
The MSO Theory of Connectedly

Communicating Processes

P. Madhusudan1, P. S. Thiagarajan2, and Shaofa Yang2

1 Dept. of Computer Science, University of Illinois at Urbana-Champaign
Email: madhu@cs.uiuc.edu

2 School of Computing, National University of Singapore
Email: thiagu,yangsf@comp.nus.edu.sg

Abstract. We identify a network of sequential processes that commu-
nicate by synchronizing frequently on common actions. More precisely,
we demand that there is a bound k such that if the process p executes k

steps without hearing from process q—directly or indirectly—then it will
never hear from q again. The non-interleaved branching time behavior
of a system of connectedly communicating processes (CCP) is given by
its event structure unfolding. We show that the monadic second order
(MSO) theory of the event structure unfolding of every CCP is decidable.
Using this result, we also show that an associated distributed controller
synthesis problem is decidable for linear time specifications that do not
discriminate between two different linearizations of the same partially
ordered execution.

1 Introduction

Sequential systems can be represented as transition systems and their behav-
iors can be specified and verified using a variety of linear time and branching
time logics. One can view the monadic second order (MSO) logic of 1-successor
interpreted over strings as the canonical linear time logic and the MSO logic
of n-successors interpreted over regular trees as the canonical branching time
logic [12] for sequential systems. All other reasonable logics can be viewed as
specializations of these two logics with expressive power often traded in for more
efficient verification procedures.

In the case of concurrent systems the situation is similar in many respects. As
for models, one can choose asynchronous transition systems or 1-safe Petri nets
or some other equivalent formalism [15]. In the linear time setting, Mazurkiewicz
traces—viewed as restricted labelled partial orders—constitute a nice generaliza-
tion of sequences and the MSO logic of sequences can be smoothly extended to
Mazurkiewicz traces [1]. In the branching time setting, it is clear that labelled
event structures [15] are an appropriate extension of trees. Further, just as a
transition system can be unwound into a (regular) tree, so can an asynchronous
transition system or 1-safe Petri net be unwound into a (regular) labelled event
structure [15]. One can also define a natural MSO logic for event structures in
which the causality relation (a partial order) and the conflict relation are the

non-logical predicates and quantification is carried out over individual and sub-
sets of events. But at this stage, the correspondence between the sequential and
concurrent settings breaks down.

One can say that the MSO theory—of the branching time behavior—of a
transition system is the MSO theory of the tree obtained as its unwinding.
According to Rabin’s famous result [11], the MSO theory of every finite state
transition system is decidable. In the concurrent setting, it is natural to say
that the MSO theory—of the non-interleaved branching time behavior—of a
finite asynchronous transition system is the MSO theory of the event structure
obtained as its event structure unfolding. The trouble is, it is not the case that the
MSO theory of every finite asynchronous transition system is decidable. Hence
an interesting question is: what is the precise subclass of finite asynchronous
transition systems for which the MSO theory is decidable?

We provide a partial answer to this question by exhibiting a subclass of finite
asynchronous transition systems called, for want of a better term, Connectedly
Communicating Processes (CCPs), whose MSO theories are decidable. As the
name suggests, in a CCP, processes communicate with each other frequently.
More precisely, there is a bound k such that if process p executes k steps without
hearing from process q either directly or indirectly and reaches a state s, then
starting from s it will never hear from q again, directly or indirectly. This class
of systems properly includes two subclasses of 1-safe net systems that we know
of, which have decidable MSO theories. These two subclasses are: the sequential
net systems that do not exhibit any concurrency and dually, the conflict-free net
systems which do not exhibit any branching—due to choices—in their behavior.

One motivation for studying branching time temporal logics in a non-
interleaved setting has to do with distributed controller synthesis. More specifi-
cally, for distributed systems, where one is interested in strategies that are not
dependent on global information—and hence can be synthesized in turn as a
distributed controller—one needs to look at partial order based branching time
behaviors. This is the case even if the controller must satisfy just a linear time
specification. Here, as an application of our main result, we establish the decid-
ability of a distributed controller synthesis problem where the plant model is
based on a CCP and the specification is a robust (trace-closed) ω-regular lan-
guage. By a robust language we mean one that does not discriminate between
two different interleavings of the same partially ordered execution.

The communication criterion we impose is motivated by results in undecid-
ability of distributed control. Most undecidability proofs in distributed control
rely on the undecidability of multi-player games with partial information where
the players (in our case processes) have an unbounded loss of information on the
status of other players. Our restriction ensures that the processes communicate
often enough so that this partial information stays bounded.

