty)
sequence of b-transitions and Rb(S) = ⋃

q∈S Rb(q) for a set S ⊆ Q. Moreover, we lift the
transition function ofA to sets of states: for S ⊆ Q and a ∈ �, let δ(S, a) = ⋃

q∈S δ(q, a).

Definition 12 (Elastification) Given a QDA A = (Q,�, q0, δ, f ), we define the EQDA
Ael = (Qel,�, S0, δel, fel) by

– Qel = {S | S ⊆ Q};
– S0 = Rb(q0);
– fel(S) = ⊔

q∈S f (q); and
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– δel(S, a) =

⎧⎪⎨
⎪⎩
Rb(δ(S, a)) if a �= b;
S if a = b and δ(q, b) is defined for some q ∈ S;
undefined otherwise.

Note that this construction is similar to the usual powerset construction except that we
take the “b-closure” after applying the transition function of A. Moreover, Ael loops in a
state S as soon as a b-transition is defined for a state q ∈ S.

Theorem 4 For every QDA A one can construct an EQDA Ael such that

– Lval(A) ⊆ Lval(Ael); and
– for every EQDA B such that Lval(A) ⊆ Lval(B), the inclusion Lval(Ael) ⊆ Lval(B)

holds.

Proof We begin by observing that Ael is elastic by definition of δel. Moreover, a standard
induction over the length of valuation words v = a1 . . . an ∈ (�× D)∗ shows the following:
if the run of A on v is

A : q0 a1−→ q1
a2−→ . . .

an−→ qn,

then the run of Ael on v is

Ael : S0 a1−→ S1
a2−→ . . .

an−→ Sn

such that qi ∈ Si for all i ∈ {1, . . . , n}. This implies Lval(A) ⊆ Lval(Ael) because the
implication f (qn) → fel(Sn) holds by definition of fel.

Let us now show that the language Lval(Ael) is indeed the most precise elastic over-
approximation of Lval(A). To this end, let B = (QB,�, qB0 , δB, fB) be an EQDA with
Lval(A) ⊆ Lval(B). Additionally, let v ∈ Lval(Ael). Thus, the task is to prove that v ∈
Lval(B) holds, too.

Let S be the state reached byAel on reading v and p be the state reached by B on reading
v. We now show that f (q) implies fB(p) for every q ∈ S. Once we have established this,
we obtain that fel(S) implies fB(p) because fel(S) is the least formula in the formula lattice
that is implied by all formulas f (q) for q ∈ S. Since v ∈ Lval(Ael), the valuation word v

satisfies fel(S) and, hence, also fB(p). Thus, v ∈ Lval(B).
To prove that f (q) implies fB(p) for every q ∈ S, pick a state q ∈ S. Following the

definition of δel, we now construct a valuation word v′ ∈ (D×�)∗ that satisfies the following
properties:

– v′ ∈ Lval(A).
– The run of A on v′ leads to q .
– The run of B on v′ leads to p.

In order to obtain v′, we insert symbols of the form (b, d) into v. Since the data values at
such positions do not occur together with variables, their actual value is unimportant.

For the construction, let v = a1 · · · an and let

Ael : S0 a1−→ S1
a2−→ . . .

an−→ Sn

be the run of Ael on v (so S = Sn). Let q ∈ S and let q ′
n := q . Since δel(Sn−1, an) = Sn

and q ′
n ∈ Sn , there is some state q ′

n−1 ∈ Sn−1 and qn ∈ Sn such that δ(q ′
n−1, an) = qn , and

A: qn bin−→ q ′
n for some in ≥ 0. We continue this construction: if q ′

j ∈ S j is defined for
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j ∈ {1, . . . , n}, we construct q ′
j−1, q j and i j as above. For j = 0 we finally pick i0 such that

A : q0 bi0−→ q ′
0.

Let v′ = bi0a1bi1a2bi2 · · · anbin . By construction, the run of A on v′ leads to q = q ′
n :

A : q0 bi0−→ q ′
0

a1−→ q1
bi1−→ q ′

1 . . .
an−→ qn

bin−→ q ′
n

Since v′ is obtained from v by inserting b, the word v′ also satisfies the formula f (q) and
thus v′ ∈ Lval(A). It remains to show that the run of B on v′ leads to p. Since B is elastic,
the only possibility that v′ does not lead to p in B is a missing b-loop at a position at which
we inserted a non-empty sequence of b. However, since Lval(A) ⊆ Lval(B), such a position
cannot exist.

We conclude that f (q) implies fB(p) using the following argument: If f (q) does not
imply fB(p), then there exists an assignment of data values to the variables y1, . . . , yk such
that f (q) is satisfied but fB(p) is not. By changing the data values in v′ accordingly, we can
produce a valuation word that is accepted by A but not by B. However, this contradicts the
assumption Lval(A) ⊆ Lval(B). Thus, f (q) implies fB(p). ��

7 Linear data structures to words and EQDAs to decidable logics

In this section, we sketch briefly how to model arrays and lists as data words, and describe
how to convert EQDAs to quantified logical formulas in decidable logics.

7.1 Modeling program configurations as data words

Wemodel program configurations consisting of scalar variables, pointer or index variables,1

and one (or more) linear data structures—lists or arrays in our case—as data words over a
finite set of variables. The resulting data word is over the same domain D as the data in the
cells of the data structure.

To simplify ourmodeling,we replace each scalar variablewith an auxiliary pointer variable
that points to a cell containing the data of the scalar variable. More precisely, for each scalar
variable, we introduce a new pointer variable and extend the data structure with a new cell,
which is located before the actual data structure begins and contains the data of the scalar
variable; the order in which scalar variables are represented in the data structure is arbitrary
but needs to be fixed. To be able to access the data at these positions (recall that QDAs can
only access the data at position pointed to by universally quantified variables), we amend
QDAs with a register for each such pointer variable and extend the set F of formulas over
which the considered QDA works with the atom d(x) for each scalar variable x .

Let c be a program configuration over a linear data structure and a finite set PV of pointer
or index variables, and let � = 2PV . We model c as the data word

uc = (a1, d1) . . . (an, dn) ∈ (� × D)∗,

such that the i-th symbol of the data word corresponds to the i-th cell of the data structure.
In particular, the symbol ai ⊆ PV contains all pointer or index variables referencing the i-th
cell, and di is the data stored in that cell.

In the case of lists, some of the pointer variables might be null or point to unallocated
memory,which cannot be referenced.Wecapture this situation in the dataword by introducing

1 Index variables occur in the case of arrays and index into arrays.
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an auxiliary pointer variable nil that points to a new cell at the beginning of the list. All pointer
variables that are null or point to unallocated memory occur together with nil. The data value
of the nil cell in the data word is not important and can be set to an arbitrary element of D.

Similarly, we introduce two new index variables index_le_zero and index_geq_size for
arrays to capture index variables that are out-of-bounds (we assume that arrays are indexed
starting at 0). The variable index_le_zero occurs together with all index variables that are
less than zero, and index_geq_size occurs with those index variables that are either equal to
or exceed the size of the array. Let the set Aux contain all auxiliary variables that may occur
in our encoding.

