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Abstract. We propose a new approach to heap analysis through an ab-
stract domain of automata, called automatic shapes. Automatic shapes
are modeled after a particular version of quantified data automata on

skinny trees (QSDAs), that allows to define universally quantified prop-
erties of programs manipulating acyclic heaps with a single pointer field,
including data-structures such singly-linked lists. To ensure convergence
of the abstract fixed-point computation, we introduce a subclass ofQSDAs
called elastic QSDAs, which forms an abstract domain. We evaluate our
approach on several list manipulating programs and we show that the
proposed domain is powerful enough to prove a large class of these pro-
grams correct.

1 Introduction

The abstract analysis of heap structures is an important problem in program
verification as dynamically evolving heaps are ubiquitous in modern program-
ming, either in terms of low level pointer manipulation or in object-oriented
programming. Abstract analysis of the heap is hard because abstractions need
to represent the heap which is of unbounded size, and must capture both the
structure of the heap as well as the unbounded data stored in the heap. While sev-
eral data-domains have been investigated for data stored in static variables, the
analysis of unbounded structure and unbounded data that a heap contains has
been less satisfactory. The primary abstraction that has been investigated is the
rich work on shape analysis [25]. However, unlike abstractions for data-domains
(like intervals, octagons, polyhedra, etc.), shape analysis requires carefully cho-
sen instrumentation predicates to be given by the user, and often are particular
to the program that is being verified. Shape analysis techniques typically merge
all nodes that satisfy the same unary predicate, achieving finiteness of the ab-
stract domain, and interpret the other predicates using a 3-valued (must, must
not, may) abstraction. Moreover, these instrumentation predicates often require
to be encoded in particular ways (for example, capturing binary predicates as
particular kinds of unary predicates) so as to not lose precision.

For instance, consider a sorting algorithm that has an invariant of the form:
∀x, y. ( (x→∗

next y ∧ y →∗
next i) ⇒ d(x) ≤ d(y) )

which says that the sub-list before pointer i is sorted. In order to achieve a



shape-analysis algorithm that discovers this invariant (i.e., captures this invari-
ant precisely during the analysis), we typically need instrumentation predicates
such as p(z) = z →∗

next i, s(x) = ∀y.((x →∗
next y ∧ y →∗

next i) ⇒ d(x) ≤ d(y)),
etc. The predicate s(x) says that the element that is at x is less than or equal to
the data stored in every cell between x and i. These instrumentation predicates
are clearly too dependent on the precise program and property being verified.

In this paper, we investigate an abstract domain for heaps that works without
user-defined instrumentation predicates (except we require that the user fix an
abstract domain for data, like octagons, for comparing data elements).

We propose a radically new approach to heap analysis through an abstract
domain of automata, called automatic shapes (automatic because we use au-
tomata). Our abstract domain are modeled after a particular kind of automata,
called quantified data automata, that define, logically, universally quantified
properties of heap structures. In this paper, we restrict our attention to acyclic
heap structures that have only one pointer field ; our analysis is hence one that
can be used to analyze properties of heaps containing lists, with possible aliasing
(merging) of them, especially at intermediate stages in the program. One-pointer
acyclic heaps can be viewed as skinny trees (trees where the number of branching
nodes is bounded).

Automata, in general, are classical ways to capture an infinite set of objects
using finite means. A class of (regular) skinny trees can hence be represented
using tree automata, capturing the structure of the heap. While similar ideas
have been explored before in the literature [14], our main aim is to also represent
properties of the data stored in the heap, building automata that can express
universally quantified properties on lists, in particular those of the form∧

i ∀x. (Guardi(p, x) ⇒ Datai(d(p), d(x)))
where p is the set of static pointer variables in the program. The Guardi formulas
express structural constraints on the universally quantified variables and the
pointer variables, while the Datai formulas express properties about the data
stored at the nodes pointed to by these pointers. In this paper, we investigate
an abstract domain that can infer such quantified properties, parameterized by
an abstract numerical domain Fd for the data formulas and by the number of
quantified variables x.

The salient aspect of the automatic shapes that we build is that (a) there
is no requirement from the user to define instrumentation predicates for the
structural Guard formulas; (b) since the abstraction will not be done by merging
unary predicates and since the automata can define how data stored at multiple
locations on the heap are related, there is no need for the user to define carefully
crafted unary predicates that relate structure and data (e.g., the unary predicate
s(x) defined above that says that the location x is sorted with respect to all
successive locations that come after x but before i). Despite this lack of help
from the user, we show how our abstract domain can infer properties of a large
number of list-manipulating programs adequately to prove interesting quantified
properties.



The crux of our approach is to use a class of automata, called quantified
data automata on skinny trees (QSDA), to express a class of single-pointer
heap structures and the data contained in them. QSDAs read skinny trees with
data along with all possible valuations of the quantified variables, and for each of
them check whether the data stored in these locations (and the locations pointed
to by pointer variables in the program) relate in particular ways defined by the
abstract data-domain Fd.

We show, for a simple heap-manipulating programming language, that we
can define an abstract post operator over the abstract domain of QSDAs. This
abstract post preserves the structural aspects of the heap precisely (as QSDAs
can have an arbitrary number of states to capture the evolution of the program)
and that it soundly abstracts the quantified data properties. The abstract post
is nontrivial to define and show effective as it requires automata-theoretic oper-
ations that need to simultaneously preserve structure as well as data properties;
this forms the hardest technical aspect of our paper. We thus obtain an effective
sound transfer function for QSDAs. However, it turns out that QSDAs are not
complete lattices (infinite sets may not have least upper-bounds), and hence do
not form an abstract domain to interpret programs. Furthermore, typically, in
each iteration, the QSDAs obtained would grow in the number of states, and it
is not easy to find a fixed-point.

Traditionally, in order to handle loops and reach termination, abstract do-
mains require some form of widening. Our notion of widening is founded on the
principle that lengths of stretches of the heap that are neither pointed to by
program variables nor by the quantified variables (in one particular instantia-
tion of them) must be ignored. We would hence want the automaton to check
the same properties of the instantiated heap no matter how long these stretches
of locations are. This notion of abstraction is also suggested by our earlier work
where we have shown that such abstractions lead to decidability; in other words,
properties of such abstracted automata fall into decidable logical theories [10,18].
Assume that the programmer computes a QSDA as an invariant for the pro-
gram at a particular point, where there is an assertion expressed as a quantified
property p over lists (such as “the list pointed to by head is sorted”). In order
to verify that the abstraction proves the assertion, we will have to check if the
language of lists accepted by the QSDA is contained in the language of lists that
satisfy the property p. However, this is in general undecidable. However, this in-
clusion problem is decidable if the automata abstracts the lengths of stretches as
above. Our aim is hence to over-approximate the QSDA into a larger language
accepted by a particular kind of data automata, called elastic QSDA (EQSDA)
that ignores the stretches where variables do not point to, and where ”merging”
of the pointers do not occur [10, 18].