Our proof technique consists of extracting a regular tree from the event
structure induced by a CCP with the nodes of this tree corresponding to the
events of the event structure such that the causality relation is definable in
the MSO theory of trees. This representation is obtained directly and broadly

preserves the structure of the event structure. Similar ideas have been used in
other—tenuously related—settings [3, 4].

Turning to more directly related work, a variety of branching time logics
based on event structures have been proposed in the literature (see for in-
stance [9] and the references therein) but few of them deal directly with the
generalization of Rabin’s result. In this context, a closely related work is [5]
where it is shown, in present terms, that the MSO theories of all finite asyn-
chronous transition systems are decidable provided set quantification is restricted
to conflict-free subsets of events. It is however difficult to exploit this result to
solve distributed controller synthesis problems.

Following the basic undecidablity result reported in [10], positive results in
restricted settings are reported in [7, 8, 14]. However, [7] considers processes
communicating via buffers as also [14] in a more abstract form. On the other
hand, [8] imposes restrictions on communication patterns that are much more
severe than the property we demand here. Our notion of strategies considered
in this paper are local in the sense that each process’s strategy is based on its
local view of the global history, consisting of its own sequence of actions as well
as the sequence of actions executed by other agents that it comes to know about
through synchronizations. The work in [6] also considers view-based strategies,
and shows that for simulations, the problem is undecidable. A more recent study
that uses view-based strategies is [2]. This work is also based on asynchronous
transition systems, but the restrictions placed on the plants concerned is in terms
of the trace alphabet associated with the plant rather than the communication
patterns. As a result, this subclass is incomparable with the subclass of CCPs.
Finally, decentralized controllers have also been studied (see for instance [13] and
its references) where the plant is monolithic but one looks for a set of controllers
each of which can control only a subset of the controllable actions.

In the next section we formulate our model and in section 3 we show that
the MSO theory of every CCP is decidable. We use this result in section 4 to
solve a distributed controller synthesis problem. We discuss a number of possible
extensions in the concluding part of the paper. Due to lack of space, many proofs
are omitted and can be found in the technical report at www.comp.nus.edu.sg
/~thiagu/fsttcs05.

2 Connectedly Communicating Processes

We fix a finite set of processes P and let p, q, range over P . For convenience,
we will often write a P-indexed family {Xp}p∈P simply as {Xp}. A distributed
alphabet over P is a pair (Σ, loc) where Σ is a finite alphabet of actions and
loc : Σ → 2P \ {∅} identifies for each action, a nonempty set of processes (lo-
cations) that take part in each execution of the action. Σp is the set of actions
that p participates in and it is given by {a | p ∈ loc(a)}. Fix such a distributed
alphabet for the rest of the paper.

We will formulate our model in terms of deterministic asynchronous tran-
sition systems. We impose determinacy only for convenience. All our results

will go through, with minor complications, even in the absence of determi-
nacy. An asynchronous transition system (ATS) over (Σ, loc) is a structure
A = ({Sp}, sin , {δa}a∈Σ) where Sp is a finite set of p-states for each p and
sin ∈

∏
p∈P

Sp. Further, δa ⊆
∏

p∈loc(a) Sp×
∏

p∈loc(a) Sp for each a. The ATS A

is deterministic if for each a, (sa, s′a), (sa, s′′a) ∈ δa implies s′a = s′′a. From now on
we will implicitly assume that the ATSs we encounter are deterministic. Mem-
bers of

∏
p∈P

Sp are referred to as global states. It will be convenient to view the
global state s as a map from P into

⋃
Sp such that s(p) ∈ Sp for every p. For

the global state s and P ⊆ P , we will let sP denote the map s restricted to P .
An example of an asynchronous transition system is shown in figure 1(i), where
the locations of an action is assumed are the components in which it appears as
a label of a local transition.

•a
c

•

•

a

g

y •

h

•b
c

•

•

b

x

g •

y

•d

•

d

x h

p q r

•

a

•

c

•

a

g

y •

h

•

b

•

c

•

b

x

g •

y

•d

•

d

x h

p q r

a b

a g x b

b h d

x d

(i) (ii) (iii)

Fig. 1.

The dynamics of A is given by a transition system TSA = (RSA, sin , Σ,→A)
where RSA ⊆

∏
p∈P

Sp, the set of reachable global states, and →A ⊆
RSA × Σ × RSA are least sets satisfying: Firstly, sin ∈ RSA. Secondly, sup-
pose s ∈ RSA and s′ ∈

∏
p∈P

Sp such that (sP , s′P) ∈ δa and sQ = s′Q where

P = loc(a) and Q = P \ P . Then s′ ∈ RSA and s
a
→A s′. We extend →A to

sequences in Σ? in the obvious way. We define L(A) = {σ ∈ Σ? | ∃s. sin
σ
→A s}.

