Optimal Reachability for Weighted Timed
Games*

Rajeev Alur, Mikhail Bernadsky, and P. Madhusudan

University of Pennsylvania

Abstract. Weighted timed automata are timed automata annotated
with costs on locations and transitions. The optimal game-reachability
problem for these automata is to find the best-cost strategy of supplying
the inputs so as to ensure reachability of a target set within a specified
number of iterations. The only known complexity bound for this problem
is a doubly-exponential upper bound. We establish a singly-exponential
upper bound and show that there exist automata with exponentially
many states in a single region with pair-wise distinct optimal strategies.

1 Introduction

Timed automata [2] extend finite-state automata with real-valued clock vari-
ables, and have proved to be useful in modeling real-time systems. The canonical
problem for timed automata is reachability, and can be solved in polynomial-
space using a finite-state quotient—the so-called region graph—of the underlying
infinite state-space. A natural generalization of reachability corresponds to op-
timal reachability that asks how soon can a target set be reached from an initial
state. This problem, and its variations, are theoretically interesting as decid-
ability and finiteness of representation are not immediate from the region graph
construction, and have been studied by many researchers (cf. [7,1,3,11]). In par-
ticular, in a weighted timed automaton (also known as a priced timed automaton),
each discrete transition has an associated nonnegative integer denoting the cost
to be paid when the transition is taken, and each location has an associated non-
negative integer denoting the cost rate with respect to the time spent at that
location. The minimum-cost reachability problem for weighted timed automata
can be solved in exponential-time [3]. An alternative branch-and-bound solution
is implemented in the verification tool UPPAAL with applications to scheduling
problems [11, 5].

In this paper, we consider games on weighted timed automata. Games are
useful for synthesizing controllers, and for generating schedules in the context
of real-time systems. In one round of our game, the controller chooses an input
symbol a, and a time ¢ > 0 at which it wants to supply the input. The adversary
updates the state of the automaton either by executing an uncontrolled discrete
transition at time t' < ¢, or by executing an a-labeled discrete transition at time

* This research was partially supported by ARO URI award DAAD19-01-1-0473, and
NSF awards ITR/SY 0121431 and CCR 0306382.

t. Given a set of target locations, an initial state s, a cost bound C, and a bound &
on the number of rounds, the optimal game-reachability problem is to determine
if the controller has a strategy to enforce the game started in state s into a target
location within k£ rounds while ensuring that the cost of the run is bounded by
C'. In absence of costs and optimality, there is a long history of research on games
for timed automata, and such games are known to be decidable (cf. [15,12, 8, 6]).
Time-optimal games, that is, games in which the cost of a run equals the total
time spent, are considered in [4], and are shown to be decidable (however, no
complexity bounds, upper or lower, are reported and the solution technique does
not generalize to weighted timed games). The general case for (bounded games)
on weighted timed automata is considered in [14], and the authors show that
the problem can be encoded using first-order theory of reals with addition [9],
leading to a doubly-exponential solution (note that the first-order theory over
reals with addition is not decidable in nondeterministic exponential time [10]).

In this paper, we provide an exponential-time solution to the optimal game-
reachability problem. We show how to compute a sequence of functions opt; such
that for each 4, for each state s, opt;(s) is the optimal cost of reaching a target
location starting from s in i steps in the timed game, and the representation of
opt; is exponential in ¢ and in the size of the automaton.

It is easy to show that each region can be split into finitely many subregions
(or cells) such that the optimal cost function opt; is linear within each cell. The
main technical challenge in this paper is getting a tight bound on the required
splitting into cells. While computing the function opt; from opt;_;, one source of
complexity is the discrete min-mazx nature of the game. If f; and f, are functions
with n pieces, then the min or maz operation could result in a function which
has O(n?) splits (where d is the number of clocks). However, this analysis only
gives a doubly exponential bound on the growth of the number of cells. We show
that the partitioning of a region into cells can be organized as a tree, where each
node has an associated cell, a set of hyperplanes, and a child for every subcell
formed by these hyperplanes. In this representation, min-maex operation adds
just one level to the tree, and the number of hyperplanes at a node of the tree
for opt; grows linearly. The second source of complexity is the continuous inf-
sup nature of the game: the controller picks a time ¢ and the adversary picks a
time ¢ < t. In a timed automaton, all clocks increase uniformly, and hence, if
we restrict attention to a diagonal tube where the same set of cells are relevant,
the interesting choices of ¢ and ' are at the cell boundaries. Our final analysis
combines the tube-based and tree-based representations, and shows that each f;
can be represented using at most exponentially many cells.

