
Decidable Logics Combining Heap Structures and Data

P. Madhusudan
University of Illinois at

Urbana-Champaign, USA
madhu@illinois.edu

Gennaro Parlato
LIAFA, CNRS and University of Paris

Diderot, France
gennaro@liafa.jussieu.fr

Xiaokang Qiu
University of Illinois at

Urbana-Champaign, USA
qiu2@illinois.edu

Abstract
We define a new logic, STRAND, that allows reasoning with heap-
manipulating programs using deductive verification and SMT
solvers. STRAND logic (“STRucture ANd Data” logic) formulas
express constraints involving heap structures and the data they
contain; they are defined over a class of pointer-structures R de-
fined using MSO-defined relations over trees, and are of the form
∃�x∀�yϕ(�x, �y), where ϕ is a monadic second-order logic (MSO) for-
mula with additional quantification that combines structural con-
straints as well as data-constraints, but where the data-constraints
are only allowed to refer to �x and �y.

The salient aspects of the logic are: (a) the logic is powerful,
allowing existential and universal quantification over the nodes,
and complex combinations of data and structural constraints; (b)
checking Hoare-triples for linear blocks of statements with pre-
conditions and post-conditions expressed as Boolean combinations
of existential and universal STRAND formulas reduces to satis-
fiability of a STRAND formula; (c) there are powerful decidable
fragments of STRAND, one semantically defined and one syntac-
tically defined, where the decision procedure works by combining
the theory of MSO over trees and the quantifier-free theory of the
underlying data-logic. We demonstrate the effectiveness and practi-
cality of the logic by checking verification conditions generated in
proving properties of several heap-manipulating programs, using a
tool that combines an MSO decision procedure over trees (MONA)
with an SMT solver for integer constraints (Z3).

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams: Mechanical Verification; D.2.4 [Software Engineering]:
Software/Program Verification: Assertion checkers; F.1.1 [Theory
of Computation]: Models of Computation: Automata

General Terms Algorithms, Reliability, Theory, Verification

Keywords heap analysis, SMT solvers, monadic second-order
logic, combining decision procedures, automata, decidability

1. Introduction
A fundamental component of analysis techniques for complex pro-
grams is logical reasoning. The advent of efficient SMT solvers
(satisfiability modulo theory solvers) have significantly advanced

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’11, January 26–28, 2011, Austin, Texas, USA.
Copyright c© 2011 ACM 978-1-4503-0490-0/11/01. . . $10.00

the techniques for the analysis of programs. SMT solvers check
satisfiability in particular theories (e.g. integers, arrays, theory of
uninterpreted functions, etc.), and are often restricted to quantifier-
free fragments of first-order logic, but support completely auto-
mated and efficient decision procedures for satisfiability. Moreover,
by using techniques that combine theories, larger decidable theories
can be obtained. The Nelson-Oppen framework [22] allows generic
combinations of quantifier-free theories, and has been used in ef-
ficient implementations of combinations of theories using a SAT
solver that queries decision procedures of component theories.

Satisfiability solvers for theories are tools that advance several
analysis techniques. They are useful in test-input generation, where
the solver is asked whether there exists an input to a program that
will drive it along a particular path; see for example [12]. SMT
solvers are also useful in static-analysis based on abstract inter-
pretation, where the solver is asked to compute precise abstract
transitions (for example see SLAM [2] for predicate abstraction
and TVLA [17, 27] for shape-analysis). Solvers are also useful in
classical deductive verification, where Hoare-triples that state pre-
conditions and post-conditions can be transformed into verification
conditions whose validity is checked by the solver; for example
BOOGIE [3] and ESC/Java [11] use SMT solvers to prove verifica-
tion conditions.

One of the least understood classes of theories, however, are the-
ories that combine heap-structures and the data they contain. Anal-
ysis of programs that manipulate dynamically allocated memory
and perform destructive pointer-updates while maintaining data-
structure invariants (like a binary search tree), requires reasoning
with heaps with an unbounded number of nodes with data stored in
them. Reasoning with heap structures and data poses fundamental
challenges due to the unboundedness of the data-structures. First,
for a logic to be useful, it must be able to place constraints on all
parts of the structure (e.g. to say a list is sorted), and hence some
form of universal quantification over the heap is absolutely neces-
sary. This immediately rules out classical combinations of theories,
like the Nelson-Oppen scheme [22], which caters only to quantifier-
free theories. Intuitively, given a constraint on heap structures and
data, there may be an infinite number of heaps that satisfy the struc-
tural constraints, and checking whether any of these heaps can be
extended with data to satisfy the constraint cannot be stated over
the data-logic (even if it has quantification).