We shall use (Mazurkiewicz) trace theory to capture the notion of connect-
edly communicating. It will also come in handy for defining the event structure
semantics of asynchronous transition systems. We first recall that a trace al-
phabet is a pair (Γ, I) where Γ is a finite alphabet set and I ⊆ Γ × Γ is an
irreflexive and symmetric relation called the independence relation. The trace
alphabet (Σ, I) induced by the distributed alphabet (Σ, loc) is given by : aI b iff
loc(a)∩ loc(b) = ∅. Clearly I is irreflexive and symmetric. We let D = (Σ×Σ)\I
denote the dependency relation. The independence relation is extended to Σ?

via: σ I σ′ iff a I b for every letter a that appears in σ and every letter b that ap-
pears in σ′. In what follows, we let σ, σ′ range over Σ?. As usual, ∼I is the least
equivalence relation contained in Σ? × Σ? such that σabσ′ ∼I σbaσ′ whenever
a I b. We let σ � p be the Σp-projection of σ. It is the sequence obtained by eras-
ing from σ all appearances of letters that are not in Σp. We define |σ|p = |σ � p|
where |τ | denotes the length of the sequence τ . In what follows, we will often
write ∼ instead of ∼I .

We say that two processes p and q are separated in σ if there exist τ, τ ′ ∈ Σ?

such that σ ∼ ττ ′ and τ I τ ′ and |τ |q = |τ ′|p = 0. Thus in the execution
represented by σ there can be no flow of information from q to p or conversely.
The asynchronous transition system A is k-communicating if for every s ∈ RSA

and every p, q, the following condition is satisfied: Suppose s
σ
→A s′ and |σ|p ≥ k

and |σ|q = 0. Then p and q are separated in σ′ for any s′
σ′

→A s′′.

We shall say that A is connectedly communicating iff it is k-communicating
for some k. Clearly A is connectedly communicating iff it is K-communicating
where K is at most |RSA|. Furthermore, one can effectively determine whether
A is connectedly communicating. From now on we will often refer to a finite
deterministic connectedly communicating ATS as a CCP. The ATS shown in
figure 1(ii) is a CCP while the one shown in figure 1(i) is not. Note that the two
ATSs are based on the same distributed alphabet.

3 Decidability

We wish to prove that the MSO theory of the unfolding of every CCP is decid-
able. To formulate this result we begin with a brief account of event structures.

An event structure (often called a prime event structure) is a triple ES =
(E,≤, #) where (E,≤) is a poset such that for every e ∈ E, ↓ e = {e′ ∈ E |
e′ ≤ e} is a finite set. And # ⊆ E × E is an irreflexive and symmetric relation
such that, for every e1, e2 and e3, if e1 # e2 and e2 ≤ e3, then e1 # e3. E is the
set of events, ≤ the causality relation and # the conflict relation. The minimal
causality relation l is defined as: ele′ iff e < e′ and for every e′′, if e ≤ e′′ ≤ e′,
then e′′ = e or e′′ = e′. A Σ-labelled event structure is a structure (E,≤, #, λ)
where (E,≤, #) is an event structure and λ : E → Σ a labelling function.

The non-interleaved branching time behavior of A is naturally given by its
event structure unfolding [15]. This Σ-labelled event structure denoted ESA is
obtained as follows. We first note that L(A) is a trace-closed subset of Σ? in the
sense if σ ∈ L(A) and σ ∼ σ′ then σ′ ∈ L(A) as well. For a non-null sequence
σ ∈ Σ?, let last(σ) denote the last letter appearing in σ. In the present context,
we shall view a (Mazurkiewicz) trace as a ∼-equivalence class of strings and
denote the ∼-equivalence class containing the string σ as [σ]

∼
and often drop

the subscript ∼. The partial ordering relation v over traces is given by : [σ] v [σ′]
iff there exists σ′′ in [σ′] such that σ is a prefix of σ′′. A trace [σ] is prime iff σ is
non-null and for every σ′ in [σ], last(σ) = last(σ′). Thus for a prime trace [σ], we
can set last([σ]) = last(σ). Now, ESA is defined to be the structure (E,≤, #, λ)
where

– E = {[σ] | σ ∈ L(A) and [σ] is prime}.
– ≤ is v restricted to E × E.