We also show that the bound on splitting a region into cells is tight: for
every n, there exists a weighted timed automaton A,, a region R of A,, and
exponentially many states within R, such that the discrete components of the
optimal cost strategies are all different for games starting at these states, and
thus, the region R must be split into exponentially many cells.

2 Model

2.1 Weighted Timed Automata

Let X be a finite set of clocks. Let Ry denote the set of all non-negative reals
and let N denote the set of all non-negative integers. A clock valuation is a map
v: X — Ry. The set of constraints over X, denoted G(X), is the set of boolean
combinations of constraints of the form x ~ § or x — y ~ 8 where z,y € X,
B €N, and ~ € {<,>,=,<,>}. The notion of when a clock valuation v over X
satisfies a constraint over X is the natural one. Let 0 denote the valuation that
maps each clock in X to 0.

Definition 1. A weighted timed automaton (WTA) is a tuple A =
(Q,Qr, X, X, u,d,Inv, Wg,Ws) where Q is a finite set of locations, Qr C Q
is a set of target locations, X is a finite set of clocks, X is a finite set of actions
that contains the special symbol u, § C Q x X x G(X) x 2% x Q is the transition
relation, Inv : Q — G(X) is an invariant function, Wy : Q — N gives the cost
for each location and Ws : 6 — N gives the cost for each transition.

For a transition e = (q,a,9,Z,q') € d, the label of e is a, and is denoted by
Action(e). Transitions labeled u model uncontrolled transitions.

A state of A is a pair s = (g, v) where ¢ € @ and v is a clock valuation over
the set of clocks X . Let States denote the set of all states. For a clock valuation
vand t € Ry, let v + t denote the clock valuation v' where v'(z) = v(z) + ¢,
for each x € X. Also, for any clock valuation v and a set of clocks Z C X, let
v/reset(Z) denote the valuation v’ where v'(z) = 0 for each z € Z and for each
& 7,V (z) =v(x).

We now define timed transitions and discrete transitions between states. A
timed transition is of the form (g, v) 4 (q,v +1t), where (q,v), (¢,v +1t) € States
and t € R, , such that for every 0 < ' < t, v + t' satisfies Inv(q), the invariant
at q.

A discrete transition is of the form (g,v) = (¢',v'), where e is a transition
of the form (q,a,9,Z,q") € § such that v satisfies g, v’ = v/reset(Z) and v'
satisfies Inv(q'). We say e is enabled at a state (q,v) if there is a transition of
the form (g,v) = (¢',v'). We say an action a € X is enabled at (g, v) if some
a-labeled transition is enabled at (g, v).

A run of length &k of a WTA A from a state s; is a sequence of 2k alternating
timed and discrete transitions p = s; b st 2 P & 85...5), Y Sg+1- For such a
run, we define the cost of p, denoted W (p) to be the cost incurred along this run,
ie. if s; = (g;,), for each i, then W(p) = (X5, Wo(qi) - t:) + (X, Ws(ed)).

Let X' = X'\ {u}. The game is played by two players—the controller and the
adversary. At any state, the controller first picks a time ¢ and an action a € X’
to signal that it would like to make an a-labeled transition after time ¢ and not
any transition before that time. This choice must be valid in the sense that it
must be possible to wait for time ¢ without violating the invariant and after
time ¢, some a-labeled transition must be available. The adversary now has two

choices: it can wait for some time 0 < ¢’ < t and execute a transition labeled u
or it can decide to wait for time ¢ and choose to take some a-labeled transition.
The game then evolves to a new state and the players proceed to play as before.