To model configurations of programs that manipulate more than one data structure, one
can use one of the following two approaches: the first approach concatenates the data struc-
tures using a special pointer variable 
i to demarcate the end of the i-th data structure; the
second approachmodels several data structures as one single combined data structure over an
extended data domain by convolution of the original data words (i.e., by transforming a pair
of words into a word over pairs); we refer the reader to standard textbooks (e.g., Khoussainov
and Nerode [21]) for more details about convolution.

Let us illustrate the described translation with an example.

Example 1 Consider a program that takes as input a scalar variable key and a list l and
partitions l into two separate lists: the first list contains all nodes whose data value is less
than key and the second list contains all the remaining nodes of l. The program maintains
pointer variables h1 (corresponding to “head”), p, and c1 (corresponding to a “current”
pointer) to point into the first list and h2 and c2 to point into the second list. All nodes from
h1 through p in the first list are less than key. Similarly, all nodes in the second list (h2 through
c2) are greater than or equal to key.

Let us consider a concrete scenario where l is a list with data values 1, 2, . . . , 10 in
increasing order, and let key = 6. Moreover, consider the program configuration where the
first seven nodes of the list have been processed and c1 is pointing to the node with data value
8. Two data words corresponding to this program configuration—one using concatenation
and one using convolution—are depicted in Fig. 2.

7.2 Converting EQDAs to STRAND and the array property fragment

We now describe a translation of an EQDA A = (Q,�, q0, δ, f ) into a formula ϕA (in the
decidable syntactic fragment of Strand, respectively in the Array Property Fragment) such
that the data word language Ldat(A) corresponds to the set of program configurations that
model ϕA. For brevity, we only consider the case of EQDAs working over a single list or
array; for multiple lists or arrays, the translation is analogous.

Our translation is based on the notion of simple paths in EQDAs. A simple path is a
sequence

π = q0
a1−→ q1

a2−→ . . .
an−→ qn

of states connected by transitions starting in the initial state such that δ(qi , ai+1) = qi+1

is satisfies for all i ∈ [n], no state occurs more than once, and all pointer and universally
quantified variables occur exactly once; in particular, this implies ai �= b. Note that there
exist only finitely many simple paths in an EQDA because each state is allowed to occur at
most once. We denote the set of all simple paths in the EQDA A by PA.

To simplify the translation,we assumewithout restricting the class of formulas represented
by EQDAs that any EQDA A fulfills two structural properties:
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(a)

(b)

Fig. 2 Twodatawordsmodeling the programconfiguration described inExample 1.A∗-entry canbepopulated
with an arbitrary data value. aDataword modeling the concatenation of the two lists of Example 1. bDataword
modeling the convolution of the two lists of Example 1. Both � and � are new auxiliary padding symbols
(that must occur at the beginning and the end of the lists, respectively) used to equal the length of the lists

1. Auxiliary variables, such as nil or scalar variables, which might have been introduced by
the encoding of Sect. 7.1, occur in the beginning of any simple path in the exact same
order. Although the exact order is unimportant, we fix one for the sake of simplicity:
scalar variables occur first (in some fixed order), followed by nil in the case of lists,
respectively index_le _zero and index_geq _size in the case of arrays.

2. Any simple path inA along which a universally quantified variable occurs together with
auxiliary variables leads to a dedicated state labeled with the formula true. This means
that the acceptance of a data word depends only on such valuations where no universally
quantifiedvariable occurs togetherwith auxiliary variables. Since auxiliary variableswere
introduced for technical reasons only, valuation words in which a universally variable
occurs together with auxiliary variables should, therefore, not influence the formula ϕA.

EQDAs can check properties of the beginning and the end of a data structure, such as
whether a pointer variable points to the head or tail of a list. In order to capture such properties,
we use the constants 0 and size in the case of arrays, respectively head and tail in the case of
lists, that point to the beginning and the end of the considered data structure. We assume that
the size of an array is available as a variable in the scope of the program. For programs over
list structures, the QDA only models the part of the list that can be accessed by traversing
the next pointer from other pointer variables in the scope of the program. This implies that
the head of the list is always available for reference in the EQDAs. Finally, we can express
tail of the list in Strand by the following formula: ∃tail. (succ(tail, nil) ∧ head →∗ tail).

We are now ready to describe the actual translation. Roughly speaking, our translation
considers each simple path of an EQDA individually, records the structural constraints of the
variables along the path, and relates these constraints to the data formula of the final state
of the path. By doing so, we construct a path formula ϕπ for each simple path π in A. The
resulting formula ϕA is then the union of all such path formulas and an additional subformula
that captures the valuation words not accepted by A. Since there exists only finitely many
simple path in A, the resulting formula is finite.

Before we can enter the detailed definition of the formulas, we need another preprocessing
of the path under consideration. Basically, we remove self-loops that on this path do not
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(a) (b)

Fig. 3 Base cases of the inductive definition of irrelevant self-loops. a An irrelevant self-loop in q. b An
irrelevant self-loop in q ′

contribute to the acceptance of data words, which we call irrelevant self-loops. The precise
reason for removing these loops becomes clear in Case 5 of the translation below.

For the formal definition of irrelevant self-loops, let π be a simple path inA, and let q, q ′
be two states on π such that q ′ is the direct successor of q and the transition connecting
q and q ′ is δ(q, (b, y)) = q ′. If q has a self-loop on b (i.e., δ(q, b) = q), then we define
this self-loop inductively to be irrelevant on π if either q ′ has no self-loop on b or if this
self-loop is irrelevant on π ; the former situation is sketched in Fig. 3a. Symmetrically, we
define a self-loop on b at q ′ inductively as irrelevant on π if either q has no self-loop on b or
this self-loop is irrelevant on π (see Fig. 3b).

If a self-loop is irrelevant on π , it cannot contribute to the acceptance of a data word. To
see why, consider two valuation words

v = v1(b, y)bv2 and v′ = v1b(b, y)v2

with dw(v) = dw(v′) (i.e., v and v′ only differ in the valuation of the universally quantified
variable y by one position). Moreover, assume that v is accepted along π using an irrelevant
self-loop in q ′ on the b before v2 (as in Fig. 3b). In this situation, A reaches q after reading
v1 and hence rejects v′ since q has no transition on b. Thus, A rejects dw(v′) = dw(v). A
similar argument applies to the other cases of the definition of irrelevant self-loop.

This reasoning shows that one can safely remove irrelevant loops from a path without
changing the accepted language of data words. However, since being an irrelevant self-loop
is a property depending on a path, it can happen that there are paths π, π ′ such that a self-loop
in a state q is irrelevant on π but not on π ′. We thus cannot remove irrelevant self-loops from
A itself, but have to work on the level of paths.