– # is given by: e # e′ iff there does not exist σ ∈ L(A) such that e v [σ] and
e′ v [σ], for every e, e′ ∈ E.

– λ(e) = last(e), for every e ∈ E.

It is easy to check that ESA is a Σ-labelled event structure. In fact, the labelling
function λ will respect the dependency relation D in the sense that if λ(e) D λ(e′)
then it will be the case that e ≤ e′ or e′ ≤ e or e # e′. And this will endow ESA

with a great deal of additional structure. In particular, it will let us define its
MSO theory using just the l relation and the labelling function as it will turn
out below. In what follows, we will often write ESA as just ES .

In figure 1(iii) we show an initial fragment of the event structure unfolding
of the system shown in figure 1(ii). As usual, directed arrows represent members
of the l relation and the squiggly edges represent the “minimal” members of
the # relation. The relations ≤ and # are to be deduced using the transitivity
of ≤ and the conflict inheritance axiom satisfied by an event structure.

We now define the syntax of the MSO logic over ESA as:

MSO(ESA) ::= Ra(x) | x l y | x ∈ X | ∃x (ϕ) | ∃X(ϕ) | ∼ ϕ | ϕ1 ∨ ϕ2 ,

where a ∈ Σ, x, y, . . . are individual variables and X, Y, . . . are set variables.
An interpretation I assigns to every individual variable an event in E and every
set variable, a subset of E. The notion of ES satisfying a formula ϕ under an
interpretation I, denoted ES |=I ϕ, is defined in the obvious way. For example,
ES |=I Ra(x) iff λ(I(x)) = a; ES |=I x l y iff I(x) l I(y).

It is a standard observation that ≤ can be defined in terms of l in the
presence of set quantification. We next observe that the conflict relation of ESA

admits an alternative characterization. Let the relation #̂D be given by: e #̂D e′

iff e � e′ and e′ � e and λ(e) D λ(e′). Next define #̂ as: e #̂ e′ iff there exist e1

and e1′ such that e1 #̂D e1′ and e1 ≤ e and e1′ ≤ e′. It is easy to verify that
#̂ = # and that #̂ is definable.

The MSO theory of ES is the set of sentences (formulas that do not have free
occurrences of individual or set variables) given by: {ϕ | ES |= ϕ}. The MSO
theory of ES is said to be decidable if there exists an effective procedure that
determines for each sentence ϕ in MSO(ES), whether ES |= ϕ. Finally, by the
MSO theory of A we shall mean the MSO theory of ESA. It is not difficult to
show that the MSO theory of the asynchronous transition system in figure 1(i)
is undecidable (as easily shown in our technical report). Our main result is:

Theorem 1. Let A be a CCP. Then the MSO theory of A is decidable.

Through the rest of this section, we assume A is k-communicating where
k ≤ |RSA|. Let TR = (Σ?, {succa}a∈Σ) be the infinite Σ-tree, where succa =
{(u, ua) | u ∈ Σ?}. In what follows, we shall denote the standard MSO logic of
n-successors (|Σ| = n) interpreted over TR as MSO(TR). Its syntax is:

MSO(TR) ::= succa(x, y) | x ∈ X | ∃x (ϕ) | ∃X(ϕ) | ∼ ϕ | ϕ1 ∨ ϕ2 .

The semantics is the standard one [12]. We shall show that the structure (E, l, λ)
can be embedded in TR and that this embedding can be defined in MSO(TR).
This will at once yield theorem 1 by the result that MSO(TR) is decidable [11].

Through the rest of the paper, we fix a total order lex on Σ. Often, we refer
to this order implicitly, for example, by speaking of a being less than b. Clearly

lex induces a total order over Σ? which we shall refer to as the lexicographic
order. For an event e in E with e = [σ], we let lin(e) be the lexicographically
least member in [σ]. Set LEXA = {lin(e) | e ∈ E}. In what follows, we will
write LEXA as just LEX . Clearly LEX ⊆ Σ? and hence members of LEX can
be looked upon as distinguished nodes in the tree TR. A pleasant fact is that
LEX is definable in MSO(TR).

Lemma 2. One can effectively construct a formula ϕLEX (x) with one free in-
dividual variable x such that for any interpretation I, TR |=I ϕLEX (x) iff
I(x) ∈ LEX .