Formally, a (controller) strategy is a function str : States —» Ry x X'. A run

¢ £,
p=-s5 =8 3sa... 3 s, B spy1 of Aissaid to be a play according to a
controller strategy str if for every i, if str(s;) = (¢;,a;), then, either ¢; = ¢; and
Action(e;) = a, or, t; < t; and Action(e;) = u.

t] t
Let p =51 — 8§ <> 82... = s}, =8 s;41 be a run of length k. We say that p
wins within i steps if there is some i’ < 4 such that s; = (q,v) where ¢ € QF.
A controller strategy str is said to be winning from a state s1 in k-steps and

!

within cost Cost if for every play p = s; t% sh 3 sy 4 st 8 sp41 of length
k according to str, there is an ¢ < k such that: , ,
— p wins within ¢ steps and the cost of the prefix run p; = s; t% 81 35y, t%
st =5 5,41 is less than or equal to Cost, i.e. W (p;) < Cost.
— For every j <14, if s; = (¢, v;) and str(s;) = (t, a), then (g;, v;) 5 (g;,vi +1)
is a timed transition and a is enabled at (g;,v; + t).

The first condition above formalizes the requirement that the controller must
force the play to Qp within k steps and while doing so incur cost less than
Cost, and the second formalizes the condition that while playing the game, the
controller must pick valid times and actions.

We can now state the main problem we consider:

Optimal bounded weighted timed game problem:
Given a weighted timed automaton A, an initial state ¢;, and a number £,
find the optimal cost Cost such that there is a controller strategy that wins
from the state (gin,0) in k steps and within cost Cost.

The solution we give in fact solves the more general uniform timed game
problem, where we find a function fj : States - Ry U {oo} such that fi(s) is
the least cost such that there is a controller strategy that wins from s in & steps
and within cost fi(s) (fx(s) is oo if there is no strategy that wins in k steps).

3 Optimal Cost Functions

Regions Let us fix a WTA A = (Q,Qr, X, X, u, 6, Inv, Wy, W) for the rest of
this subsection and let 8,4, be the largest constant mentioned in the constraints
in A. Fix an order on the clocks, say {x1, - - .,Z4)- Then clock valuations naturally
correspond to points in Rff_; we use this correspondence freely.

The notion of a clock region is standard in the theory of timed automata
and is used to partition the clock space into partitions with respect to a timed
bisimilar relation. Due to lack of space, we assume this notion and the notion of
a timed successor of a region (see [2]).

Let us denote the set of regions as R; note that the size of R is exponential
in the number of clocks and the length of constants. Also, there are at most

O(d - Bmaz) successive timed-successors to any region, where d is the number of
clocks, i.e. if Ry, R1,...R; are such that each R;y1 is a successor of R;, then
1=0(d- Bmaz)-

A pair (g, R), where g is a location and R is a clock region, is called a region
of A. We say a state (g, v) belongs to a region (¢', R) if ¢ = ¢’ and v belongs to
R. The regions hence partition the set of all states of an automaton A.

Let Fnableds(q, R) denote the set of all transitions enabled at some (and
hence all) states (¢,v) in (g, R). Let Enableds(q, R) denote the set of actions
enabled at some (and hence all) states (¢q,v) in (g, R). If e € Enableds(q, R), let
suce((g, R),e) denote the region reached when the discrete transition e is taken
from any state in (g, R) (this notion is well-defined).

We say a region R is thin if letting any time elapse from any point in the
region leads to a clock valuation outside R, i.e. if all points in R satisfy a con-
straint of the form x = § for some z € X and B € N. Note that thin regions
always have timed-successors. If R is not thin but has a timed-successor region
R', then for every clock valuation v in R, the minimum time required such that
v+tisin R'is § — v(z) where z is the clock that has the maximum fractional
value in R (i.e. z is such that for every y, (z — |z]) < (v — |y]) holds in R)
and f is the smallest constant such that for every point v’ in R, v'(z) < 3. We
then call 8 — x as the critical clock expression for the region R and denote it as
cce(R). If R is not thin and does not have a timed successor region (i.e. if it is
a maximal region), we define the critical clock expression of R to be co.