For the actual translation into a formula, let π = q0
a1−→ q1

a2−→ . . .
an−→ qn be a simple path

inAwith ai ∈ �×(Y ∪{−}) and ai �= b for i ∈ {1, . . . , n}. The path formula corresponding
to π is the implication

ϕπ :=ψπ → χπ ,

where the antecedent ψπ (which we define shortly) serves as a guard that captures the
relative positions of the variables along π and the consequent χπ = f (qn) is the data
formula decorating the final state qn of π (in the case of a translation into the Array Property
Fragment, an overapproximation of f (q) might be necessary).

We define the path guard ψπ as follows: at each state qi on the path, we construct local
constraints, which describe how individual variables encoded in the incoming and outgo-
ing transitions of qi are related, and collect them in the set Ci ; the path guard then is the
conjunction

ψπ :=
n∧

i=1

∧
ψ∈Ci

ψ.

For the construction of path guards, we use the following two notations: First, we use

the notation qi−1
ai−→ qi ∈ π , respectively qi−1

ai−→ qi
ai+1−−→ qi+1 ∈ π , to denote parts
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of the simple path π = q0
a1−→ q1

a2−→ . . .
an−→ qn . Second, we use the input-symbol

a = (σ, y) ∈ � × (Y ∪ {−}) and the set (� ∪ {y}) \ {−} of all variables (either pointer
variables or universally quantified variables) occurring in a interchangeably; for instance,
we write x ∈ a to denote that the variable x occurs in a.

We divide the construction of path guards into two parts: The auxiliary part (i.e., Cases 1
and 2 below) covers the beginning of the path where pointer variables occur together with
auxiliary variables, such as nil; recall that our encoding of Sect. 7.1 asserts that auxiliary
variables occur always in the beginning of valuation words (and, correspondingly, in simple
paths). The data structure part (i.e., Cases 3 to 6 below) deals with the remainder of the path,
which is related to the actual data structure. The local constraints at state qi are constructed
according to the following (nonexclusive) case distinction:

Case 1 qi−1
ai−→ qi ∈ π and ai ∩ Aux �= ∅

Let z ∈ ai ∩ Aux be the unique auxiliary variable.

– If z models a scalar variable, we set Ci ← Ci ∪ {x = z} for all x ∈ ai \ {z}. (This case
covers the second assumed structural property of EQDAs, described on Page 24. Note
that x can only be a universally quantified variable and the state qn of the simple path is
labeled with the data formula true.)

– If z = nil, we set Ci ← Ci ∪ {x = nil} for all x ∈ ai \ {z}.
– If z = index_le_si ze, we set Ci ← Ci ∪ {x < 0} for all x ∈ ai \ {z}.
– If z = index_geq_si ze, we set Ci ← Ci ∪ {x ≥ si ze} for all x ∈ ai \ {z}.
Case 2 qi−1

ai−→ qi
ai+1−−→ qi+1 ∈ π , ai ∩ Aux �= ∅, and ai+1 ∩ Aux = ∅

This case covers the boundary between the auxiliary and the data structure part
of a simple path (i.e., processing the actual data structure starts at qi ). Here, we
distinguish two cases:

– If δ(qi , b) is undefined, we set Ci ← Ci ∪ {x = 0} for all x ∈ ai+1 in the case of arrays,
respectively Ci ← Ci ∪ {x = head} for all x ∈ ai+1 in the case of lists.

– If δ(qi , b) = qi , we set Ci ← Ci ∪ {0 ≤ x} for all x ∈ ai+1 in the case of arrays,
respectively Ci ← Ci ∪ {head →∗ x} for all x ∈ ai+1 in the case of lists.

Cases 3 to 6 below only apply if no auxiliary variables occur in the incoming or outgoing
transitions. Note that such situations indeed occur since we assume that Y contains at least
one variable (which occurs on every simple path after all auxiliary variables).

Case 3 qi−1
ai−→ qi ∈ π

For all x, x ′ ∈ ai with x �= x ′, we set Ci ← Ci ∪ {x = x ′}.
Case 4 qi−1

ai−→ qi
ai+1−−→ qi+1 ∈ π and δ(qi , b) = qi

Let x1 ∈ ai and x2 ∈ ai+1. In the case of arrays, we consider two cases:

– If x1 /∈ Y or x2 /∈ Y , then we set Ci ← Ci ∪ {x1 < x2}.
– If x1 ∈ Y , x2 ∈ Y , and (ai ∪ ai+1) ∩ � = ∅ (i.e., only universally quantified

variables occur), then the Array Property Fragment forbids two adjacent univer-
sally quantified variables to be related by the relation <; in this case, we set
Ci ← Ci ∪ {x1 ≤ x2} and χπ ← χπ ∨ (d(x1) = d(x2)). At this point, the
translation does not capture the exact semantics of the EQDA (we comment on
this shortly). Note that ≤ is an elastic relation.

In the case of lists, we set Ci ← Ci ∪ {x1 →+ x2} where →+ is the transitive closure of the
successor relation →. Note that →+ is an elastic relation.
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Case 5 qi−1
ai−→ qi

ai+1−−→ qi+1 ∈ π and δ(qi , b) is undefined
Let x1 ∈ ai and x2 ∈ ai+1. We distinguish two cases:

– Let x1 /∈ Y or x2 /∈ Y . In the case of arrays, we set Ci ← Ci ∪ {x2 = x1 + 1}. In the case
of lists, we set Ci ← Ci ∪ {x1 → x2}.

– Let x1 ∈ Y and x2 ∈ Y . Since both Strand and the Array Property Fragment forbid
expressing that two universally quantified variables are a fixed distance away, we express
their relation indirectly:we identify a stateq on the pathπ that is closest toqi (the direction
is not important) and has a transition containing a pointer variable p ∈ PV (if PV = ∅,
we use head or tail). SinceA does not contain any irrelevant self-loops, the subpath from
qi to q has no self-loops. Thus, we can constrain the universally quantified variables at
qi to be a fixed distance away from the pointer variable p. For a translation into the
Array Property Fragment, we achieve this using arithmetic on the pointer variables. For
a translation into the decidable syntactic fragment of Strand, we obtain the same effect
by existentially quantifying monadic predicates x1, x2, · · · , xd that track the distance
d from the universally quantified variable y at qi to the pointer variable p as follows:
succ(y, x1)∧succ(x1, x2)∧· · ·∧succ(xd−1, xd)∧xd = p. Since the distance d between
q and qi is bounded, a finite number of such predicates suffices.

Case 6 qn−1
an−→ qn ∈ π

In this case, qn is the last state of π and δ(qn−1, an) = qn the last transition. We
distinguish two cases:

– If δ(qn, b) is undefined, we set Cn ← Cn ∪ {x = size − 1} for all x ∈ an in the case of
arrays, respectively Cn ← Cn ∪ {x = tail} for all x ∈ an in the case of lists.

– If δ(qn, b) = qn , we set Cn ← Cn ∪ {x < size} for all x ∈ an in the case of arrays,
respectively Cn ← Cn ∪ {x →∗ tail} for all x ∈ an in the case of lists.