This elastification will in fact serve as the basis for widening as well, as it
turns out that there are only a finite number of elastic QSDAs that express
structural properties, discounting the data-formulas. Consequently, we can com-
bine the elastification procedure (which over-approximates a QSDA into an
elastic QSDA) and widening over the numerical domain for the data in order



to obtain widening procedures that can be used to accelerate the computation
for loops. In fact, the domain of EQSDAs is an abstract domain and a com-
plete lattice (where infinite sets also have least upper-bounds), and there is a
natural abstract interpretation between sets of concrete heap configurations and
EQSDAs, where the EQSDAs permit widening procedures. We show a unique
elastification theorem that shows that for any QSDA, there is a unique elastic
QSDA that over-approximates it. This allows us to utilize the abstract transfer
function on QSDAs (which is more precise) on a linear block of statements, and
then elastify them to EQSDAs at join points to have computable fixed-points.

We also show that EQSDA properties over lists can be translated to a decid-
able fragment of the logic Strand [18] over lists, and hence inclusion checking
an elastic QSDA with respect to any assertion that is also written using the
decidable sublogic of Strand over lists is decidable. The notion of QSDAs and
elasticity are extensions of recent work in [10], where such notions were devel-
oped for words (as opposed to trees) and where the automata were used for
learning invariants from examples and counter-examples.

We implement our abstract domain and transformers and show, using a
suite of list-manipulating programs, that our abstract interpretation is able
to prove the naturally required (universally-quantified) properties of these pro-
grams. While several earlier approaches (such as shape analysis) can tackle the
correctness of these programs as well, our abstract analysis is able to do this
without requiring program-specific help from the user (for example, in terms of
instrumentation predicates in shape analysis [25], and in terms of guard patterns
in the work by Bouajjani et al [5]).

Related Work. Shape analysis [25] is the one of the most well-known tech-
nique for synthesizing invariants about dynamically evolving heaps. However,
shape analysis requires user-provided instrumentation predicates which are of-
ten too particular to the program being verified. Hence coming up with these
instrumentation predicates is not an easy task. In recent work [5,6,12,21], several
abstract domains have been explored which combine the shape and the data con-
straints. Though some of these domains [6,21] can handle heap structures more
complex than singly-linked lists, all these domains require the user to provide a
set of data predicates [12] or a set of structural guard patterns [5] or predicates
over both the structure and the data constraints [6, 21]. In contrast, the only
assistance our technique requires from the user is specifying a numerical domain
over data formulas and the number of universally quantified variables.

For singly-linked lists, [20] introduces a family of abstractions based on a set
of instrumentation predicates which track uninterrupted list segments. However
these abstractions only handle structural properties and not the more-complex
quantified data properties. Several separation logic based shape analysis tech-
niques have also been developed over the years [3, 4, 9, 13]. But they too mostly
handle only the shape properties (structure) of the heap.

Our automaton model for representing quantified invariants over lists is in-
spired by the decidable fragment of Strand [18] and can track invariants with
guard constraints of the form y ≤ t or t ≤ y for a universal variable y and some



term t. These structural constraints on the guard are very similar to array par-
titions in [8,11,15]. However, our automata model is more general. For instance,
none of these related works can handle sortedness of arrays which requires quan-
tification over more than one variable.

Techniques based on Craig’s interpolation have recently emerged as an or-
thogonal way for synthesizing quantified invariants over arrays and lists [1, 17,
22,26]. These methods use different heuristics like term abstraction [26] or intro-
duction of existential ghost variables [1] or finding interpolants over a restricted
language [17,22] to ensure the convergence of the interpolant from a small num-
ber of spurious counter-examples. The shape analysis proposed in [24] is also
counter-example driven. [24] requires certain quantified predicates to be pro-
vided by the user. Given these predicates, it uses a CEGAR-loop for incremen-
tally improving the precision of the abstract transformer and also discovering
new predicates on the heap objects that are part of the invariant.

Automata based abstract interpretation has been explored in the past [14]
for inferring shape properties about the heap. However, in this paper we are
interested in strictly-richer universally quantified properties on the data stored in
the heap. [2] introduces a streaming transducer model for algorithmic verification
of single-pass list-processing programs. However the transducer model severely
constrains the class of programs it can handle; for example, [2] disallows repeated
or nested list traversals which are required in sorting routines, etc.

In this paper we introduce a class of automata called quantified skinny-
tree data automata (QSDA) to capture universally quantified properties over
skinny-trees. The QSDA model is an extension of recent work in [10] where a
similar automata model was introduced for words (as opposed to trees). Also,
the automata model in [10] was parameterized by a finite set of data formulas
and was used for learning invariants from examples and counter-examples. In
contrast, we extend the automata in [10] to be instantiated with a (possibly-
infinite) abstract domain over data formulas and develop a theory of abstract
interpretation over QSDAs.

2 Programs Manipulating Heap and Data

We consider sequential programs manipulating acyclic singly-linked data struc-
tures. A heap structure is composed of locations (also called nodes). Each loca-
tion is endowed with a pointer field next that points to another location or it
is undefined, and a data field called data that takes values from a potentially
infinite domain D (i.e. the set of integers). For simplicity we assume a special
location, called dirty , that models an un-allocated memory space. We assume
that the next pointer field of dirty is undefined. Besides the heap structure, a
program also has a finite number of pointer variables each pointing to a location
in the heap structure, and a finite number of data variables over D. In our pro-
gramming language we do not have procedure calls, and we handle non-recursive
procedures calls by inlining the code at call points. In the rest of the section we
formally define the syntax and semantics of these programs.



〈prgm〉 ::= pointer p1, . . . , pk; data d1, . . . , dℓ; 〈pc stmt〉+

〈pc stmt〉 ::= pc : 〈stmt〉;

〈stmt〉 ::= 〈ctrl stmt〉 | 〈heap stmt〉

〈ctrl stmt〉 ::= di :=〈data expr〉 | skip | assume(〈pred〉)

| if 〈pred〉 then 〈pc stmt〉+ else 〈pc stmt〉+ fi

| while 〈pred〉 do 〈pc stmt〉+ od

〈heap stmt〉 ::= new pi | pi := nil | pi := pj

| pi := pj → next | pi → next := nil | pi → next := pj

| pi → data := 〈data expr〉

Fig. 1. Simple programming language.

Syntax. The syntax of pro-
grams is defined by the
grammar of Figure 1. A pro-
gram starts with the dec-
laration of pointer variables
followed by a declaration of
data variables. Data vari-
ables range over a poten-
tially infinite data domain
D. We assume a language of data expressions built from data variables and
terms of the form pi → data using operations over D. Predicates in our lan-
guage are either data predicates built from predicates over D or structural pred-
icates concerning the heap built from atoms of the form pi == pj, pi == nil,
pi → next == pj and pi → next == nil, for some i, j ∈ [1, k]. Thereafter, there
is a non-empty list of labelled statements of the form pc :〈stmt〉 where pc is the
program counter and 〈stmt〉 defines a language of either C-like statements or
statements which modify the heap. We do not have an explicit statement to free
locations of the heap: when a location is no longer reachable from any location
pointed by a pointer variable we assume that it automatically disappears from
the memory. For a program P , we denote with PC the set of all program coun-
ters of P statements. Figure 2(a) shows the code for program sorted list-insert
which is a running example in the paper. The program inserts a key into the
sorted list pointed to by variable head.