Proof. It is easy to show that Levents = {σ | [σ] ∈ E} is a regular trace-closed
subset of Σ? and is hence a regular trace language. It is known that the col-
lection L̂lex obtained by picking the lexicographically least member of each
∼-equivalence class of a regular trace language L̂ is, in turn, a regular lan-
guage [1]. Thus LEX is a regular subset of Σ? and we can effectively construct
from A, a deterministic finite state automaton accepting LEX . Further, one can
describe the successful runs of this automaton in the form of a formula ϕLEX (x).

ut

Define now the relation lLEX ⊆ LEX × LEX by: σ lLEX σ′ iff [σ] l [σ′] in
ESA. Define also the map λLEX as λLEX (σ) = last(σ) for every σ ∈ LEX . It
now follows that (LEX , lLEX , λLEX) is isomorphic to the structure (E, l, λ).
Hence if we show that lLEX is definable in MSO(TR) then we are done. In this
light, the following result is crucial.

Lemma 3. There exists a constant K (which can be effectively computed from
A) with the following property: Suppose w = a1 . . . am, w′ = b1 . . . bn ∈ LEX .
Suppose further, wlLEX w′ and w is not a prefix of w′. Then |aiai+1 . . . am| ≤ K,
where i is the least index such that ai 6= bi.

Proof. Let e = [w] and e′ = [w′] so that e l e′. It follows from the definition
of ES that w′ ∼ wτ for some τ in Σ+. Hence bi is less than ai. We show that
bi I aiai+1 . . . am. This will easily yield that |aiai+1 . . . am| ≤ k|P|, following the
facts that A is k-communicating and [w′] is prime and w′ ∼ wbiτ

′ for some τ ′

in Σ+. Now suppose bi I aiai+1 . . . am does not hold. Let j (i ≤ j ≤ m) be the
least index such that aj D bi. A basic property of traces is that if a D b then
the {a, b}-projection of σ1 is identical to the {a, b}-projection of σ2 whenever
σ1 ∼ σ2. It follows that aj = bi. But then bi being less than ai would imply that
ŵ = a1 . . . ai−1biai . . . aj−1aj+1 . . . am ∼ w and clearly ŵ is lexicographically less
than w, a contradiction. ut

We can now show that lLEX is expressible in MSO(TR).

Lemma 4. One can effectively construct a formula ϕl(x, y) in MSO(TR) with
two free individual variables x and y such that, for any interpretation I,
TR |=I ϕl(x, y) iff I(x), I(y) ∈ LEX and I(x) lLEX I(y).

Proof. Let w, w′ ∈ LEX . Consider the condition C1 given by:

C1: w is a proper prefix of w′ and last(w) D last(w′)
and last(w) I w′′ where w′ = ww′′.

It is easy to see that if C1 is satisfied then w lLEX w′ and moreover, C1 is
definable in MSO(TR). Let K be the constant established in lemma 3. Now
consider the following conditions:

C2.1 : w = w0a1a2 . . . al with l ≤ K and
w′ = w0w

′
1a1w

′
2a2 . . . w′

lalw
′
l+1last(w

′).
C2.2 : w′

i I aj for 1 ≤ i ≤ j ≤ l and al I w′
l+1.

C2.3 : al D last(w′).

Let C2 be the conjunction of C2.1, C2.2 and C2.3. It is easy to see that if C2 is
satisfied then wlLEX w′ and also that C2 is definable in MSO(TR). What takes
some work is showing that if w lLEX w′ then C1 or C2 is satisfied. This can
however be achieved by faithfully applying the definitions of LEX and lLEX .

ut

We can now establish theorem 1. Define the map ‖·‖ from MSO(ESA) into
MSO(TR) inductively: ‖Ra(x)‖ = ∃y succa(y, x) and ‖x l y‖ = ϕl(x, y) where
ϕl(x, y) is the formula established in lemma 4. Next we define ‖x ∈ X‖ =
x ∈ X . Further, ‖∃x (Ψ)‖ = ∃x (ϕLEX (x) ∧ ‖Ψ‖) and ‖∃X (Ψ)‖ = ∃X ((∀x ∈
X ϕLEX(x)) ∧ ‖Ψ‖) where ϕLEX (x) is the formula established in lemma 2 . Fi-
nally, ‖∼ Ψ‖ = ∼ ‖Ψ‖ and ‖Ψ1 ∨ Ψ2‖ = ‖Ψ1‖ ∨ ‖Ψ2‖. It is now easy to show
that ESA |= Ψ iff TR |= ‖Ψ‖ for each sentence Ψ . It is also easy to see that our
decision procedure for determining the truth of the sentence Ψ in MSO(ESA) is
non-elementary in the size of Ψ but not in k.

4 Controller Synthesis

Our goal here is to define a distributed plant model based on deterministic ATSs
and show the decidability of the controller synthesis problem for CCPs.