Since the Array Property Fragment lacks the ability to check whether two universally
quantified variables are different, Case 4 needs to introduce an overapproximation of the
real constraints along a simple path if two universally quantified variables, say y and y′, are
adjacent at a state with a self-loop on b (i.e., the path guard is incorrectly satisfied even if
y = y′ holds). In order to compensate for this, we amend the formula χπ by disjointly adding
the constraint d(y) = d(y′), which ensures that the path formula is satisfied if y = y′ holds
(since y = y′ implies d(y) = d(y′)). This way, the path formula checks the structural and
data constraints of the path if the valuation satisfies y1 < · · · < yk , but also when universally
quantified variables are equal (which cannot be checked by an EQDA due to fact that the
input alphabet of EQDAs requires universally quantified variables to be at different position).
Note that a path formula with such an approximation is imprecise in general.

The complete translation functions as follows: It collects the sets Ci along every simple
path π ∈ PA and constructs the formulas ψπ and χπ . For a translation into the decidable
syntactic fragment of Strand, it returns the formula

ϕA:= ∀y1 : . . . ∀yk :
[( ∧

π∈PA

ψπ → χπ

︸ ︷︷ ︸
ϕsp

)
∧

([
(head →∗ y1 →+ · · · →+ yk →∗ tail) ∧ ¬

( ∨
π∈PA

ψπ

)]
→ false

︸ ︷︷ ︸
ϕ¬sp

)]
;
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For a translation into the Array Property Fragment, it returns

ϕA:= ∀y1 : . . . ∀yk :
[( ∧

π∈PA

ψπ → χπ

︸ ︷︷ ︸
ϕsp

)
∧

([
(0 ≤ y1 ≤ · · · ≤ yk < size) ∧ ¬

( ∨
π∈PA

ψπ

)]
→

∨
y,y′∈Y,

y �=y′

d(y) = d(y′)

︸ ︷︷ ︸
ϕ¬sp

)]
.

The subformula ϕsp is the conjunction of all path formulas whereas the subformula ϕ¬sp

captures valuation words that have the right ordering of the universally quantified variables
but do not admit a run ofA (i.e., that are rejected byA). As in the case of path formulas, the
Array Property Fragment formula ϕ¬sp only approximates the correct semantics ofA. Again,
the disjunction constituting the consequent compensates for the necessary overapproximation
in the antecedent (y1 ≤ · · · ≤ yk instead of y1 < · · · < yk).

Since the decidable syntactic fragment of Strand allows negating atomic formulas, ϕA
is in this fragment. Though the Array Property Fragment also allows negation over atomic
formulas that relate two pointer variables or a pointer variable and a universally quantified
variable, negation of an atomic formula of the form y ≤ y′ is not allowed [7]. However,
since we assume both a fixed variable ordering on Y along simple paths and that all other
paths with a different ordering lead to the formula true, we can remove formulas of the form
¬(y ≤ y′) from ¬(∨

π∈PA ψπ

)
; as before, considering a different ordering of the variables

in Y is not necessary because these variables are universally quantified. After removing such
subformulas, the formula ϕA falls into the Array Property Fragment.

When we apply our translation to an EQDA to obtain a formula in the syntactic decidable
fragment of Strand over lists, the obtained formula exactly characterizes the set of program
configurations that correspond to the language of data words accepted by the given EQDA.
However, due to the necessary abstractions introduced by our translation into the Array
Property Fragment, the formula obtained from translating the EQDA over arrays might not
characterize the semantics of the given EQDA exactly. However, we can at least assert that
all data words accepted by this EQDA correspond to a program configuration satisfying the
formula.

To make this intuition precise , let us introduce the following notations: Given a program
configuration c, let (c) denote the natural translation of c into an interpretation for formulas in
the Array Property Fragment, respectively in the decidable syntactic fragment of Strand. 2

Moreover, let (c, y1, . . . , yk) denote the interpretation (c) in which the universally quantified
variables are fixed to the values y1, . . . , yk .

The following theorem now summarizes the main result of our translation.

Theorem 5 LetA be an EQDA, c a program configuration, uc the data word corresponding
to c, and ϕA the formula obtained after the translation (either in the decidable syntactic
fragment of Strand or the Array Property Fragment).

(a) For a translation into the decidable syntactic fragment of Strand, the equivalence

uc ∈ Ldat(A) i f and only if (c) |� ϕA

2 Wemake sure that the type of an interpretation (i.e., whether it is for formulas in theArray Property Fragment
or in the decidable syntactic fragment of Strand) is always clear from the context.
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holds.
(b) For a translation into the Array Property Fragment, the implication

uc ∈ Ldat(A) implies (c) |� ϕA

holds.

The abstraction along simple paths with y < y′ introduced by our translation is the reason
why Theorem 5 only holds in one direction for the Array Property Fragment. For this reason,
we first prove Theorem 5 for the translation into the decidable syntactic fragment of Strand;
based on the insight gained in the proof, it becomes much easier to prove Theorem 5 for the
translation into the Array Property Fragment.

Decidable syntactic fragment of Strand The pivotal fact on which Theorem 5 relies is
that the path guard ψπ exactly captures the structural constraints along π . The next lemma
formalizes this intuition.

Lemma 1 Let A be an EQDA over the finite set PV of pointer variables and the finite,
nonempty set Y of universally quantified variables, π a simple path in A, and ψπ the cor-
responding path guard in the decidable syntactic fragment of Strand. Moreover, let c be
a program configuration, y1, . . . , yk a valuation of Y , and v the valuation word modeling c
and y1, . . . , yk . Then, the following equivalence holds:

The unique run of A on v is along π if and only if (c, y1, . . . , yk) |� ψπ .

Proof We split the proof into two parts: we first show the direction from left to right and
subsequently the reverse direction. The direction from left to right is straightforward and
simply exploits the fact we only add such local constraints to a path guard that are obviously
satisfied along the given path. The direction from right to left, however, is more elaborate to
prove.

From left to right Let

π = q0
a1−→ q1

a2−→ . . .
an−→ qn

a simple path in A and assume that the unique run of A on v is along π . Since the path
guard is the conjunction

∧n
i=1

∧
ψ∈Ci

ψ of all local constraints along π , it is enough to prove
that (c, y1, . . . , yk) satisfies each individual local constraint. To this end, let ψ be a local
constraint, say constructed at state qi of π .

In order to show (c, y1, . . . , yk) |� ψ , we have to distinguish due to which case of the
translation the constraint ψ has been constructed. However, since most cases are similar, we
do not give a thorough proof here but exemplary consider Case 4.

Ifψ has been introduced in Case 4, thenψ :=x1 →+ x2 with x1 ∈ ai and x2 ∈ ai+1. Since
the run of A on v is along π , we know that all variables x ∈ ai occur before the variables
x ′ ∈ ai+1. Thus, (c, y1, . . . , yk) satisfies x →+ x ′ for all such x, x ′. This in turn means
(c, y1, . . . , yk) |� ψ .