Semantics. A configuration C of a program P with set of pointer variables PV
and data variables DV is a tuple 〈pc, H, pval , dval 〉 where

– pc ∈ PC is the program counter of the next statement to be executed;
– H is a heap configuration represented by a tuple (Loc, next, data) where (1)

Loc is a finite set of heap locations containing special elements called nil and
dirty , (2) next : Loc 7→ Loc is a partial map defining an edge relation among
locations such that the graph (Loc, next) is acyclic, and (3) data : Loc 7→ D

is a map that associates each non-nil and non-dirty location of Loc with a
data value in D;

– pval : P̂V → Loc, where P̂V = PV ∪ {nil, dirty}, associates each pointer
variable of P with a location in H . If pval (p) = v we say that node v is
pointed by variable p. Furthermore, each node in Loc is reachable from a
node pointed by a variable in PV . There is no outgoing (next) edge from
location dirty and there is a next edge from the location pointed by nil to
dirty (henceforth we use PV everywhere instead of the P̂V );

– dval : DV → D is a valuation map for the data variables.

Figure 2(b) graphically shows a program configuration which is reachable at
program counter 8 of the program in Figure 2(a) (as explained later we encode
the data variable key as a pointer variable in the heap configuration). The tran-

sition relation of a program P , denoted
stmt
−−−→P for each statement stmt of P , is



defined as usual. The control-flow statements update the program counter, pos-
sibly depending on a predicate (condition). The assignment statements update
the variable valuation or the heap structure other than moving to the next pro-

gram counter. Let us define the concrete transformer F ♮ = λC.{C′ | C
stmt
−−−→P C′}.

The concrete semantics of a program is given as the least fixed point of a set of
equations of the form ψ = F ♮(ψ).

To simplify the presentation of the paper, we assume that our programs do
not have data variables. This restriction, indeed, does not reduce their expres-
siveness: we can always transform a program P into an equivalent program P ′

by translating each data variable d into a pointer variable that will now point
to a fresh node in the heap structure, in which the value d is now encoded by
d → data. The node pointed by d is not pointed by any other pointer, further,
d→ next points to dirty . Obviously, wherever d is used in P will now be replaced
by d→ data in P ′.

3 Quantified Skinny-Tree Data Automata

In this section we define quantified skinny-tree data automata (QSDAs, for
short), an accepting mechanism of program configurations (represented as spe-
cial labeled trees) on which we can express properties of the form∧

i ∀y1, . . . , yℓ. Guardi ⇒Datai, where variables yi range over the set of locations
of the heap, Guardi represent quantifier-free structural constraints among the
pointer variables and the universally quantified variables yi, and Datai (called
data formulas) are quantifier-free formulas that refer to the data stored at the
locations pointed either by the universal variables yi or the pointer variables,
and compare them using operators over the data domain. In the rest of this
section, we first define heap skinny-trees which are a suitable labeled tree encod-
ings for program configurations; we then define valuation trees which are heap
skinny-trees by adding to the labels an instantiation of the universal variables.
Quantified skinny-tree data automata is a mechanism designed to recognize valu-
ation trees. The language of a QSDA is the set of all heap skinny-trees such that
all valuation trees deriving from them are accepted by the QSDA. Intuitively,
the heap skinny-trees in the language defined by the QSDA are all the program
configurations that verify the formula

∧
i ∀y1, . . . , yℓ.Guardi ⇒ Datai.

Let T be a tree. A node u of T is branching whenever u has more than
one child. For a given natural number k, T is k-skinny if it contains at most k
branching nodes.

Heap Skinny-Trees. Let PV be the set of pointer variables of a program P
and Σ = 2PV (let us denote the empty set with a blank symbol b). We associate
with each P configuration C = 〈pc, H, pval , dval 〉 with H = (Loc, next, data),
the (Σ × D)-labeled graph H = (T, λ) whose nodes are those of Loc, and where
(u, v) is an edge of T iff next(v) = u (essentially we reverse all next edges). From
the definition of program configurations, since all locations are required to be
reachable from some program variable, it is easy to see that T is a k-skinny tree



pointer head, cur , prev, tmp;
data key;

1: cur := head;
2: while (cur! = nil∧

cur → data < key) do

3: prev := cur ;
4: cur := cur → next;

od

5: new tmp;
6: tmp → data := key;
7: tmp → next := cur ;
8: if (prev ! = nil) then

9: prev → next := tmp;
else

10: head := tmp;
fi

head

2

prev

6

cur

9

tmp 8

(a)

(b)

(c) (d)

nil

$

dirty

$

key 8

({dirty}, $)

({nil}, $) ({key}, 8)

({cur}, 9)

({tmp}, 8)({prev}, 6)

({head}, 2)

({dirty},−, $)

({nil},−, $) ({key},−, 8)

({cur},y2, 9)

({tmp},−, 8)({prev},y1, 6)

({head},−, 2)

Fig. 2. (a) sorted list-insert program P ; (b) shows a P configuration at program
counter 8; (c) is the heap skinny-tree associated to (b); (d) is a valuation tree of (c).

where k = |PV |. The labeling function λ : Loc → (Σ × D) is defined as follows:
for every u ∈ Loc, λ(u) = (S, d) where S is the set of all pointer variables p such
that pval (p) = u, and d = data(u). We call H the heap skinny-tree of C.

Heap skinny-trees are formally defined as follows.

Definition 1 (Heap Skinny-Trees). A heap skinny-tree over a set of pointer
variables PV and data domain D, is a (Σ ×D)-labeled k-skinny tree (T, λ) with
Σ = 2PV and k = |PV |, such that:

– for every leaf v of T , λ(v) = (S, d) where S 6= ∅;
– for every p ∈ PV , there is a unique node v of T such that λ(v) = (S, d) with
p ∈ S and some d ∈ D;

– for a node v of T such that λ(v) = (S, d), if nil∈ S then v is one of the
children of the root of T ; if v is the root of T then S = {dirty}. ⊓⊔

Figure 2(c) shows the heap skinny-tree corresponding to the program con-
figuration of Figure 2(b). Note that though the program handles a singly linked
list, in the intermediate operations we can get trees. However they are special
trees with bounded branching. This example illustrates that program configura-
tions of list manipulating programs naturally correspond to heap skinny-trees.
It also motivates why we need to extend automata over words introduced in [10]
to quantified data automata over skinny-trees. We now define valuation trees.

Valuation Trees. Let us fix a finite set of universal variables Y . A valuation
tree over Y of a heap skinny-treeH is a (Σ×(Y ∪{−})×D)-labeled tree obtained
from H by adding an element from the set Y ∪ {−} to the label, in which every
element in Y occurs exactly once in the tree. We use the symbol ‘−’ at a node v
if there is no variable from Y labeling v. A valuation tree corresponding to the
heap skinny-tree of Figure 2(c) is shown in Figure 2(d).