A plant is a structure A = ({Senv
p }, {Ssys

p }, sin , Σenv , Σsys , {δa}a∈Σ) where
({Sp}, sin , {δa}a∈Σ) is a deterministic ATS over (Σ, loc), called the underlying
ATS of A with Sp = Senv

p ∪ Ssys
p and Senv

p ∩ Ssys
p = ∅ for each p. Further,

{Σenv , Σsys} is a partition of Σ such that for each a in Σenv , |loc(a)| = 1.
Finally, suppose (sa, s′a) ∈ δa and p ∈ loc(a). Then sa(p) ∈ Senv

p iff a ∈ Σenv

and hence loc(a) = {p}.
The sets Senv

p , Ssys
p are respectively the p-environment and p-system states.

The sets Σenv and Σsys are the environment (uncontrollable) and system (con-
trollable) actions respectively. Each component interacts with its local environ-
ment and these interactions are enabled only when the component is in one of
its environment states. We note that although the underlying ATS is determin-
istic, in general, a menu of controllable actions involving different processes will
be available for the controller at each stage as the plant evolves. This will be
the case even for the local strategies we define below. Through the rest of the
section, we fix a plant A as above. When talking about the behavioral aspects of

A, we shall identify it with its underlying ATS and will often drop the subscript
A. We will also say the plant is a CCP in case its underlying ATS is.

Members of L(A) are referred to as plays. The set of infinite plays Lω(A)
is defined in the obvious way. We are interested in distributed strategies ob-
tained by piecing together local strategies and the local views of a play will be
instrumental in determining local strategies.

Let σ = a1 . . . an be a play in L(A). The p-view of σ denoted ↓p (σ) is
the subsequence ah1

. . . ahm
such that H = {h1, h2, . . . , hm} is the least subset

of {1, 2, . . . , n} which satisfies: Firstly, hm is the largest index in {1, 2, . . . , n}
such that p ∈ loc(ahm

). Secondly, if i ∈ H and j < i and aj D ai, then j ∈
H . In other words, ↓p (σ) is the maximum amount of the current play that p
knows about where this knowledge is gathered by its participation in the actions
that have occurred in the play and the information it acquires as a result of
synchronizations with other agents.

It will be convenient to define the set of actions that can potentially occur
at a local state. For u ∈ Sp we let act(u) be the set given by: a ∈ Σp is in
act(u) iff there exists (sa, s′a) in δa with sa(p) = u. A p-strategy is a function

f : L(A) → 2Σp which satisfies: Suppose σ ∈ L(A) and sin
σ
→ s with s(p) = u.

Then f(σ) ⊆ act(u) and moreover f(σ) = act(u) in case u ∈ Senv
p . Thus a

p-strategy recommends a subset of the structurally possible Σp-actions at the
current p-state. It does so without restricting in any way the environment’s
choices.

The p-strategy f is said to be local if it satisfies: for every σ, σ′ ∈ L(A),
↓p (σ) ∼ ↓p (σ′) implies f(σ) = f(σ′). Hence a local p-strategy depends only on
the (partially ordered!) p-view of the play.

We now define a distributed strategy Str = {Strp} to be a family of local
p-strategies, one for every p. From now, unless otherwise stated, we shall say
“p-strategy” to mean “local p-strategy” and “strategy” to mean a distributed
strategy.

Let Str = {Strp} be a strategy. The set of plays according to Str denoted
L(Str) is defined inductively by: Firstly, ε ∈ L(Str). Secondly, if σ ∈ L(Str) and
σa ∈ L(A) such that a ∈ Strp(σ) for every p ∈ loc(a), then σa ∈ L(Str). That is,
an action a is allowed to execute only when it is recommended by every process
taking part in a. In what follows, we will assume without loss of generality
that TSA has no deadlocks; more precisely, every reachable global state has a
successor state reachable via a transition. Thus if a play according to a strategy
cannot be extended it is only due to the local strategies not being able to agree
on executing any system action. We will say that a strategy Str is non-blocking
in case every play in L(Str) can be extended to a longer play in L(Str). This
notion does not rule out the possibility of a play being extended indefinitely by
just the execution of environmental actions. However one can rule out such plays
by choosing the specification suitably.