From right to left Let

π = q0
a1−→ q1

a2−→ . . .
am−→ qm
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Fig. 4 Two diverging simple paths π, π ′

be a simple path in A and (c, y1, . . . , yk) a model of ψπ . Towards a contradiction, assume
that the run of A on v is along a different simple path, say

π ′ = q0
a′
1−→ q ′

1
a′
2−→ . . .

a′
n−→ q ′

n .

Then, there exists a position i ∈ N+ at which both paths diverge; that is, a j = a′
j and q j = q ′

j
for all j ∈ [i], ai �= a′

i , and qi �= q ′
i . Note that such a position always exists because the

states ofA are “typed” (i.e.,A has to remember which variable it has already read). Figure 4
depicts such a situation.

We observe that all input symbols along the paths π and π ′ are different from b because
A is elastic. Thus, if ai �= a′

i , then there exists a variable x ∈ PV ∪ Y that is missing in
exactly one of ai and a′

i (i.e., x ∈ ai if and only if x /∈ a′
i ). Without loss of generality, let us

assume x ∈ ai and x /∈ a′
i .

Since a′
i �= b, there also exists a variable x ′ ∈ a′

i that is different from x . Moreover, since
π ′ is a simple path (which implies that all pointer and universally quantified variables occur
exactly once), the variable x also occurs in π ′, but only in one of the inputs a′

i+1, . . . , a
′
n ;

note that x ′ might or might not occur together with x on π .
We now distinguish two cases:

1. An auxiliary variable, say z, occurs in the input-symbol ai on π ; that is, qi belongs to
the auxiliary part of π . We first observe that x cannot be an auxiliary variable because
we assume that auxiliary variables appear never together and always in the same, fixed
order. Thus, the following two cases remain:

(a) The variable x occurs on π ′ together with an auxiliary variable, say z′, that is dif-
ferent from z. Since we assume the run of A on v to be along π ′, this means
(c, y1, . . . , yk) |� x = z′. Consequently, (c, y1, . . . , yk) �|� x = z because
x = z ∧ x = z′ is unsatisfiable if z �= z′. However, the path guard ψπ contains
the local constraint x = z (see Case 1). Thus, (c, y1, . . . , yk) �|� ψπ , which yields a
contradiction.

(b) The variable x does not occur together with an auxiliary variable on π ′. Since we
assume the run of A on v to be along π ′, this means (c, y1, . . . , yk) |� head →∗ x .
Consequently, (c, y1, . . . , yk) �|� x = z because z is an auxiliary variable that occurs
before head. However, the path guard ψπ contains the local constraint x = z (again,
see Case 1). Thus, (c, y1, . . . , yk) �|� ψπ , which yields a contradiction.
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2. The input-symbol ai on π does not contain an auxiliary variable; that is, qi belongs to the
data structure part of π . Since we assume the run of A on v to be along π ′, the variable
x ′ points to a cell that is located before the cell pointed to by x . Hence, (c, y1, . . . , yk) |�
x ′ →+ x . Consequently, (c, y1, . . . , yk) �|� x →∗ x ′ because x →∗ x ′ ∧ x ′ →+ x is
unsatisfiable. However, the path guard ψπ implies x →∗ x ′ (see Cases 4 and 5) although
it might not contain this subformula explicitly. Thus, (c, y1, . . . , yk) �|� ψπ , which yields
the desired contradiction. ��

Using Lemma 1, we can now prove Part (a) of Theorem 5.

Proof (of Theorem 5(a))LetA be anEQDAoverPV andY , y1 ≺ · · · ≺ yk the predetermined
order in which the universally quantified variables have to occur in the input of A, and ϕA
the formula in the decidable syntactic fragment of Strand resulting from our translation. In
addition, let c be a program configuration and uc the data word modeling c.

We first show the direction from left to right (i.e., uc ∈ Ldat(A) implies (c) |� ϕA) and
subsequently the reverse direction (i.e., (c) |� ϕA implies uc ∈ Ldat(A)).

From left to right Let uc ∈ Ldat(A). In order to prove that the interpretation (c) satisfies
ϕA:=∀y1 : . . . ∀yk : (ϕsp ∧ ϕ¬sp), we fix an arbitrary valuation y1, . . . , yk of Y and show

(c, y1, . . . , yk) |� ϕsp ∧ ϕ¬sp.

In the case that head →∗ y1 →+ · · · →+ yk →∗ tail does not hold, we first observe that
(c, y1, . . . , yk) does not satisfy any path guard because each path guard implies head →∗
y1 →+ · · · →+ yk →∗ tail. Hence, (c, y1, . . . , yk) |� ϕsp since the antecedent of each path
formula is unsatisfied. Moreover, (c, y1, . . . , yk) does not satisfy the antecedent of ϕ¬sp and,
consequently, (c, y1, . . . , yk) |� ϕ¬sp. Thus, (c, y1, . . . , yk) |� ϕsp ∧ ϕ¬sp.

In the case that head →∗ y1 →+ · · · →+ yk →∗ tail holds, let v be the valuation word
resulting from extending uc with the valuation y1, . . . , yk (which implies dw(v) = uc). We
proceed the proof by first showing that (c, y1, . . . , yk) satisfies ϕsp and subsequently that it
satisfies ϕ¬sp.

1. Since uc ∈ Ldat(A), the valuationword v is also accepted byA, say along the simple path
π . This particularly means that the unique run of A on v ends in a configuration (q, r)
with r |� f (q). By Lemma 1, we know (c, y1, . . . , yk) |� ψπ . Moreover, since f (q) =
χπ and r |� f (q), we also know (c, y1, . . . , yk) |� χπ and, thus, (c, y1, . . . , yk) |�
ψπ → χπ . On the other hand, Lemma 1 asserts that no other path guard is satisfied by
(c, y1, . . . , yk). Thus, (c, y1, . . . , yk) |� ϕsp.

2. The fact that (c, y1, . . . , yk) |� ψπ holds (see above) implies (c, y1, . . . , yk) �|�
¬(

∨
π∈PA ψπ). Hence, the antecedent of ϕ¬sp is not satisfied and, therefore,

(c, y1, . . . , yk) |� ϕ¬sp.

Thus, (c, y1, . . . , yk) |� ϕsp ∧ ϕ¬sp.
In total, uc ∈ Ldat(A) implies (c) |� ϕA.

From right to left Let uc be a data word with uc /∈ Ldat(A) and c the corresponding program
configuration. We need to show that c does not satisfy ϕA.

Since uc /∈ Ldat(A), there exists a valuation y1, . . . , yk and a corresponding valuation
word v (i.e., uc extended by y1, . . . , yk results in v) such that v /∈ Lval(A). This valuation
word is rejected either
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1. due to a missing transition; or
2. due to the fact that the run of A on v ends in a configuration (q, r) with r �|� f (q).

In the first case, the run of A on v does not lead along a simple path. By Lemma 1, this
implies (c, y1, . . . , yk) �|� ψπ for every π ∈ PA. Hence, (c, y1, . . . , yk) |� ¬(

∨
π∈PA ψπ).