Expressions for the Optimal Cost: We now wish to define a set of functions
optz(q’R) : R — Ry U {oo} that is supposed to capture the optimal cost for the
controller to win a game from any state in (g, R) in 4 steps. That is, we want
that for any v € R, optz(q’R) (v) is the minimum cost Cost such that the controller
has a winning strategy that wins the game in ¢ steps and within cost Cost from
the state (g,v). However, this will not be precisely true as such a Cost may not
exist, in which case we take the infimum of all possible costs within which the
controller can win (see Lemma 1 below).

The following is an inductive definition of optgq’R), by induction on i. Further,

tgq’R) inductively with respect to the partial order

R)

for any fixed i, we define op

imposed by the timed-successor relation. That is, when defining optz(q’ we

assume the functions optz(q’R) have been defined, where R’ is a transitive timed-
successor of R.

— For every location ¢ € QpF, R € R, opt(gq’R) = 0 and for every location
q g QF; R e Ra Opt(()q’R) = 0.

— Let 4 > 1 and let (g, R) be a region.
If (¢, R) is a thin region, then let R’ be the timed-successor of R; otherwise,
let R' = R. Note that R’ is not thin. Let T = cce(R') be the critical clock
expression of R'.
If R' has a timed-successor, let it be R".

Let A = Enableds:(q, R) N X' be the controller actions enabled at (g, R) and
for any a € ¥, let Ev(a) = {e | e € Enableds(q, R), Action(e) = a} be the a-
labeled transitions enabled at (¢, R). Similarly, let A’ = Enabled 5 (q, R)NX",
and Ev'(a) = {e | e € Enableds(q, R'), Action(e) = a}. Then

opt(q’R) () = min{optgq_’f) (v), hi(v), ha(v), hs(v)} (if R has a timed succ)
! min{optgq_’f) (v),h1(v), h2(v)} (otherwise)

where
hi(v) = min max {opts e (@R0) () froget(e)) + Wi (e)}
a€A e€Ev(a)UEv(u) i1

ha(v) = inf min max{g: (1), g2(v,0,1)}

pit") = sup e (opt7) () reset(e)) + W a) ¢+ 15 (e))

g2 (v,a,t") = max {opts e @FD0) (1,4 411) Ireset(e)) + Wo(q) - + Ws(e) }

The following is not hard to prove:

Lemma 1. Let A be a weighted timed automaton, k € N, and s be a state in
the region (¢, R). Then,

opt,(cq’R) (s) = inf{Cost | controller wins from s in k steps and within cost Cost}

In order to compute the functions optgq’R), it turns out that we need to
handle primarily only three functions—min and max of a set of functions and
the function:

N fi(E+ 1)+ wt
@) = tel[%,fT] max { SUpo<y <4 (f2(Z + 1) + wt') @)

where f; and f, have already been computed, T is a critical clock expression
and w is a constant.

4 The Algorithm

4.1 Motivation of Definitions

In this section, we describe briefly the main difficulties that arise in showing that
each function optgq’R) is a piece-wise linear function with at most an exponential
number of pieces and informally describe the ideas to circumvent these. The next
section gives a formal but terse summary of the required technical results.

(a) A nested partition (b) A tube partition (c) An atomic tube

Fig. 1.

We illustrate the ideas for the setting where we have two clocks {z1, z2}. Cost
functions are hence functions from regions to R, , where a region is a subset of
Ri; these functions will be piece-wise linear and we refer to the ‘pieces’ as ‘cells’.

As mentioned in the introduction, bookkeeping in terms of the number of
cells does not suffice as superpositioning the cells of two functions f and g, each
having n cells, could cause O(n?) cells and hence a double-exponential growth in
cells. We can circumvent this difficulty by instead keeping track of the number of
lines that partition the region into cells. If the cells of f and g are defined using
at most n lines each, the superposition of cells of f and g are formed using at
most 2n lines. Moreover, n lines can form at most O(n?) cells (for d-dimensions,
n hyperplanes can form at most O(n?) cells), and the bookkeeping works as far
as superpositioning is concerned.