To define specifications, we first define the set of infinite plays according
to the strategy Str denoted Lω(Str) in the obvious way. A specification is an
ω-regular subset of Σω which is assumed to be presented in a finite way, say, as

a Büchi automaton. Let Lspec be a specification. A strategy Str is winning for
Lspec iff Str is non-blocking and Lω(Str) ⊆ Lspec. A winning strategy for Lspec

is called a controller for the pair (A, Lspec). The controller synthesis problem we
wish to solve is: given a pair (A, Lspec) where A is a CCP, determine whether
there exists a controller for Lspec. We will be mainly interested in showing here
that this problem is effectively solvable if the specification is robust.

To pin down robustness, we extend ∼ to Σω. This can be done in a number
of equivalent ways. For our purposes it will do to define it as follows: Suppose
σ, σ′ ∈ Σω. Then σ ∼ σ′ iff σ � p = σ′ � p for every p. We say that the
specification Lspec is robust iff for every σ, σ′ ∈ Σω, if σ ∈ Lspec and σ ∼ σ′,
then σ′ ∈ Lspec.

We can now state:

Theorem 5. Given a CCP plant A and a robust specification Lspec, one can
effectively determine whether there exists a controller for (A, Lspec).

In fact we can say much more as we point out in remarks following the proof of
theorem 5.

4.1 Proof of Theorem 5

Throughout this subsection, we assume A is a CCP and Lspec is robust. We
shall show that the existence of a controller for (A, Lspec) can be asserted in
MSO(ESA). The required result will then follow at once from theorem 1.

In what follows, we let ESA = (E,≤, #, λ) and often write ES instead of
ESA. A configuration of ES is a subset c ⊆ E such that ↓ c = c (where ↓ c =
∪e∈c(↓ e)) and (c × c) ∩ # = ∅. Let c be a finite configuration. Then it is well-
known that the Σ-labelled poset (c,≤c, λc) where ≤c and λc are the obvious
restrictions, represents a trace in the following sense. The set of linearizations of
(c,≤c) (subjected to the point-wise application of λc) will be a trace, viewed as
a ∼-equivalence class of strings. In fact finite and infinite configurations on the
one hand and finite and infinite traces on the other hand, represent each other. It
is not difficult to see that in MSO(ES) one can construct a formula infinite(X)
with one free set variable X which asserts that X is an infinite set of events.
Consequently, in MSO(ES) one can define a formula fin-conf (X) (inf -conf (X))
asserting that X is a finite (infinite) configuration.

Next we define, for E′ ⊆ E, the p-view of E′ denoted p-view (E′) to be the set
of events given by: e′ ∈ p-view (E′) iff there exists e′′ ∈ E′ such that e′ ≤ e′′ and
p ∈ loc(λ(e′′)). Again it is easy to see that we can define a formula p-view (X, Y)
asserting that Y is the p-view of X .

Now let Str be a strategy. From the definitions, it follows that L(Str) is
trace-closed. Hence for each σ ∈ L(Str) we will have [σ] ⊆ L(Str) and moreover,
by the observation above, there will be a unique finite configuration in ES that
corresponds to [σ]. We will say that EStr is the set of Str-events and define it to
be the set given by: e ∈ E is in EStr iff there exists σ ∈ L(Str) such that e = [σ].
We will say that E′ is good in case there exists a strategy Str such that E ′ is
the set of Str-events. We can construct a formula Good (X) which will assert

that X is good. For arguing this, it will be convenient to assume the transition
relation ⇒⊆ Cfin ×E ×Cfin where Cfin is the set of finite configurations of ES

and ⇒ is given by: c
e
⇒ c′ iff e /∈ c and c′ = c ∪ {e}. The formula Good(X) will

be a conjunction of the following properties all of which are easily definable in
MSO(ES).

– X is a nonempty set and for every finite configuration Y contained in X , if
Y

e
⇒ Y ′ and λ(e) ∈ Σenv then Y ′ ⊆ X .

– If Y is a finite configuration contained in X then there exists a finite config-
uration Y ′ such that Y ⊂ Y ′ ⊆ X .

– Suppose Y is a finite configuration contained in X , and Y
e
⇒ Y ′. Suppose

that for every p in loc(a), where a = λ(e), there exists Yp ⊆ X such that the

p-view of Yp is identical to the p-view of Y and Yp
e1
⇒ Y ′

p with λ(e1) = a and
Y ′

p ⊆ X . Then Y ′ ⊆ X .

All we need now is to argue that we can assert that every infinite play be-
longing to a good set meets the specification. But this is easy to do since Lspec is
robust. It follows that Lspec in fact is an ω-regular trace language and is hence
definable in the Monadic Second Order logic of infinite traces interpreted over
the set of infinite traces generated by our trace alphabet (Σ, I) [1]. Denoting
this logical language by MSO(Σ, loc), we can assume, without loss of generality,
that its syntax is exactly that of MSO(ES) but interpreted over infinite traces
represented as Σ-labelled partial orders. In particular, the l refers to the partial
order of the trace rather than the positional order of a linearization of the trace.