Quantified skinny-tree data automata are a mechanism to accept skinny-
trees. To express properties on the data present in the nodes of the skinny-trees,
QSDAs are parameterized by a set of data formulas F over D which form a
complete-lattice F = (F,⊑F ,⊔F ,⊓F , false, true) where ⊑F is the partial-order
on the data-formulas, ⊔F and ⊓F are the least upper bound and the greatest
lower bound and false and true are formulas required to be in F and correspond
to the bottom and the top elements of the lattice, respectively. Also, we assume
that whenever α ⊑F β then α ⇒ β. Furthermore, we assume that any pair
of formulas in F are non-equivalent. For a logical domain as ours, this can be
achieved by having a canonical representative for every set of equivalent formulas.
Let us now formally define QSDAs.

Definition 2 (Quantified Skinny-Tree Data Automata). A quantified
skinny-tree data automaton (QSDA) over a set of pointer variables PV (with
|PV | = k), a data domain D, a set of universal variables Y , and a formula
lattice F , is a tuple A = (Q,Π,∆, T , f) where:

– Q is a finite set of states;
– Π = Σ × Ŷ is the alphabet where Σ = 2PV and Ŷ = Y ∪ {−};
– ∆ = (∆0, ∆1, . . . , ∆k) where, for every i ∈ [1, k], ∆i : (Q

i × Π) 7→ Q is a
partial function and defines a (deterministic) transition relation;

– T : Q→ 2PV ∪Y is the type associated with every state q ∈ Q;
– f : Q→ F is a final-evaluation. ⊓⊔

A valuation tree (T, λ) over Y of a program P , where N is the set of nodes
of T , is recognized by a QSDA A if there exists a node-labeling map ρ : N 7→ Q
that associates each node of T with a state in Q such that for each node t of
T with λ(t) = (S, y, d) the following holds (here λ′(t) = (S, y) is obtained by
projecting out the data values from λ(t)):

– if t is a leaf then ∆0(λ
′(t)) = ρ(t) and T (ρ(t)) = S ∪ {y} \ {−}.

– if t is an internal node, with sequence of children t1, t2, . . . , ti then
• ∆i ( (ρ(t1), . . . , ρ(ti)), λ

′(t) ) = ρ(t);

• T (ρ(t)) = S ∪ {y} \ {−} ∪
(⋃

j∈[1,i] T (ρ(tj))
)
.

– if t is the root then the formula f(ρ(t)), obtained by replacing all occurrences
of terms y → data and p → data with their corresponding data values in
the valuation tree, holds true.

A QSDA can be thought as a register automaton that reads a valuation
tree in a bottom-up fashion and stores the data at the positions evaluated for
Y and locations pointed by elements in PV , and checks whether the formula
associated to the state at the root holds true by instantiating the data values
in the formula with those stored in the registers. Furthermore, the role of map
T is that of enforcing that each element in PV ∪ Y occurs exactly once in the
valuation tree.

A QSDA A accepts a heap skinny-tree H if A recognizes all valuation trees
of H. The language accepted by A, denoted L(A), is the set of all heap skinny-
trees H accepted by A. A language L of heap skinny-trees is regular if there is



a QSDA A such that L = L(A). Similarly, a language L of valuation trees is
regular if there is a QSDA A such that L = Lv(A), where Lv(A) is the set of
all valuation trees recognized by A.

QSDAs are a generalization of quantified data automata introduced in [10]
which handle only lists, as opposed to QSDAs that handle skinny-trees. We now
introduce various characterizations of QSDAs which are used later in the paper.

Unique Minimal QSDA. In [10] the authors show that it is not possible
to have a unique minimal (with respect to the number of states) quantified
data automaton over words which accepts a given language over linear heap
configurations. The proof gives a set of heap configurations over a linear heap-
structure that is accepted by two different automata having the same number
of states. Since QSDAs are a generalization of quantified data automata, the
same counter-example language holds for QSDAs. However, under the assump-
tion that all data formulas in F are pairwise non-equivalent, there does exist a
canonical automaton at the level of valuation trees. In [10], the authors prove
the canonicity of quantified data automata, and their result extends to QSDAs
in a straight forward manner.

Theorem 1. For each QSDA A there is a unique minimal QSDA A′ such that
Lv(A) = Lv(A′).

We give some intuition behind the proof of Theorem 1. First, we introduce
a central concept called symbolic trees. A symbolic tree is a (Σ × (Y ∪ {−}))-
labeled tree that records the positions of the universal variables and the pointer
variables, but does not contain concrete data values (hence the word symbolic).
A valuation tree can be viewed as a symbolic tree augmented with data values at
every node in the tree. There exists a unique tree automaton over the alphabetΠ
that accepts a given regular language over symbolic trees. It can be shown that
if the set of formulas in F are pairwise non-equivalent, then each state q in the
tree automaton, at the root, can be decorated with a unique data formula f(q)
which extends the symbolic trees with data values such that the corresponding
valuation trees are in the given language of valuation trees.

Hence, a language of valuation trees can be viewed as a function that maps
each symbolic tree to a uniquely determined formula, and a QSDA can be
viewed as a Moore machine (an automaton with output function on states) that
computes this function. This helps us separate the structure of valuation trees
(the height of the trees, the cells the pointer variables point to) from the data
contained in the nodes of the trees. We formalize this notion by introducing
formula trees.

Formula Trees. A formula tree over pointer variables PV , universal variables Y
and a set of data formulas F is a tuple of a Σ×(Y ∪{−})-labeled tree (or in other
words a symbolic tree) and a data formula in F . For a QSDA which captures
a universally quantified property of the form

∧
i ∀y1, . . . , yℓ.Guardi ⇒ Datai,

the symbolic tree component of the formula tree corresponds to guard formulas



like Guardi which express structural constraints on the pointers pointing into
the valuation tree. The data formula in the formula trees correspond to Datai
which express the data values with which a symbolic tree (read Guardi) can be
extended so as to get a valuation tree accepted by the QSDA. In our running
example, consider a QSDA with a formula tree which has the same symbolic tree
as the valuation tree in Figure 2(d) (but without the data values in the nodes)
and a data-formula ϕ = y1 → data ≤ y2 → data ∧ y1 → data < key ∧ y2 →
data ≥ key. This formula tree represents all valuation trees (including the one
shown in Figure 2(d)) which extend the symbolic tree with data values which
satisfy ϕ.

By introducing formula trees we explicitly take the view of a QSDA as
an automaton that reads symbolic trees and outputs data formulas. We say a
formula tree (t, ϕ) is accepted by aQSDAA ifA reaches the state q after reading
t and f(q) = ϕ. Given a QSDA A, the language of valuation trees accepted by A
gives an equivalent language of formula trees accepted by A and vice-versa. We
denote the set of formula trees accepted by A as Lf (A). A language over formula
trees is called regular if there exists a QSDA accepting the same language.

Theorem 2. For each QSDA A there is a unique minimal QSDA A′ that
accepts the same set of formula trees.