Since we assume that A accepts all valuation words that violate the fixed order of the
universally quantified variables or where at least one of these variables points to nil, we
know that (c, y1, . . . , yk) |� head →∗ y1 →+ · · · →+ yk →∗ tail holds. Thus,
(c, y1, . . . , yk) �|� ϕ¬sp and, consequently, c �|� ϕA.

In the second case, the run of A on v leads along a simple path, say π , ending in the
configuration (q, r). By Lemma 1, this implies (c, y1, . . . , yk) |� ψπ . However, since
r �|� f (q) = χπ , we have (c, y1, . . . , yk) �|� χπ . Thus, (c, y1, . . . , yk) �|� ϕsp (because
(c, y1, . . . , yk) �|� ψπ → χπ ) and, consequently, c �|� ϕA.

In total, uc /∈ Ldat(A) implies (c) �|� ϕA (i.e., (c) |� ϕA implies uc ∈ Ldat(A)). ��

Array Property Fragment The approximation in Case 4 of our translation is the reason why
Theorem5 holds only in one direction in the case of a translation into theArray Property Frag-
ment. In order to prove this direction, we first show that the path guardψπ overapproximates
the structural constraints of π . The next lemma formalizes this.

Lemma 2 Let A be an EQDA over the finite set PV of pointer variables and the finite,
nonempty set Y of universally quantified variables, π a simple path in A, and ψπ the
corresponding path guard in the Array Property Fragment. Moreover, let c be a program con-
figuration, y1, . . . , yk a valuation of Y , and v the valuation word modeling c and y1, . . . , yk .
Then, the following implication holds:

if the unique run ofA on v is along π, then (c, y1, . . . , yk) |� ψπ .

Proof One can proveLemma2 in the sameway as Lemma1 (see Page 29): again, we consider
each local constraint ψ of a path guard individually and show (c, y1, . . . , yk) |� ψ . In fact,
we can reuse the proof of Lemma 1 except for a slightly different treatment of Case 4, which
we sketch below.

Assume that ψ has been added at state qi of the simple path π = q0
a1−→ . . .

an−→ qn , and
let x1 ∈ ai and x2 ∈ ai+1.

If x1 /∈ Y or x2 /∈ Y , then this situation matches Case 4 of the proof of Lemma 1 and
immediately yields the desired result.

If x1 ∈ Y , x2 ∈ Y , and both variables do not occur together with a pointer variable, then
the translation adds ψ := x1 ≤ x2 instead of the “correct” constraint x1 < x2. However,
we know that all variables x ∈ ai occur before the variables x ′ ∈ ai+1 because the run
of A on v is along π . Thus, (c, y1, . . . , yk) |� x < x ′ for all such x, x ′, which implies
(c, y1, . . . , yk) |� x1 ≤ x2 (i.e., (c, y1, . . . , yk) |� ψ). ��

We can now prove Part (b) of Theorem 5.

Proof (of Theorem 5(b))LetA be anEQDAoverPV andY , y1 ≺ · · · ≺ yk the predetermined
order in which the universally quantified variables have to occur in the input of A, and
ϕA the formula in the Array Property Fragment resulting from our translation. Moreover,
let c be a program configuration and uc the data word modeling c. Finally, assume uc ∈
Ldat(A).
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We have to show that (c) is a model of ϕA. This proof is similar to the direction from left
to right of the proof of Theorem 5(a): we again fix an arbitrary valuation y1, . . . , yk of Y and
show

(c, y1, . . . , yk) |� ϕsp ∧ ϕ¬sp.

In the case that 0 ≤ y1 ≤ · · · ≤ yk < size does not hold, we again observe that
(c, y1, . . . , yk) does not satisfy any path guard because each path guard implies 0 ≤ y1 ≤
· · · ≤ yk < size. Hence, (c, y1, . . . , yk) |� ϕsp since the antecedent of each path formula
is unsatisfied. Moreover, (c, y1, . . . , yk) does not satisfy the antecedent of ϕ¬sp and, conse-
quently, (c, y1, . . . , yk) |� ϕ¬sp. Thus, (c, y1, . . . , yk) |� ϕsp ∧ ϕ¬sp.

In the case that 0 ≤ y1 ≤ · · · ≤ yk < size holds, we distinguish two cases:

1. All universally quantified variables are different; that is, yi �= y j holds for all i, j ∈
{1, . . . , k}with i �= j . In this case, let v be the valuationword resulting from extending uc
with the valuation y1, . . . , yk . We proceed the proof by first showing that (c, y1, . . . , yk)
satisfies ϕsp and subsequently that it satisfies ϕ¬sp.

(a) Since uc ∈ Ldat(A), the valuation word v is also accepted by A, say along the
simple path π . By Lemma 2, we know that then (c, y1, . . . , yk) |� ψπ holds. Since
v ∈ Lval(A), the registers satisfy the data formula of the final state of π . Thus,
(c, y1, . . . , yk) |� χπ and, consequently, (c, y1, . . . , yk) |� ψπ → χπ .

To complete this case, we argue that there exists no other path π ′ ∈ PA with π ′ �= π

and (c, y1, . . . , yk) |� ψπ ′ . Towards a contradiction, assume the contrary and let π ′
such a simple path. By using arguments similar to those in the direction from right
to left of the proof of Lemma 1, one can show that this can only happen due to an
overapproximation of the form yi ≤ y j (rather than yi < y j ). This, in turn, implies that
there exists i, j ∈ {1, . . . , k} with i < j and yi = yk , which contradicts the assumption
that all universally quantified variables are different.
In total, (c, y1, . . . , yk) satisfies the path formula of each simple path. Hence,
(c, y1, . . . , yk) |� ϕsp.

(b) Since uc ∈ Ldat(A), we know that there exists a simple path π ∈ PA such that
(c, y1, . . . , yk) |� ψπ (see above). Thus, (c, y1, . . . , yk) �|� ¬(

∨
π∈PA ψπ) because

removing subformulas of the form ¬(y ≤ y′) from a path guard potentially results in
more interpretations satisfying it and, thus, less satisfying its negation. This implies
(c, y1, . . . , yk) |� ϕ¬sp since we assume 0 ≤ y1 ≤ · · · ≤ yk < size.

Thus, (c, y1, . . . , yk) |� ϕsp ∧ ϕ¬sp.
2. There exist i, j ∈ {1, . . . , k} such that i < j and yi = y j . In this case, there might

be a simple path π ∈ PA such that (c, y1, . . . , yk) |� ψπ . Since universally quantified
variables never occur together on a simple path (due to the choice of the input alphabet of
QDAs), (c, y1, . . . , yk) can only satisfyψπ due to the overapproximation yi ≤ y j (rather
than yi < y j ) introduced by Case 4 of our translation. This means that the formula χπ is
constructed by taking the disjunction of the formulas f (q) (assuming that q is the final
state of π), d(yi ) = d(y j ), and potentially other formulas of the form d(y) = d(y′) for
y, y′ ∈ Y . Thus, (d(yi ) = d(y j )) → χπ . Since yi = y j , we have d(yi ) = d(y j ) and,
hence, (c, y1, . . . , yk) |� χπ . This, in turn, means (c, y1, . . . , yk) |� ψπ → χπ . Since
these arguments are true for all simple paths π ′ ∈ PA for which (c, y1, . . . , yk) |� ψπ ′
holds, (c, y1, . . . , yk) |� ϕsp.
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On the other hand, (c, y1, . . . , yk) |� ϕ¬sp because (c, y1, . . . , yk) satisfies the consequent
of ϕ¬sp due to the equality yi = y j . Thus, (c, y1, . . . , yk) |� ϕsp ∧ ϕ¬sp.