There have been a few breakthroughs in combining heap struc-
tures and data recently. For instance, HAVOC [16] supports a logic
that ensures decidability using a highly restrictive syntax, and
CSL [7] extends the HAVOC logic mechanism to handle constraints
on sizes of structures. However, both these logics have very awk-
ward syntax that involve the domain being partially ordered with
respect to sorts, and the logics are heavily curtailed so that the deci-
sion procedure can move down the sorted structures hierarchically
and hence terminate. Moreover, these logics cannot express even
simple properties on trees of unbounded depth, like the property

that a tree is a binary search tree. More importantly, the technique
for deciding the logic is encoded in the syntax, which in turn nar-
rowly aims for a fast reduction to the underlying data-logic, making
it hard to extend or generalize.

In this paper, we propose a new fundamental technique for de-
ciding theories that combine heap structures and data, for fragments
of a logic called STRAND.

The logic STRAND: We define a new logic called STRAND (for
“STRucture ANd Data”), that combines a powerful heap-logic with
an arbitrary data-logic. STRAND formulas are interpreted over a
class of data-structures R, and are of the form ∃�x∀�yϕ(�x, �y), where
ϕ is a formula that combines a complete monadic second-order
logic over the heap-structure (and can have additional quantifica-
tion), and a data-logic that can constrain the data-fields of the nodes
referred to by �x and �y.

The heap-logic in STRAND is derived from the rich logic tra-
dition of designing decidable monadic second-order logics over
graphs, and is extremely expressive in defining structural shapes
and invariants. STRAND formulas are interpreted over a recursively
defined class of data-structures R, which is defined using a regu-
lar set of skeleton trees with MSO-defined edge-relations (pointer-
relations) between them. This way of recursively defining data-
structures is not new, and was pioneered by the PALE system [20],
which reasons with purely structural properties of heaps defined in
a similar manner. In fact, the notion of graph types [14] is a conve-
nient and simple way to define data-structure types and invariants,
and is easily expressible in our scheme. Data-structures defined
over skeleton trees have enough expressive power to state most
data-structure invariants of recursively defined data-structures, in-
cluding nested lists, threaded trees, cyclic and doubly-linked lists,
and separate or loosely connected combinations of these structures.
Moreover, they present a class of graphs that have a decidable MSO
theory, as MSO on these graphs can be interpreted using MSO over
trees, which is decidable. In fact, graphs defined this way are one
of the largest classes of graphs that have a decidable MSO theory.

As we show in this paper, the STRAND logic is well-suited
to reasoning with programs. In particular, assume we are given a
(straight-line) program P , a pre-condition on the data-structure ex-
pressed as a set of recursive structures R, and a pre-condition and a
post-condition expressed in a sub-fragment of STRAND that allows
Boolean combinations of the existential and universal fragments.
We show that checking the invalidity of the associated Hoare-triple
reduces to the satisfiability problem of STRAND over a new class
of recursive structures RP .

Note that despite its relative expressiveness in allowing quantifi-
cation over nodes, STRAND formulas cannot express certain con-
straints such as those that constrain the length of a list of nodes
(e.g., to express that the number of black nodes on all paths in
a red-black tree are the same), nor express the multi-set of data-
values stored in a data-structure (e.g., to express that one list’s data
contents are the same as that of another list). We hope that future
work will extend the results in this paper to handle such constraints.

Decidable fragments of STRAND: The primary contribution of
this paper is in identifying decidable fragments of STRAND. We
define two such fragments, one which is a semantic fragment
STRANDsem

dec that defines the largest class that can exploit our com-
bination mechanism for decidability, and the other a smaller but
syntactic fragment STRANDdec.

The decision procedures work through a notion called satisfi-
ability-preserving embeddings. Intuitively, for two heap structures
(without data) S and S′, S satisfiability-preservingly embeds in S′

with respect to a STRAND formula ψ if there is an embedding of the
nodes of S in S′ such that no matter how the data-logic constraints
are interpreted, if S′ satisfies ψ, then so will the submodel S
satisfy ψ, by inheriting the data-values. We define the notion of

satisfiability-preserving embeddings so that it is entirely structural
in nature, and is definable using MSO on an underlying graph that
simultaneously represents S, S′, and the embedding of S in S′.

If S satisfiability-preservingly embeds in S′, then clearly, when
checking for satisfiability, we can ignore S′ if we check satisfi-
ability for S. More generally, the satisfiability check can be done
only for the minimal structures with respect to the partial-order (and
well-order) defined by satisfiability-preserving embeddings.