4 A Partial Order over QSDAs

In the previous section we introduced quantified skinny-tree data automata as
an automaton model for expressing universally quantified properties over heap
skinny-trees. In this section, we first establish a partial order over the class of
QSDAs and then show that QSDAs do not form a complete lattice with respect
to this partial order. This motivates us to introduce a subclass of QSDAs called
elastic QSDAs which we show, in Section 6, form a complete lattice and can be
to compute the semantics of programs. The partial order over EQSDAs with
respect to which they form a lattice is the same as the partial order overQSDAs
we introduce in this section.

Given a set of pointer variables PV and universal variables Y , let QF be
the class of all QSDAs over the lattice of data formulas F . Clearly QF is a
partially-ordered set where the most natural partial order is the set-inclusion
over the language of QSDAs. However, QSDAs are not closed under unions.
Thus, a least upper bound for a pair of QSDAs does not exist with respect to
this partial order. So we consider a new partial-order on QSDAs which allows
us to define a least upper bound for every pair of QSDAs.

If we view a QSDA as a mapping from symbolic trees to formulas in F , we
can define a new partial-order relation on QSDAs as follows. We say A1 ⊑ A2

if Lf (A1) ⊆ Lf(A2), which means that for every symbolic tree t if (t, ϕ1) ∈
Lf (A1) and (t, ϕ2) ∈ Lf (A2) then ϕ1 ⊑F ϕ2. Note that, whenever A1 ⊑ A2

implies that L(A1) ⊆ L(A2). QSDAs, with respect to this partial order, form a
lattice. Unfortunately,QSDAs do not form a complete lattice with respect to this



above defined partial order (infinite sets of QSDAs may not have least upper-
bounds). Consequently, we invent a subclass of QSDAs called elastic QSDAs
(or EQSDAs) which we show form a complete lattice with respect to the above
defined partial order. We also show that EQSDAs form an abstract domain
by establishing an abstraction function and a concretization function between
a set of heap skinny-trees and EQSDAs and showing that they form a Galois-
connection. Even though QSDAs do not form a complete-lattice, we describe
next a sound abstract transformer over QSDAs, a variant of which we use in
Section 6 for abstracting the semantics of programs over EQSDAs.

5 Abstract Transformer over QSDAs

In this section we describe an abstract transformer over QSDAs which soundly
over-approximates the concrete transformer over heap skinny-trees. We will later
use a variant of this transformer when we compute the semantics of programs
abstractly over EQSDAs.

Given a QSDA A, the concrete transformer F ♮ guesses a pre-state accepted
by A (which involves existential quantification), and then constrains the post-
state with respect to this guessed pre-state according to the semantics of the
statement. For instance, consider the statement pi := pj . Given a QSDA accept-
ing a universally quantified property ∀y1, . . . , yℓ.ψ, its strongest post-condition
with respect to this statement is the formula: ∃p′i.∀y1, . . . , yℓ.ψ[pi/p

′
i] ∧ pi = pj .

Note that, an interpretation of the existentially quantified variable p′i in a model
of this formula gives the location node pointed to by variable pi in the pre-state,
such that the formula ∀y1, . . . , yℓ.ψ was satisfied by the pre-state. However it
is not possible to express these precise post-conditions, which are usually of
the form ∃∗∀∗ψ, in our automaton model. So we over-approximate these precise
post-conditions by a QSDA which semantically moves the existential quantifiers
inside the universally quantified prefix – ∀y1 . . . yℓ.∃p′i.ψ[pi/p

′
i] ∧ pi = pj . The

existential quantifier can now be eliminated using a combination of automata
based quantifier elimination, for the structure, and the quantifier elimination
procedures for the data-formula lattice F . In the above example, intuitively,
the abstract post-condition QSDA guesses a position for the pointer variable pi
for every valuation of the universal variables, such that the valuation tree aug-
mented with this guessed position is accepted by the precondition QSDA. More
generally, the abstract transformer computes the most precise post-condition
over the language of valuation trees accepted by a QSDA, instead of computing
the precise post-condition over the language of heap skinny-trees. In fact, we
go beyond valuation trees to formula trees; the abstract transformer evolves the
language of formula trees accepted by a QSDA by tracking the precise set of
symbolic trees to be accepted in the post-QSDA and their corresponding data
formulas.

We assume that the formula lattice F supports quantifier-elimination. We
encourage the reader to keep in mind numerical domains over the theory of
integers with constants (0, 1, etc.), addition, and the usual relations (like<,≤,=)



Table 1. Abstract Transformer F ♯
f over the language of formula trees. The abstract

transformer over QSDAs F ♯(A) = A′ where A′ is the unique minimal QSDA such
that Lf (A

′) = (F ♯
f ) Lf (A). The predicate update and the set label are defined below.

Statements Abstract Transformer F ♯
f on a regular language over

formula trees

pi := nil λLf .
{

(t′, ϕ′) | ϕ′ =
⊔

{∃d.ϕ[pi → data/d] | (t, ϕ) ∈ Lf ,
update(t, pi := nil, t′)}

}

pi := pj λLf .
{

(t′, ϕ′) | ϕ′ = (pi → data = pj → data) ⊓
⊔

{∃d.ϕ[pi → data/d] | (t, ϕ) ∈ Lf ,
update(t, pi := pj , t

′)}
}

pi := pj → next λLf .
{

(t′, ϕ′) | ϕ′ =
⊔

{∃d.ϕ[pi → data/d] | (t, ϕ) ∈ Lf ,
update(t, pi := pj → next, t′)}d

{pi → data = v → data | v ∈ label(t′, pi)}
}

pi → next := nil λLf .
{

(t′, ϕ′) | ϕ′ =
⊔

{ϕ | (t, ϕ) ∈ Lf , update(t, pi → next := nil, t′)}
}

pi → next := pj λLf .
{

(t′, ϕ′) | ϕ′ =
⊔

{ϕ | (t, ϕ) ∈ Lf , update(t, pi → next := pj , t
′)}

}

pi → data := λLf .
{

(t, ϕ′) | ϕ′ = ∃d.
(

ϕ[v1 → data/d, . . . , vℓ → data/d] ⊓
data expr

d
{v → data = data expr[v1 → data/d, . . . , vℓ → data/d] | v ∈ V }

)

,
V = {v1, . . . , vℓ} = label(t, pi), (t, ϕ) ∈ Lf

}

assume ψstruct λLf .
{

(t′, ϕ′) | (t′, ϕ′) ∈ Lf , t
′ |= ψstruct

}

assume ψdata λLf .
{

(t′, ϕ′) | ϕ′ = ϕ ⊓ ψdata , (t
′, ϕ) ∈ Lf

}

new pi λLf .
{

(t′, ϕ′) | ϕ′ = (y → data = pi → data)⊓
⊔

{∃d1d2.ϕ[pi → data/d1, y → data/d2] | (t, ϕ) ∈ Lf ,

update(t,new{y} pi, t
′)}, y ∈ Y

}

⋃
{

(t′, ϕ′) | ϕ′ =
⊔

{∃d.ϕ[pi → data/d] | (t, ϕ) ∈ Lf ,

update(t, new{−} pi, t
′)}

}

as an example of the formula lattice. Table 13 gives the abstract transformer F ♯
f

which takes a regular language over formula trees Lf and gives, as output, a set
of formula trees. We know from Theorem 2 that for any regular set of formula
trees there exists a unique minimal QSDA that accepts it. We show below
(see Lemma 2) that for a QSDA A, the language over formula trees given by

(F ♯
f ) Lf(A) is regular. Hence, we can define the abstract transformer F ♯ as F ♯ =

λA.A′ where A′ is the unique minimal QSDA such that Lf(A′) = (F ♯
f ) Lf (A).