However, when we take h = min{f, g}, each new cell formed by the intersec-
tion of a cell of f and a cell of g gets further split into two (along the line where
f = g) and causes an extra line to be added. Hence there could be O(n?) new
lines defining cells in h and, again, leads only to a double-exponential bound on
cell growth.

The crucial observation is that the new lines that are added are contained
within a cell and do not intersect with lines added in other cells. For example,
in Figure 1(a), the cells formed by lines are cut by the dashed lines into at
most two parts but the dashed lines do not extend beyond the cell. We exploit
this structure by introducing the notion of a nested partition of cells. A nested
partition is a tree structure where every level of the tree refines the partition of
the region by dividing cells into subcells. More formally, each node is associated
with a cell and also associated with a set of lines that partition this cell into
subcells. Figure 1(a) illustrates a nested partition: the three bold lines partition
the region into 7 cells, the thin lines partition each such cell into at most 4 cells,
and the dotted lines partition each of these cells into at most 2 cells.

The complexity of a nested partition is written as a tuple of numbers (nq, ..., n;)
which means the following: the region is split by nq lines; each cell formed is
further split by at most ns lines; in general, a cell formed at the j’th level is split
by n;41 lines. For instance, the nested partition in Figure 1(a) has complexity
(3,2,1).

Now, if we take min{f, g} where f and g have complexity (ni,...,n;), then
we get a function that has complexity at most (2n1,...,2n;,1) as the lines at
each level add up and each atomic cell formed in the superposition of f and
g can be split by one line, which causes a new level with a single line. The
number of cells formed by a nested partition of complexity (ng,...,ng), is at
most 3¥n{nd...n¢, the growth of cells is hence under control and min and max
operations can be handled.

Now let us consider the expression in (1). For any clock valuation v, when
time elapses, the points v + t lie along a diagonal line drawn upwards from v.
The relevant positions that need to be examined for evaluating the expression
for v hence depend on this diagonal line and the cells that this diagonal line
passes through.

In order to group together points which are such that the diagonal lines from
the points meet the same set of cells, we draw diagonal lines from every inter-
section of lines that form cells, as illustrated by the dotted lines in Figure 1(b).
This results in a set of diagonally placed cells that we call tubes.

Now consider an atomic tube (i.e. a tube within which the lines forming cells
do not intersect) as shown in Figure 1(c). For any point v, we can show that (i)
the distance to any of the lines along the diagonal from v is linear and (ii) in
order to optimize the expression in (1), the values of ¢ and #' must be at the times
that correspond to when the diagonal from v meets one of these lines (depicted
as z1, z2 and z3 in the figure). This reduces the quantification of ¢ and ¢’ over
possibly infinite sets to a finite set; this leads us to reduce the expression in (1)
to an expression that involves just min and max and we can use the procedures
developed before to handle this.

However, when evaluating this expression, the cells could further get split
and this could create new intersection points from which we may need to draw
diagonals again in order to evaluate (1) in cells below the current cell. But we
show that splitting of cells can happen only along diagonal lines which avoids
this complication.

Finally, the number of diagonal lines introduced could be large compared
to the number of lines defining the cells; however diagonal lines once formed
cannot contribute further to forming diagonal lines. So we enhance the nested
representation so that diagonal lines are accounted for separately and use the
above property to show a bound on the growth of cells.

In dimensions higher than two, diagonal hyperplanes could intersect and
to control their growth, we need a nesting of tubes as well. A nested tube
partition is the final structure we use and it has a complexity of the form
{1, lm,m1,...,nk) where the I;’s denote the complexity of diagonal lines
that contribute to defining nested tubes and the n;’s denote how each tube thus
formed is further partitioned into nested cells.