The semantic decidable fragment STRANDsem
dec is defined to be

the class of all formulas for which the set of minimal structures with
respect to satisfiability-preserving embeddings is finite, and where
the quantifier-free theory of the underlying data-logic is decidable.
Though this fragment of STRAND is semantically defined, we show
that it is syntactically checkable. Given a STRAND formula ψ, we
show that we can build a regular finite representation of all the min-
imal models with respect to satisfiability-preserving embeddings,
even if it is an infinite set, using automata-theory. Then, checking
whether the number of minimal models is finite is decidable. If
the set of minimal models is finite, we show how to enumerate the
models, and reduce the problem of checking whether they admit
a data-extension that satisfies ψ to a formula in the quantifier-free
fragment of the underlying data-logic, which can then be decided.

We also define a syntactic decidable fragment of STRAND,
STRANDdec, which is a subfragment of the semantic class STRANDsem

dec .
In this fragment, we distinguish two kinds of binary relations in the
heap, elastic and non-elastic relations. Intuitively, a relation is elas-
tic if for every model M and submodel M′, the relation holds on
a pair of nodes of M ′ iff the relation holds for the corresponding
pair of nodes in M . Given a relation R, we show it is also de-
cidable whether R is an elastic relation. STRANDdec formulas are
then of the form ∃�x∀�yϕ(�x, �y), where (a) ϕ has no additional quan-
tification, and (b) the atomic non-elastic structural relations in ϕ
compare only variables in �x. We show that STRANDdec formulas
always have a finite number of minimal models with respect to
satisfiability-preserving embeddings, and are hence decidable us-
ing the decision procedure for the semantic fragment STRANDsem

dec .
We report also on an implementation of the above decision pro-

cedures. For the structural phase, we use MONA [13], a power-
ful tool for deciding MSO over trees which, despite its theoreti-
cal non-elementary worst-case complexity, works very efficiently
on realistic examples, by combining a variety of techniques includ-
ing tree-automata minimization, BDDs, and guided tree automata.
The quantifier-free data-logic we use is the quantifier-free logic of
linear arithmetic, and we use the SMT solver Z3 to handle these
constraints. We have proved several heap-manipulating programs
correct including programs that search and insert into sorted lists,
reverse sorted lists, and perform search, insertion, and rotation on
binary-search trees.

In each of these cases, the verification conditions were always
expressible in the syntactic fragment STRANDdec, and hence in the
semantic decidable fragment STRANDsem

dec , supporting our thesis that
the decidable fragment is natural and useful.

In summary, we present a general decidability technique for
combining heap structures and data, identify semantically a de-
cidable fragment STRANDsem

dec , demonstrate a syntactically-defined
subfragment STRANDdec, and present experimental evaluation to
show that the decidable combination is expressive and efficiently
solvable. We believe that this work breaks new ground in combin-
ing heap structures and data, and the technique may also pave the
way for defining decidable fragments of other logics, such as sepa-
ration logic, that combine structures and data.

2. Motivating examples and logic design
The goal of this section is to present an overview of the issues
involved in finding decidable logics that combine heap structure

and data, which sets the stage for defining the decidable fragments
of the logic STRAND, and motivates the choices in our logic design
using simple examples on lists.

Let us consider lists in this section, where each node u has a
data-field d(u) that can hold a value (say an integer), and with
two variables head and tail pointing to the first and last nodes
of the list, respectively. Consider first-order logic, where we are
allowed to quantify over the nodes of the list, and further, for any
node x, allowed to refer to the data-field of x using the term d(x).
Let x → y denote that y is the successor of x in the list, and let
x→∗ y denote that x is the same as y or precedes y in the list.

EXAMPLE 2.1. Consider the formula:

ϕ1 : d(head)=c1 ∧ d(tail)=c2 ∧
∀y1∀y2((y1 →∗ y2) ⇒ d(y1) ≤ d(y2))

The above says that the list must be sorted and that the head of
the list must have value c1 and the tail must have value c2. Note
that the formula is satisfiable iff c1 ≤ c2, and in which case it is
actually satisfied by a list containing just two elements, pointed to
by head and tail, with values c1 and c2, respectively.