In Table 1, label(t, pi) is the set of pointer and universal variables which label
the same node in t as variable pi. The predicate update(t, stmt , t′) is true if sym-
bolic trees t and t′ are related such that the execution of statement stmt updates
precisely the symbolic tree t to t′. As an example, the abstract transformer for
the statement pi := nil in the first row of Table 1 states that the post-QSDA
maps the symbolic tree t′ to the data-formula ϕ′ where ϕ′ is the join of all for-
mulas of the form ∃d.ϕ[pi → data/d] where ϕ is the data-formula associated
with symbolic tree t in the pre-QSDA such that update(t, pi := nil, t′) is true.

3 The abstract transformer defined in Table 1 assumes that there are no memory errors
in the program. It can be extended to handle memory errors.



We now briefly describe the predicate update(t, new{ŷ} pi, t
′), where ŷ ∈

Y ∪{−}, which is used in the definition of the transformer for the new statement
and is slightly more involved. The statement new pi allocates a new memory lo-
cation. After the execution of this statement, pointer pi points to this allocated
node. Besides, the universal variables also need to valuate over this new node
apart from the valuations over the previously existing locations in the heap. The
superscript {y} in the predicate update(t, new{y} pi, t

′) tracks the case when vari-
able y ∈ Y valuates over the newly allocated node (analogously, the superscript
{-} tracks the case when no universal variable valuates over the newly allocated
node). Hence, if update(t, new{y} pi, t

′) holds true then the symbolic trees t and
t′ agree on the locations pointed to by all variables except pi and the universal
variable y; both these variables point, in t′, to a new location v which is not in
t and a new edge exists in t′ from the root to v.

An important point to note is that the abstract transformer for the statement
pi → next (i.e., the predicate update(t, pi → next := pj , t

′) ) assumes that the
program does not introduce cycles in the heap configurations.

From the construction in Table 1 it can be observed that given a language of
valuation trees obtained uniquely from a language of formula trees, F ♯

f applies
the most-precise concrete transformer on each valuation tree in the language, and
then constructs the smallest regular language of valuation trees (or equivalently
formula trees) which approximates this set. As we have already discussed, the
abstract transformer by reasoning over valuation/formula trees (and not heap
skinny-trees) leads to a loss in precision. To regain some of the lost precision,
we define a function Strengthen which takes a formula language Lf and finds a
smaller language over formula trees, which accepts the same set of heap trees.
Here t ⇂y stands for a Π\{y} -labeled tree which agrees with t on the locations
pointed to by all variables except y.

Strengthen = λy.λLf .
{
(t′,ϕ′) | ϕ′ = ϕ′′ ⊓ φ, (t′, ϕ′′) ∈ Lf ,

φ =
l

{∃d.ϕ[y → data/d] | (t, ϕ) ∈ Lf , t ⇂y= t′ ⇂y}
}

We now reason about the soundness of the operator Strengthen. Fix a y ∈ Y .
Consider aQSDA A with a language over formula trees Lf and consider all sym-
bolic trees t such that t ⇂y= t′ ⇂y. This implies that the trees t have the pointer
variables pointing to the same positions as t′ and have the same valuations for
variables in Y \{y}. Since our automaton model has a universal semantics, any
heap tree accepted by A should satisfy the data formulas annotated at the final
states reached for every valuation of the universal variables. If we look at a fixed
valuation for variables in Y \{y} (which is same as that in t′) and different valua-
tions for y, any heap tree accepted should satisfy the formula ∃d.ϕ[y → data/d]
for all such (t, ϕ) ∈ Lf . Hence the Strengthen operator can safely strengthen
the formula ϕ′′ associated with the symbolic tree t′ to ϕ′′ ⊓ φ. It can be shown
that for a given universal variable y and a regular language Lf , the language
over formula trees (Strengthen) y Lf is regular. In fact, the QSDA accepting the
language (Strengthen) y Lf(A) for a QSDA A can be easily constructed. The



abstract transformer F ♯
f can thus be soundly strengthened by an application of

Strengthen at each step, for each variable y ∈ Y .
It is clear that the abstract transformer F ♯

f in Table 1 as well as the function
Strengthen are monotonic. We now show that the language over formula trees
given by (F ♯

f )Lf (A) is a regular language for any QSDA A. This helps us to

construct the abstract transformer F ♯ : QF → QF . Finally, we show that this
abstract transformer is a sound approximation of the concrete transformer F ♮.

Lemma 1. The abstract transformer F ♯
f is sound with respect to the concrete

semantics.

Lemma 2. For a QSDA A, the language (F ♯
f ) Lf (A) over formula trees is

regular.

From Lemma 2 and Theorem 2, it follows that there exists a QSDA A′ such
that A′ = (F ♯)A. The monotonicity of F ♯, with respect to the partial order

defined in Section 4 over QSDAs, follows from the monotonicity of F ♯
f . The

soundness of F ♯ can be stated as the following theorem.

Theorem 3. The abstract transformer F ♯ is sound with respect to the concrete
transformer F ♮.

Hence F ♯ is both monotonic, and sound with respect to the concrete trans-
former F ♮. In the next section we introduce elasticQSDAs, a subclass ofQSDAs,
which form an abstract domain and we use the above defined transformer F ♯

over QSDAs to define an abstract transformer over elastic QSDAs. Note that
the abstract transformer F ♯, in general, might require a powerset construction
over the input QSDA, very similar to the procedure for determinizing a tree
automaton. Hence the worst-case complexity of the abstract transformer is ex-
ponential in the size of the QSDA. However our experiments show that this
worst-case is not achieved for most programs in practice.

6 Elastic Quantified Skinny-Tree Data Automata

As we saw in Section 4, a least upper bound might not exist for an infinite set of
QSDAs. Therefore, we identify a sub-class of QSDAs called elastic quantified
skinny-tree data automata (EQSDAs) such that elasticQSDAs form a complete
lattice and provide a mechanism to compute the abstract semantics of programs.

Let us denote the symbol (b,−) ∈ Π indicating that a position does not con-
tain any variable by b. AQSDAA = (Q,Π,∆, T , f) where∆ = (∆0, ∆1, . . . , ∆k)
is called elastic if each transition on b in ∆1 is a self loop i.e. ∆1(q1, b) = q2 im-
plies q1 = q2.