Now let Φspec be a sentence in MSO(Σ, loc) such that the ω-regular trace
language defined by it is precisely Lspec. We can now assert in MSO(ES) that
there exists X such that X is a good set and moreover, for every infinite con-
figuration Y contained in X , the trace corresponding to Y satisfies Φspec. It is
routine to show that this sentence, say Ψcontroller , is satisfiable in MSO(ES) iff
there exists a controller for (A, Lspec).

5 Discussion

Here we informally sketch a number of additional results that one can derive for
our ATSs. To start with, theorem 5 can be considerably strengthened. In case
a controller exists then there exists a finite state one which can be effectively
computed and synthesized as a (finite deterministic) CCP over (Σ, loc). This
controller will synchronize with the plant on common actions and the resulting
controlled behavior will meet the specification. Developing this result however
requires additional work and machinery. It also requires us to work with TR, the
tree representation of ES , rather than with ES itself. By adapting the arguments
developed in [10] we can also show quite easily that the controller synthesis
problem is undecidable for CCP plants in case the specification is allowed to be
non-robust.

Clearly we can assume the specification for the controller synthesis problem
to be given as a sentence in MSO(ES) and our argument for decidability will

extend smoothly. One can also assume that the plant itself is not a CCP but
require, for robust specifications, the controller be a CCP. More precisely, we say
that the strategy Str is k-communicating iff for every σ ∈ L(Str), if σσ′ ∈ L(Str)
and |σ′|p ≥ k and |σ′|q = 0, then for every σσ′σ′′ ∈ L(Str), p, q are separated
in σ′′. We say Str is connectedly communicating iff Str is k-communicating for
some integer k. We conjecture that the k-communicating controller synthesis
problem for a given k is decidable and in case such a controller exists, a finite
state one exists as well and it can be effectively synthesized. It is also interesting
to determine if the connectedly communicating controller synthesis problem is
decidable. In other words, given a plant and a robust specification determine if
there exists a k-communicating controller for some k. We conjecture that this
problem is undecidable.

References

[1] V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific,
Singapore, 1995.

[2] P. Gastin, B. Lerman, and M. Zeitoun. Distributed games with causal memory are
decidable for series-parallel systems. In FSTTCS ’04, LNCS 3328, pages 275–286.
Springer, 2004.

[3] D. Kuske. Regular sets of infinite message sequence charts. Information and

Computation, 187:80–109, 2003.
[4] P. Madhusudan. Reasoning about sequential and branching behaviours of message

sequence graphs. In ICALP ’00, LNCS 2076, pages 396–407. Springer, 2000.
[5] P. Madhusudan. Model-checking trace event structures. In LICS ’03, pages 371–

380. IEEE Press, 2003.
[6] P. Madhusudan and P.S. Thiagarajan. Controllers for discrete event systems via

morphisms. In CONCUR ’98, LNCS 1466, pages 18–33. Springer, 1998.
[7] P. Madhusudan and P.S. Thiagarajan. Distributed control and synthesis for local

specifications. In ICALP ’01, LNCS 2076, pages 396–407. Springer, 2001.
[8] P. Madhusudan and P.S. Thiagarajan. A decidable class of asynchronous dis-

tributed controllers. In CONCUR ’02, LNCS 2421, pages 145–160. Springer,
2002.

[9] W. Penczek. Model-checking for a subclass of event structures. In TACAS ’97,

LNCS 1217, pages 146–164. Springer, 1997.
[10] A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize. In

FOCS ’90, pages 746–757. IEEE Press, 1990.
[11] M. Rabin. Decidability of second order theories and automata on infinite trees.

Trans. of AMS, 141:1–35, 1969.
[12] W. Thomas. Automata on infinite objects. In Handbook of Theoretical Comp.

Sci., Vol. B. Elsevier, 1990.
[13] S. Tripakis. Decentralized control of discrete event systems with bounded or

unbounded delay communication. IEEE Trans. on Automatic Control, 49:1489–
1501, 2004.

[14] I. Walukiewicz and S. Mohalik. Distributed games. In FSTTCS ’03, LNCS 2914,
pages 338–351. Springer, 2003.

[15] G. Winskel and M. Nielsen. Models for concurrency. In Handbook of Logic in

Comp. Sci., Vol. 3. Oxford University Press, 1994.