In fact, the property that the formula is satisfiable by a two-
element list has nothing really to do with the data-constraints in-
volved in the above formula. Assume that we have no idea as to
what the data-constraints mean, and hence look upon the above
formula by replacing all the data-constraints using uninterpreted
predicates p1, p2, . . . to get the formula:

bϕ1 : p1(d(head)) ∧ p2(d(tail)) ∧
∀y1∀y2((y1 →∗ y2) ⇒ p3(d(y1), d(y2)))

Now, we do not know whether the formula is satisfiable (for exam-
ple, p1 may be unsatisfiable). But we still do know that two-element
lists are always sufficient. In other words, if there is a list that satis-
fies the above formula, then there is a two-element list that satisfies
it. The argument is simple: take any list l that satisfies the formula,
and form a new list l′ that has only the head and tail of the list l,
with an edge from head to tail, and with data values inherited from
l (see figure below). It is easy to see that l′ satisfies the formula as
well, since whenever two nodes are related by →∗ in the list l′, the
corresponding elements in l are similarly related. This property,

head

� . . .

tail

head

�′

tail

of course, does not hold on all formulas, as we see in the example
below.

EXAMPLE 2.2. Consider the formula:

ϕ2 : d(head)=c1 ∧ d(tail)=c2 ∧
∀y1∀y2((y1 → y2) ⇒ d(y2) = d(y1) + 1)

The above says that the values in the list increase by one as we
go one element down the list, and that the head and tail of the list
have values c1 and c2, respectively. This formula is satisfiable iff
c1 < c2. However, there is no bound on the size of the minimal
model that is independent of the data-constraints. For example, if
c1 = 1 and c2 = 106, then the smallest list that satisfies the
formula has a million nodes. In other words, the data-constraints
place arbitrary lower bounds on the size of the minimal structure
that satisfies the formula.

Intuitively, the formula ϕ2 refers to successive elements in the
list, and hence a large model that satisfies the formula is not neces-

sarily contractible to a smaller model. The formula ϕ1 in the sort-
edness example (Example 2.1) refers to pairs of elements that were
reachable, leading to contraction of large models to small ones.

Recall that the design principle of the decidable fragment of
STRAND is to examine the structural constraints in a formula ϕ,
and enumerate a finite set of structures such that the formula is sat-
isfiable iff it one of these structures can be populated with values to
satisfy the formula. This strategy necessarily fails for the above for-
mula ϕ2, as there is no class of finite structures that adequately cap-
tures all models of the formula, independent of the data-constraints.
The sortedness formula ϕ1 in the first example is part of the decid-
able fragment of STRAND, while ϕ2 is outside of it.

EXAMPLE 2.3. Consider the formula:

ϕ3 : d(head)=c1 ∧ d(tail)=c2 ∧
∀y1((y1 �= tail) ⇒ ∃y2(d(y2) = d(y1) + 1))

This formula says that for any node n except the tail, there is
some node n′ that has the value d(n) + 1. Notice that the formula
is satisfiable if c1 < c2, but still there is no a priori bound on
the minimal model that is independent of the data-constraints. In
particular, if c1 = 0 and c2 = 106, then the smallest model is a
list with 106 nodes. Moreover, the reason why the bounded struc-
ture property fails is not because of the data-constraints referring to
successive elements as in Example 2.2, but rather because the above
formula has a ∀∃ prefix quantification of data-variables. Formulas
where an existential quantification follows a universal quantifica-
tion in the prefix seldom have bounded models, and STRAND hence
only allows formulas with ∃∗∀∗ quantification prefixes. Note that
quantification of structure variables (variables that quantify over
nodes but whose data-field is not referenced in the formula) can be
arbitrary, and in fact we allow STRAND formulas to even have set
quantifications over nodes.

The Bernays-Schönfinkel-Ramsey class: Having motivated for-
mulas with the ∃∗∀∗ quantification, it is worthwhile to examine this
fragment in classical first-order logic (over arbitrary infinite uni-
verses), which is known as the Bernays-Schönfinkel-Ramsey class,
and is a classical decidable fragment of first-order logic [6].

Consider first a purely relational vocabulary (assume there
are no functions and even no constants). Then, given a formula
∃�x∀�yϕ(�x, �y), let M be a model that satisfies this formula. Let v
be an interpretation for �x such that M under v satisfies ∀�yϕ(�x, �y).
Then it is not hard to argue that the submodel obtained by pick-
ing only the elements used in the interpretation of �x (i.e. v(�x)),
and projecting each relation to this smaller set, satisfies the for-
mula ∃�x∀�yϕ(�x, �y) as well [6]. Hence a model of size at most k
always exists that satisfies ϕ, if the formula is satisfiable, where k
is the size of the vector of existentially quantified variables �x. This
bounded model property extends to when constants are present as
well (the submodel should include all the constants) but fails when
more than two functions are present. Satisfiability hence reduces
to propositional satisfiability, and this class is also called the effec-
tively propositional class, and SMT solving for this class exists [8].