4.2 Clock Space Geometry

Let d € N denote the number of dimensions (d will be the number of clocks in
the timed automaton) and consider the space]Ri. A hyperplane in IRi is a set

of points that satisfy an equation of the form a;x; + asx2 + ...+ agzq+b=0.
We say that such a hyperplane is diagonal if E?:l a; =0.

A cell is a (convex) set of points of Ri that is bounded by hyperplanes. For-
mally, a cell is a d-dimensional set of points defined by a finite set of inequalities
of the form h(z1,...,z4) <0, where h(zy,...,24) is a linear expression over the
variables {z1,...,Zq4)-

Let ¢ be a cell defined by the inequalities I and let H be a set of hyperplanes.
Then the hyperplanes in H partition ¢ into a number of subcells. Formally, the
set of subcells of ¢ induced by H, Subcells(c, H), is the set of all minimal cells
¢', where each ¢’ is defined by I in conjunction with a set of inequalities of the
form h'(z1,...,z4) <0, where h'(z1,...,24) = 0 belongs to H. It is well known
that Subcells(c, H) contains O(|H|?) cells (in fact 3|H|? cells; see [13]).

Definition 2. A nested partition of dimension d and depth i is a structure
(Tr,n,H) where Tr = (V, E) is a finite rooted tree, and for eachv € V, n is a
function that maps v to a cell of dimension d and H is a function that maps v
to a finite set of hyperplanes in]R‘_i|r such that the following hold:

— A nested partition of depth 0 is (Tr,n,H) where Tr is a single node tree
({v},0), n maps v to a cell and H(v) = 0.

— A nested partition of depth i +1 (i > 0) is a tree (V,E) that satisfies
the following. If the root is r, then let ¢ = n(r). Then for every ¢’ €
Subcells(c, H(r)), there is precisely one child v of the root such that n(v) = ¢
and these are the only children of the root. Also the tree rooted at the children
of the root must be nested partitions of depth j, where j < i, and the tree
rooted at at least one child is a nested partition of depth 1.

The domain of a nested partition P is Dp = n(root) where root is the root
of P, i.e. Dp is the cell that labels the root of the tree. For any tree, we say a
vertex is at level ¢ if its distance from the root is ¢ — 1 (the root is hence at level
1 and if a tree is of depth k, then there is a leaf at level k + 1).

For a nested partition P, we say that P is of complexity at most (ni,...ng),
denoted P < (ni,...ng), if P has depth k and for every vertex v, if v is at level
i, then H(v) contains at most n; hyperplanes.

We are interested in the set of cells that are at the leaves of a nested partition
P; let us call these base cells and denote the set of base cells as BC(P) = {c |
Jv € V,v is a leaf, and n(v) = c}. It is not hard to see that if P < (ny,...ng),
then |BC(P)| < 3*n¢...n{.

We define an operation on nested partitions that takes two nested partitions
P; and P, and creates the coarsest nested partition that refines both P, and P;.
This operation P; @ P, creates a nested partition P where for every two base
cells ¢; in Py and ¢ in Py, if ¢’ = ¢1 Neg is nonempty, then ' is a base cell of P. It
turns out that if P; < (n%,...,ni),i =1,2,then PL®P, < (nl+n?,...,nk+n2).

A partition cost function is a pair (P, F) where P is a nested partition and
F' is a mapping that maps each leaf node v of P to a linear expression f, over
the variables {z1,...,z4} such that the following condition holds: let u belong
to two different base cells at leaves v and v'; then, F(v)(u) = F(v")(u).

In other words, a partition cost function defines linear cost functions at the
base cells and if a point is present in many base cells, then the cost for this point
is the same at all these base cells. A partition cost function (P, F') hence assigns
a cost to each point in the domain given by F' : Dp — R, with F(u) = F(v)(u)
where v is any leaf such that the base cell at v contains .

A tube is a cell that is formed by diagonal hyperplanes. Let mq,mo € N.
Then an (m1,m2) nested tube partition of dimension d is a nested partition P
of dimension d that has depth (mj +ms2) such that for all i : 1 <7 < my, if v is
a node at level i, then H(v) contains only diagonal planes.