We first show that the number of states in a minimal EQSDA is bounded for
a fixed set PV and Y . Consider all skinny-trees where a blank symbol b occurs
only at branching points. Since the number of branching points is bounded and
since every variable can occur only once, there are only a bounded number of



such trees. Consider any minimal EQSDA. Consider all states that are part of
the run of the EQSDA on the trees of the kind above. Clearly, there are only
a bounded number of states in this set. Now, we argue that on any tree, the
run on that tree can only use these states. For any tree t, consider the tree t′

obtained by removing the nodes of degree one marked by blank. The run on
tree t will label common states of t and t′ identically, and the nodes that are
removed will be labeled by the state of its child, since blank transitions cannot
cause state-change. Since in any minimal automaton, for any state, there must
be some tree that uses this state, we know that the number of state is bounded.

We next show the following result that every QSDA A can be most pre-
cisely over-approximated by a language of valuation trees (or equivalently for-
mula trees) that can be accepted by an EQSDA Ael. We will refer to this
construction, which we outline below, as elastification. This result is an exten-
sion of the unique over-approximation result for quantified data automata over
words [10]. Using this result, we can show that elastic QSDAs form a complete
lattice and there exists a Galois-connection 〈α, γ〉 between a set of heap skinny
trees and EQSDAs. This lets us define an abstract transformer over the abstract
domain EQSDAs such that the semantics of a program can be computed over
EQSDAs in a sound manner.

Let A = (Q,Π,∆, T , f) be a QSDA such that ∆ = (∆0, ∆1, . . . , ∆k) and
for a state q let Rb(q) := {q′ | q′ = q or ∃q′′.q′′ ∈ Rb(q) and ∆1(q

′′, b) = q′} be
the set of states reachable from q by a (possibly empty) sequence of b-unary-
transitions. For a set S ⊆ Q we let Rb(S) :=

⋃
q∈S Rb(q).

The set of states of Ael consists of sets of states of A that are reachable by the
following transition function ∆el (where ∆i(S1, . . . , Si, a) denotes the standard
extension of the transition function of A to sets of states):

∆el

0 (a) = Rb(∆0(a))

∆el

1 (S, a) =











Rb(∆1(S, a)) if a 6= b

S if a = b and ∆1(q, b) is defined for some q ∈ S

undefined otherwise.

∆el

i (S1, . . . , Si, a) = Rb(∆i(S1, . . . , Si, a)) for i ∈ [2, k]

Note that this construction is similar to the usual powerset construction except
that in each step we apply the transition function of A to the current set of states
and take the b-closure. However, if the input letter is b on a unary transition,
Ael loops on the current set if a b-transition is defined for some state in the set.

It can be argued inductively, starting from the leaf states, that the type for
all states in a set is the same. Hence we define the type of a set S as the type of
any state in S. The final evaluation formula for a set is the least upper bound
of the formulas for the states in the set: f el(S) =

⊔
q∈S f(q). We can now show

that Ael is the most precise over-approximation of the language of valuation
trees accepted by QSDA A.

Theorem 4. For every QSDA A, the EQSDA Ael satisfies Lv(A) ⊆ Lv(Ael),
and for every EQSDA B such that Lv(A) ⊆ Lv(B), Lv(Ael) ⊆ Lv(B) holds.



The proof of Theorem 4 is similar to the proof of a similar theorem in [10]
for the case of words. The above theorem can also be stated over a language of
formula trees in the same way, that Ael is the most precise over-approximation
of the language of formula trees accepted by QSDA A.

We can now show thatEQSDAs form a complete lattice (QF
el,⊑,⊔,⊓,⊥,⊤).

The partial order on EQSDAs is the same as the partial order on QSDAs. For
EQSDAs A1 and A2, A1 ⊑ A2 if Lf (A1) ⊆ Lf(A2), meaning that for every
symbolic tree t if (t, ϕ1) ∈ Lf (A1) and (t, ϕ2) ∈ Lf(A2) then ϕ1 ⊑F ϕ2. Given
EQSDAs A1 and A2 and a symbolic tree t such that (t, ϕ1) ∈ Lf (A1) and
(t, ϕ2) ∈ Lf (A2), the meet A1 ⊓ A2 is the EQSDA that maps t to the unique
formula ϕ1 ⊓F ϕ2, and can be realized using a product construction. The meet
for EQSDAs, A1 ⊔ A2, is obtained by constructing a QSDA which maps the
symbolic tree t to the formula ϕ1 ⊔F ϕ2 followed by its unique elastification to
obtain an EQSDA. We can also similarly compute ⊔ and ⊓ for an infinite num-
ber of EQSDAs— we build a product automaton, which can potentially have
infinitely many states, but because of the restriction that these are EQSDAs, we
can show that the number of states of this product automaton is also bounded
as above.

We can now view the space of EQSDAs as an abstraction over sets of heap
skinny trees. Let us define an abstraction function α : H → QF

el and a con-
cretization function γ : QF

el → H such that (H, α, γ,QF
el) form a Galois-

connection. Note that, abstract interpretation [7] requires that the abstraction
function α maps a concrete element (a language of heap skinny-trees) to a unique
element in the abstract domain and that α be surjective; similarly γ should be an
injective function. Also note that given a regular language of heap skinny-trees
there might be several QSDAs (and thus EQSDAs) accepting that language.
In such a case defining a surjective function α is not possible. Therefore, we first
restrict ourselves to a set of EQSDAs in QF

el where each EQSDA accepts a
different language. Under this assumption, we define an α and a γ as follows: for
a set of heap configurations H , α(H) =

d
{A | H ⊆ L(A)} and γ(A) = L(A).

Note that both α and γ are order-preserving; α is surjective and γ is an injec-
tive function. Also for a set of heap configurations H , H ⊆ γ(α(H)) and for an
EQSDA A, A = α(γ(A)). Hence (H, α, γ,QF

el) forms a Galois-connection.

Theorem 5. Let (H,⊆) be the class of sets of heap skinny-trees and (QF
el,⊑)

be the class of EQSDAs (accepting pairwise inequivalent languages) over data
formulas F , then (H, α, γ,QF

el) forms a Galois-connection.

Let us define the abstract transformer overEQSDAs as F ♯
el : QF

el → QF
el =

Fel ◦ F
♯ where Fel is the elastification operator which returns the most precise

EQSDA over-approximating a language of valuation trees accepted by aQSDA.
The soundness of F ♯

el follows from the soundness of F ♯ (and the fact that Fel is
extensive, i.e., Fel(A) ⊒ A). Similarly its monotonicity follows from the mono-
tonicity of F ♯ and the monotonicity of Fel. The semantics of a program can be
thus computed over the abstract domain QF

el as the least fix-point of a set of
equations of the form ψ = F ♯

el(ψ). Since the number of states in an EQSDA is



bounded (for a given set of program variables PV and universal variables Y ),
this least fix-point computation terminates (modulo the convergence of the data
formulas in the formula lattice F in which case termination can be achieved by
defining a suitable widening operator on the data formula lattice).

6.1 From EQSDAs to a Decidable Fragment of STRAND

In this section we show that EQSDAs can be converted to formulas that fall in
a decidable fragment of first order logic, in particular the decidable fragment of
Strand over lists. Hence, once the abstract semantics has been computed over
EQSDAs, the invariants expressed by the EQSDAs can be used to validate
assertions in the program that are also written using the decidable sublogic
of Strand over lists. We assume that the assertions in our programs express
quantified properties over disjoint lists, like sortedness of lists, etc. and properties
relying on mutual sharing or aliasing of list-structures are not allowed.