In total, uc ∈ Ldat(A) implies (c) |� ϕA. ��

8 A case study on learning invariants of linear data structures

We apply the active learning algorithm for QDAs, described in Sect. 5, in a passive learning
framework in order to learn quantified invariants over lists and arrays from a finite set of
samples S obtained from dynamic test runs. In this section, we present the implementation
details and the experimental results of our evaluation.

8.1 Implementing the teacher

In an active learning algorithm, the learner can query the teacher for membership and equiv-
alence queries. In order to build a passive learning algorithm from a sample S, we build a
teacher, who will use S to answer the questions of the learner, ensuring that the learned set
contains S.

The teacher knows S and wants the learner to construct a small automaton that includes
S; however, the teacher does not have a particular language of data words in mind, and hence
cannot answer questions precisely. We build a teacher who answers queries as follows: On a
membership query for a word w, the teacher checks whether w belongs to S and returns the
corresponding data formula. The teacher has no knowledge about the membership for words
which were not realized in test runs, and she rejects these. She also does not know whether
the formula she computes on words that get manifest can be weaker; but she insists on that
formula. By doing these, the teacher errs on the side of keeping the invariant semantically
small. On an equivalence query, the teacher just checks that the set of samples S is contained
in the conjectured invariant. If not, the teacher returns a counter-example from S.

Note that the passive learning algorithm hence guarantees that the automaton learned will
be a superset of S, and the running time of the algorithm is guaranteed to be polynomial in
the size of the learned automaton. We show the efficacy of this passive learning algorithm
using experimental evidence later in this section.

8.2 Implementation of a passive learner of invariants

We first take a program and using a test suite, extract the set of concrete data structures that
get manifest at loop-headers (for learning loop invariants) and at the beginning and end of
functions (for learning pre/post-conditions). The test suite was generated by enumerating all
possible arrays/lists of a small bounded length, and with data-values in them from a small
bounded domain.We then convert the data structures into a set of formula words, as described
below, to get the set S on which we perform passive learning.

We first fix the formula lattice F over data formulas to be the Cartesian lattice of atomic
formulas over relations {=,<,≤}. This is sufficient to capture the invariants of many inter-
esting programs such as sorting routines, searching a list, in-place reversal of sorted lists,
etc. Using lattice F , for every program configuration which was realized in some test run,
we generate a formula word for every valuation of the universal variables over the program
structures.We represent these formulawords as amapping from the symbolic word, encoding
the structure, to a data formula in the lattice F . If different inputs realize the same structure
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but with different data formulas, we associate the symbolic word with the join of the two
formulas.

8.3 Implementing the learner

We used the libALF library [4] as an implementation of the active learning algorithm [3].
We adapted its implementation to our setting by modeling QDAs as Moore machines. If the
learned QDA is not elastic, we elastify it as described in Sect. 6. The result is then converted
to a quantified formula over Strand or the APF and we check if the learned invariant
was adequate and inductive. Due to the unavailability of an implementation of the Strand
decision procedure, we checked the inductiveness of the invariants learned over list data-
structures by manually inspecting the learned QDAs. For programs over arrays, we checked
the inductiveness of the learned invariants by manually generating the verification conditions
and validating them using the Z3 solver [30] . In the case of arrays, the APF formula that
corresponds to aQDAand presented in Sect. 7 over-approximates the semantics of theEQDA.
To obtain better results in the implementation, we used a more precise formula in which ϕ¬sp

is replaced by the formula [(0 ≤ y1 < · · · < yk < size) ∧ ¬(
∨

π∈PA ψπ)] → false.
Although this formula does not fall in the APF, the constraint solver was able to handle it in
our experiments.

8.4 Experimental results

We evaluate our approach on a suite of programs for learning invariants and preconditions.
Our experimental results are tabulated in Table 1. 3 For every program, we report the number
of lines of C code, the number of test inputs and the time (Tteach) taken to build the teacher
from the samples collected along these test runs. We next report the number of equivalence
and membership queries answered by the teacher in the active learning algorithm, the size of
the final elastic automata in terms of the number of states, whether the learned QDA required
any elastification or not and finally, the time (Tlearn) taken to learn the QDA.

The first part of the table presents results for learning loop invariants.We first report results
for programs manipulating arrays like finding a key in an array, copying and comparing two
arrays and simple sorting algorithms over arrays. The inner and outer suffix in insertion and
selection sort corresponds to learning loop-invariants for the inner and the outer loops in those
sorting algorithms. We next present results for programs that manipulate lists and includes
programs to find a key in a sorted list, insert a key in a sorted list such that the resulting list is
sorted, initialize all nodes in a list with the value of a key, return the maximum data value in
a list, merge two disjoint sorted lists such that the resulting list is also sorted, partition a list
into two lists such that one list consists of elements that satisfy a given predicate and the other
list consists of nodes that do not, and an in-place reversal of a sorted list where we check
whether the output list is reverse-sorted. The programs bubble-sort, fold-split and quick-sort
are taken from [5]. The program list-init-complex sorts an input array using heap-sort and then
initializes a list with the contents of this sorted array. Since heap-sort is a complex algorithm
that views an array as a binary tree, none of the current automatic white-box techniques
for invariant synthesis can handle such complex programs. However, our learning approach
being black-box, we are able to learn the correct invariant, which is that the list is sorted.
Similarly, synthesizing post-condition annotations for recursive procedures like merge-sort
and quick-sort is in general difficult for white-box techniques, like interpolation, which

3 The benchmark suite and the source code of our implementation is available at http://www.cs.uiuc.edu/
~madhu/cav13/.
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Table 1 Experimental results

Program LOC #Test Tteach # # # Elasti Tlearn
inputs (s) Eq. Mem. States ified? (s)