Let us now consider operations on partition cost functions and the change in
complexity that the operations result in. For any partition cost function (P, F),
let us denote the function it represents as F'.

Theorem 1. Let (P;, F;), i =1,...m, be m d-dimensional partition cost func-
tions, defined over the same domain D, P; < (ny,...,ng) for all i. Then there
exists a partition cost function (P, F) over D, P < (m-ni,...,m- ng, m?) such
that F' = mini:17,,,,m{Fi}.

The above theorem also holds for the max function.!

Theorem 2. Let (P, F) and (Pg,G) be two partition cost functions over the
same domain, where Pr and Pg are (ki, k2) nested tube partitions of complezities
at most (l,...lg,,n1,...nky). Consider the function:

S(z) = inf max
t:T+teD

F(Z+1t)+wt
A= !] (2)
SupOSt:St G(.’E + t) + wt
Then there exists a partition cost function (Pk,K) such that Pk is
a d-dimensional (k1 + 2,ko + 1) nested tube partition of complexity at
most (211,..., 20k, (k2 + 1)3F+1(2n)T - e (2ny,) T, (200 + ...+ 20, +
3)2,2n1,...,2nk,,7) and K = S.

We prove the theorem using several lemmas. Below we will use the convention
that if T = (x1,...2ym) is a vector then T + a denotes (z1 + a, . .. Ty + @).

Let P be the partition Pr & Pg with a new level created by taking the
hyperplane along which F' and G divide each cell. First, we show that the values
of t and ¢’ that we need to consider to evaluate S(v) can be constrained to belong
to the points at which the diagonal from v meets the various hyperplanes of P,
or 0. We now want to “drop diagonal hyperplanes” (as in Figure 1(b)) from each
point of intersection of hyperplanes that define the nested partition.

For any node v of a nested partition P, let L, denote the union of the sets of
all hyperplanes that label v and its ancestors. If hy and hs are two non-diagonal
hyperplanes, we say that (hi, h2) is a ridge if there exists a node v such that h
and hy belong to L,. A simple counting argument shows the following:

! For precise complexity bounds, we must also establish bounds on the growth of
the coefficients used in the definition of hyperplanes. Typically, the representation
of coefficients grows when we consider intersections of hyperplanes, but these grow
slowly (linearly).

Lemma 2. Let P < (n1,...ng) be a nested partition of dimension d. Then the
A1, pd+l

number of ridges in P is bounded by k - 3% - n{ RUEY

We say that a tube partitioning P of type (k1, k2) is atomic if hyperplanes
that partition cells at the last ko levels do not intersect with each other in the
interior of the tube they belong to. We now want to “drop” diagonal hyperplanes
from each ridge so that the resulting tubes are atomic. Using Lemma 2 we can
show the following:

Lemma 3. Let (P, F) be a partition cost function, where P is a d-dimensional
(k1, ko) nested tube partition and P < (ly,...lg,,n1,...nky). Then there exists
a partition cost function (P',F'), where P' is atomic, which defines the same
function (i.e. F = 17’\’) such that P' is a (k1 + 1,k2) nested tube partition and
P' < (l1,...lgy, ka3k2ndtt, ..ni;"l,nl, ey Thkg)

Note that if time elapses from two points within the same cell of an atomic
tube, then they meet the same set of “border” hyperplanes (that partition the
region). We can show that, for any cell, the time required by points in the cell to
reach a particular border is a linear expression. Using the fact that the values of
t and ¢’ have to be evaluated only for the values that correspond to hitting these
borders, we show we can rewrite the expression for S using min’s and max’s.
When evaluating this expression, a cell within an atomic tube could get split
and hence cause additional ridges from which we may have to drop diagonal
hyperplanes—however, we show that this cannot happen as these splits will be
diagonal hyperplanes themselves. A careful analysis of the cost of evaluating the
expression then yields the theorem.

4.3 The Main Results

Theorem 3. Given a WTA A and k € N, the (uniform) optimal bounded
weighted timed game problem can be solved in time exponential in k and the
size of A.