Given an EQSDA A and for every pointer variable p, we construct a QSDA
over words that are projections of trees accepted by A and where the first node
is p. A key property in the decidable fragment of Strand is that universal
quantification is not permitted to be over elements that are only a bounded
distance away from each other. In other words universally quantified variables
are only allowed to be related by elastic relations. As a result, we can safely
elastify the constructed QSDA over words and obtain an EQSDA over words
expressing quantified properties in the decidable sublogic of Strand. [10] de-
tails the translation from an EQSDA over words to a quantified formula in the
decidable fragment of Strand over lists. The formula, thus obtained, can be
used to validate assertions in the program and thus prove the program correct.

7 Experimental Evaluation

We implemented the abstract domain over EQSDAs presented in this paper,
and evaluated it on several list-manipulating programs. We now first present
the implementation details followed by our experimental results. Our prototype
implementation along with the experimental results and programs can be found
at http://web.engr.illinois.edu/~garg11/qsdas.html.
Implementation Details.Given a program P we compute the abstract seman-
tics of the program over the abstract domain QF

el over EQSDAs. A program is
a sequence of statements as defined by the grammar in Figure 1. In addition to
those statements, a program is also annotated with a pre-condition and a bunch
of assertions. The pre-condition formulas belong to the decidable fragment of
Strand over lists and can express quantified properties over disjoint lists (alias-
ing of two list-structures is not allowed), like sortedness of lists, etc. Given a
pre-condition formula ϕ, we construct the EQSDA which accepts all the heap
skinny-trees which satisfy ϕ. This EQSDA precisely captures the set of initial
configurations of the program. Starting from these configurations we compute
the abstract semantics of the program over QF

el. The assert statements in the



Table 2. Experimental results. Property checked — List: the return pointer points to
a list; Init: the list is properly initialized with some key; Max: returned value is the
maximum of all data values in the list; Gek: the list (or some parts of the list) have
data values greater than or equal to a key k; Sort: the list is sorted; Last: returned
pointer is the last element of the list; Empty: the returned list is empty.

Programs #PV #Y #DV Property #Iter Max. size Time (s)
checked of QSDA

init 2 1 1 Init, List 4 19 0.0
add-head 2 1 1 Init, List - 11 0.1
add-tail 3 1 1 Init, List 4 29 0.1
delete-head 2 1 1 Init, List - 10 0.0
delete-tail 4 1 1 Init, List 5 51 0.5
max 2 1 1 Max, List 4 19 0.1
clone 4 1 1 Init, List 4 44 0.7
fold-clone 5 1 1 Init, List 5 57 3.2
copy-Ge5 4 1 0 Gek, List 9 53 2.6
fold-split 3 1 1 Gek, List 4 33 0.3
concat 4 1 1 Init, List 5 44 0.7
sorted-find 2 2 2 Sort, List 5 38 0.3
sorted-insert 4 2 1 Sort, List 6 163 5.8
bubble-sort 4 2 1 Sort, List 5/18 191 42.8
sorted-reverse 3 2 0 Sort, List 5 43 1.5
expressOS-lookup-prev 3 2 1 Sort, List 6 73 2.2

gslist-append 4 0 1 List 8 3 0.0
gslist-prepend 2 0 1 List - 3 0.0
gslist-last 3 0 0 Last, List 3 7 0.0
gslist-free 3 0 0 Empty, List 1 3 0.0
gslist-position 4 0 0 List 3 13 0.0
gslist-reverse 3 0 0 List 3 5 0.0
gslist-custom-find 3 1 1 Gek, List 4 29 0.1
gslist-nth 3 0 1 List 3 7 0.0
gslist-remove 4 0 1 List 4 10 0.0
gslist-remove-link 5 0 0 List 4 16 0.0
gslist-remove-all 5 1 1 Gek, List 5 51 0.6
gslist-insert-sorted 5 2 1 Sort, List 6 279 27.4

program are ignored during the fix-point computation. Once the convergence of
the fix-point has been achieved, the EQSDAs can be converted back into decid-
able Strand formula over lists (as described in Section 6.1) and the Strand
decision procedure can be used for validating the assertions.

We recall that the abstract transformer F ♯
el is a function composition of

the abstract transformer F ♯ over QSDAs and the unique elastification operator
Fel. So that we are as precise as possible, for every statement in the program
we apply the more precise transformer F ♯ (and not F ♯

el). However, we apply
the elastification operator Fel at the header of loops before the join to ensure
convergence of the computation of the abstract semantics. The intermediate
semantic facts (QSDAs) in our analysis are thus not necessarily elastic.

Our abstract domains are parameterized by a quantifier-free domain F over
the data formulas. In our experiments, we instantiate F with the octagon ab-



stract domain [23] from the Apron library [16]. It is sufficient to capture the
pre/post-conditions and the invariants of all our programs.
Experimental Results. We evaluate our abstract domain on a suite of list-
manipulating programs (see Table 2). For every program we report the number
of pointer variables (PV), the number of universal variables (Y), the number of
data variables (DV) and the property being checked for the program. We also
report the number of iterations required for the fixed-point to converge, the max-
imum size of the intermediate QSDAs and finally the time taken, in seconds, to
analyze the programs.

The names of the programs in Table 2 are self-descriptive, and we only de-
scribe some of them. The program copy-Ge5, from [5], copies all those entries
from a list whose data value is greater than or equal to 5. Similarly, the program
fold-split [5] splits a list into two lists – one which has entries whose data
values are greater than or equal to a key k and the other list with entries whose
data value is less than k. The program expressOS-lookup-prev is a method
from the module cachePage in a verified-for-security platform for mobile appli-
cations [19]. The module cachePage maintains a cache of the recently used disc
pages as a priority queue based on a sorted list. This method returns the correct
position in the cache at which a disc page could be inserted. The programs in the
second part of the table are various methods adapted from the Glib list library
which comes with the GTK+ toolkit and the Gnome desktop environment. The
program gslist-custom-find finds the first node in the list with a data value
greater or equal to k and gslist-remove-all removes all elements from the list
whose data value is greater or equal to k. The programs gslist-insert-sorted
and sorted-insert insert a key into a sorted list.

All experiments were completed on an Intel Core i5 CPU at 2.4GHz with
6Gb of RAM. The number of iterations is left blank for programs which do not
have loops. bubble-sort program converges on a fix-point after 18 iterations
of the inner loop and 5 iterations of the outer loop. The size of the intermediate
QSDAs depends on the number of universal variables and the number of pointer
variables and largely governs the time taken for the analysis of the programs. For
all programs, our prototype implementation computes their abstract semantics
in reasonable time. Moreover we manually verified that the final EQSDAs in
all the programs were sufficient for proving them correct (this validity check for
assertions can be mechanized in the future). The results show that the abstract
domain we propose in this paper is reasonably efficient and powerful enough to
prove a large class of programs manipulating singly-linked list structures.
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