Learning loop invariants

array-find 25 310 0.05 2 121 8 No 0.00

array-copy 25 7380 1.75 2 146 10 No 0.00

array-compare 25 7380 0.51 2 146 10 No 0.00

insertion-sort-outer 30 363 0.19 3 305 11 No 0.00

insertion-sort-innner 30 363 0.30 7 2893 23 Yes 0.01

selection-sort-outer 40 363 0.18 3 306 11 No 0.01

selection-sort-inner 40 363 0.55 9 6638 40 Yes 0.05

list-sorted-find 20 111 0.04 6 1683 15 Yes 0.01

list-sorted-insert 30 111 0.04 3 1096 20 No 0.01

list-init 20 310 0.07 5 879 10 Yes 0.01

list-max 25 363 0.08 7 1608 14 Yes 0.00

list-sorted-merge 60 5004 10.50 7 5775 42 No 0.06

list-partition 70 16395 11.40 10 11807 38 Yes 0.11

list-sorted-reverse 25 27 0.02 2 439 18 No 0.00

list-bubble-sort 40 363 0.19 3 447 12 No 0.01

list-fold-split 35 1815 0.21 2 287 14 No 0.00

list-quick-sort 100 363 0.03 1 37 5 No 0.00

list-init-complex 80 363 0.05 1 57 6 No 0.01

lookup_prev 25 111 0.04 3 1096 20 No 0.01

add_cachepage 40 716 0.19 2 500 14 No 0.01

Glib sort (merge) 55 363 0.04 1 37 5 No 0.00

Glib insert_sorted 50 111 0.04 2 530 15 No 0.01

devres 25 372 0.06 2 121 8 No 0.00

rm_pkey 30 372 0.06 2 121 8 No 0.00

GNU Coreutils sort 2500 1 File 0.00 17 4996 5 Yes 0.07

Learning method preconditions

list-sorted-find 20 111 0.01 1 37 5 No 0.00

list-init 20 310 0.02 1 26 4 No 0.00

list-sorted-merge 60 329 0.06 3 683 19 No 0.01

require a post-condition. Further more, many white-box tools based on interpolation, such
as SAFARI [1], cannot handle list-structures, and also cannot handle array-based programs
with quantified preconditions which precludes verifying the array variants of programs like
list-sorted-find, list-sorted-insert, etc., which we can handle.

Next, in Table 1, we present results for verifying methods or code fragments picked from
real-world programs. The methods lookup_prev and add_cachepage are from the module
cachePage in ExpressOS, which is a verified-for-security OS platform for mobile appli-
cations [26]. The module cachePage maintains a cache of the recently used disc pages
as a priority queue based on a sorted list. Next, the method sort is a merge sort imple-
mentation and insert_sorted is a method for inserting a key into a sorted list. Both these
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methods are from the Glib library, which is a low-level C library that forms the basis of
the GTK+ toolkit and the GNOME environment. The methods devres and rm_pkey are
methods adapted from the Linux kernel and an Infiniband device driver, both mentioned
in [23]. Finally, we learn the sortedness property (with respect to the method compare that
compares two lines) of the method sortlines which lies at the heart of the GNU core util-
ity to sort a file. The time taken by our technique to learn an invariant, being black-box,
largely depends on the complexity of the property and not the size of the code, as is evident
from the successful application of our technique to this large program. In this particular
case, we ran the sort utility on an input text file which called the method sortlines mul-
tiple times with different array inputs; formula words obtained from these concrete array
configurations as described earlier in this Section form the sample S that the teacher uses
to learn an invariant. We also used our learning approach for learning method precondi-
tions, given a test suite; the results for those experiments are presented in the second part
of the table. Several methods in our collection of programs have the same method precon-
ditions such as the input argument points to a list or that the input argument points to a
sorted list; we only report results in the table for three methods that have different precondi-
tions.

All experiments were completed on an Intel Core i5 CPU at 2.4GHz with 6GB of RAM.
For all examples, our prototype implementation learns an adequate invariant really fast.
Though the learned QDA might not be the smallest automaton representing the samples S
(because of the inaccuracies of the teacher), in practice we find that they are reasonably small
(fewer than 50 states). Moreover, we verified that the learned invariants were adequate for
proving the programs correct by generating verification conditions and validating them using
an SMT solver (these verified in less than 1s). It is possible that SMT solvers can sometimes
even handle non-elastic invariants and VCs; however, in our experiments, the Z3 SMT solver
we used was not able to handle such formulas without giving extra triggers, thus suggesting
the necessity of the elastification of QDAs. It is important to note that the learned invariants
might not always be inductive, even though this situation did not arise in our experiments.
Exploring automated test generation techniques such asKLEE [8] to create amore exhaustive
test suite that prevents this situation from arising is an interesting direction for future work.
In the current setting, if the invariant learned is not inductive or is inadequate we try to learn
from an improved test suite by running the program on more test inputs. ICE learning [15]
is a new, active learning model in which the teacher answers equivalence queries only and
refutes the current invariant hypothesis, if it is not adequate or inductive, by adding a positive,
negative or an implication counter-example. The ICE learning algorithms for QDAs are more
robust that the one presented here and ensure that the invariants learned are adequate and
inductive [15].

Learnt invariants are complex in some programs; for example, Fig. 5 contains a graphical
depiction of the invariant EQDA we learned for the program list-sorted-find. If we read the
rightmost simple path in the EQDA from state q0 to q1 to state q14, and then to q3 and q9, it
handles the case when head = cur �= nil and head →+ y1 and y1 →+ y2 and the EQDA
asserts that the data at location pointed to by y1 is less than or equal to the data at y2. In
totality, the EQDA corresponds to the following formula: head �= nil ∧ (∀y1y2.head →∗ y1 →∗
y2 ⇒ d(y1) ≤ d(y2)) ∧ ((cur = nil ∧ ∀y1.head →∗ y1 ⇒ d(y1) < k) ∨ (head →∗ cur ∧ ∀y1.head →∗
y1 →+ cur ⇒ d(y1) < k)).
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Fig. 5 The learned EQDA that corresponds to the loop invariant of the program list-sorted-find

9 Conclusions

We have presented a new automaton model called quantified data automata that can express
universally quantified properties of linear data structures, and which can be used to express
properties, including invariants, of arrays and lists. We have studied the theory of QDA,
defined a subclass called elastic QDA that has decidable emptiness, and built active learn-
ing algorithms at the level of formula words. Finally, we have adapted the active learning
algorithm for QDAs/EQDAs to learn invariants of programs manipulating arrays and lists,
where the decidability of EQDAs and their translation to decidable theories of arrays and
lists, yields a verification technique.

EQDA can also be seen as an abstract domain, and there has been recent work exploiting
this to build an abstract interpretation framework for finding invariants in programs manip-
ulating linear data structures [16].

Neither active learning nor passive learning are robust learning frameworks for synthe-
sizing invariants, since there is no way for the teacher to ensure that the learned invariants
are inductive. A new model of learning, called ICE learning, proposes active learning using
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examples, counter-examples, and implication pairs, with correctness queries only, and is a
much more robust model for synthesizing invariants [15]. An ICE learning algorithm for
QDAs/EQDAs has also been developed [15].

We believe that learning of structural conditions of data structure invariants using automata
is an effective technique, especially for quantified properties where passive or machine-
learning techniques are not currently known. However, for the data-formulas themselves,
machine learning can be very effective [34], and we would like to explore combining
automata-based structural learning (for words and trees) with machine-learning for data-
formulas, especially for the ICE learning framework.
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