We can also show that an optimal strategy may have to “split” a region into
exponentially many parts:

Theorem 4. For every k > 0, there is an acyclic WTA Ay, with 3 clocks, where
constants in the constraints of Ay are only 0 or 1, where all edges have weight
zero and states have weights 0 or 1 and such that the number of states in Ay, is
bound by a fixed polynomial in k, such that the following holds:

Let str be any optimal strategy for (Ay,3k). Then there is a region (q,R) and
an exponential number of states si,...,89x-1, in (g, R) such that each of these
states is visited by some play according to str and for every pair of distinct states
s; and s;, the discrete components (i.e. the X' labels) of the set of plays from s;
and from s; according to str are different.

5 Discussion

We have established an exponential upper bound on computing the optimal
cost for reachability games in weighted timed automata. The complexity of our
procedure depends on the number of iterations. A bound on the number of
iterations can be specified by the user, or can be obtained from the automaton if
we assume that in every cycle a positive cost must be paid (such an assumption
is typical to avoid problems with Zeno behaviors). However, the complexity (and
even decidability) of the problem in the absence of such an assumption is open.
Also, though we have shown that exponential splitting of a region is necessary
for representing the optimal cost as a function of the initial state, the precise
lower bound on the complexity of the decision problem remains open.

References

1. R. Alur, C. Courcoubetis, and T.A. Henzinger. Computing accumulated delays in
real-time systems. Formal Methods in System Design, 11(2):137-155, 1997.

2. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183-235, 1994.

3. R. Alur, S. La Torre, and G. Pappas. Optimal paths in weighted timed automata.
In Hybrid Systems: Computation and Control, LNCS 2034, pages 49-62, 2001.

4. E. Asarin and O. Maler. As soon as possible: Time optimal control for timed
automata. In Hybrid Systems: Comp. and Control, LNCS 1569, pages 19-30, 1999.

5. G. Behrman, T. Hune, A. Fehnker, K. Larsen, P. Petersson, J. Romijn, and
F. Vaandrager. Minimum-cost reachability for priced timed automata. In Hy-
brid Systems: Computation and Control, LNCS 2034, pages 147-161, 2001.

6. F. Cassez, T.A. Henzinger, and J.-F. Raskin. A comparison of control problems
for timed and hybrid systems. In HSCC, LNCS 2289, pages 134-148, 2002.

7. C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems in
real-time systems. In Proc. of Third Workshop on Computer-Aided Verification,
LNCS 575, pages 399-409. Springer-Verlag, 1991.

8. D. D’Souza and P. Madhusudan. Timed control synthesis for external specifica-
tions. In Proc. STACS, LNCS 2285, pages 571-582. Springer, 2002.

9. J. Ferrante and C. Rackoff. A decision procedure for the first order theory on real
addition with order. SIAM Journal of Computing, 4(1):69-76, 1975.

10. M.J. Fischer and M.O. Rabin. Super-exponential complexity of Presburger arith-
metic. In Proc. of SIAM-AMS Symp. in Appl. Math., vol. 7, pages 27-41, 1974.

11. K. Larsen, G. Behrman, E. Brinksma, A. Fehnker, T. Hune, P. Petersson, and
J. Romijn. As cheap as possible: Efficient cost-optimal reachability for priced
timed automata. In Proc. of CAV, LNCS 2102, pages 493—-505. Springer, 2001.

12. O.Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed
systems. In Proceedings of the 12th Annual Symposium on Theoretical Aspects of
Computer Science, LNCS 900, pages 229 — 242, 1995.

13. J. Matousek. Lectures on Discrete Geometry. Springer, 2002.

14. S. La Torre, S. Mukhopadhyay, and A. Murano. Optimal-reachability and con-
trol for acyclic weighted timed automata. In Proceedings of the 17th IFIP World
Computer Congress: TCS, pages 485—497. Kluwer, 2002.

15. H. Wong-Toi and G. Hoffmann. The control of dense real-time discrete event
systems. In IEEE Conference on Decision and Control, pages 1527-1528, 1991.