The decidable fragment of STRAND is fashioned after a similar
but more complex argument. Given a subset of nodes of a model,
the subset itself may not form a valid graph/data-structure. We de-
fine a notion of submodels that allows us to extract proper sub-
graphs that contain certain nodes of the model. However, the rela-
tions (edges) in the submodel will not be the projection of edges
in the larger model. Consequently, the submodel may not satisfy a
formula, even though the larger model does.

We define a notion called satisfiability-preserving embeddings
that allows us to identify when a submodel S of T is such that,
whenever T satisfies ψ under some interpretation of the data-logic,
S can inherit values from T to satisfy ψ as well. This is consider-

ably more complex and is the main technical contribution of the pa-
per. We then build decision procedures to check the minimal mod-
els according to this embedding relation.

3. Recursive data-structures
We now define recursive data-structures using a formalism that
defines the nodes and edges using MSO formulas over a regular set
of trees. Intuitively, a set of data-structures is defined by taking a
regular class of trees that acts as a skeleton over which the data-
structure will be defined. The precise set of nodes of the tree
that corresponds to the nodes of the data-structure, and the edges
between these nodes (which model pointer fields) will be captured
using MSO formulas over these trees. We call such classes of data-
structures recursively defined data-structures.

Recursively defined data-structures are very powerful mecha-
nisms for defining invariants of data-structures. The notion of graph
types [14] is a very similar notion, where again data-structure in-
variants are defined using a tree-backbone but where edges are de-
fined using regular path expressions. Graph types can be modeled
directly in our framework; in fact, our formalism is more powerful.

The framework of recursively defined data-structures is also in-
teresting because they define classes of graphs that have a decid-
able monadic second-order theory. In other words, given a class
C of recursively defined data-structures, the satisfiability problem
for MSO formulas over C (i.e. the problem of checking, given ϕ,
whether there is some structureR ∈ C that satisfiesϕ) is decidable.
The decision procedure works by interpreting the MSO formula on
the tree-backbone of the structures. In fact, our framework can cap-
ture all graphs definable using edge-replacement grammars, which
are one of the most powerful classes of graphs known that have a
decidable MSO theory [10].

3.1 Graphs and monadic second-order logics

A labeled (directed) graph G over a finite set of vertex-labels Lv
and a finite set of edge labels Le is a 6-tuple, G = (V,E, μ, ν, Lv,
Le), where V is a non-empty finite set of nodes, E ⊆ V × V is a
set of edges, μ : V → 2Lv assigns a subset of labels to each vertex,
and ν : E → 2Le assigns a subset of labels to each edge.

Monadic second-order logic (MSO) on graphs over the la-
bels (Lv, Le) is the standard MSO on structures of the form
(U,E, {Qa}a∈Lv , {Eb}b∈Le) where U represents the universe,
E is a binary relation capturing the edge relation, Qa is a monadic
predicate that captures all nodes whose labels contain a, and Eb is
a binary relation that captures all edges whose label contain b (note
that Eb ⊆ E, for every b ∈ Le). However, we also allow Boolean
variables and quantification over them1.

Let us fix a countable set of first-order variables FV (first-order
variables will be denoted by s, t, etc.) and a countable set of set-
variables SV (set-variables will be denoted by S, T , etc.). Let us
also fix a countable set of Boolean variables BV (denoted by p, q,
etc.) The syntax of the logic is:

ϕ ::= p | Qa(s) | E(s, t) | Eb(s, t) | s = t | s ∈ S |
ϕ ∨ ϕ | ¬ϕ | ∃s.ϕ | ∃p.ϕ | ∃S.ϕ

where a ∈ Lv , b ∈ Le, s, t ∈ FV , S ∈ SV , and p ∈ BV .

3.2 Recursively defined data-structures

Let Σ be a finite alphabet. For any k ∈ N, let [k] denote the set
{1, . . . k}.

1 Classical definitions of MSO do not allow such Boolean quantification, but
we will find it useful in our setting. These variables can be easily removed;
e.g. instead of quantifying over a Boolean variable p, we can quantify over
a set X and convert every occurrence of p to a formula that expresses that
X is empty.

A k-ary Σ-labeled tree is a pair (V, λ), where V ⊆ [k]∗, and V
is non-empty and prefix-closed, and λ : V → Σ. The edges of the
tree are implicitly defined: that is u.i is the i’th child of u, for every
u, u.i ∈ V , where u ∈ [k]∗ and i ∈ [k]. Trees are seen as graphs
with Σ-labeled vertices and edge relations Ei(x, y) that define the
i’th-child edges. Monadic second-order logic over trees is the MSO
logic over these graphs.

Formally, we define classes of recursively defined data-structures
as follows.

DEFINITION 3.1. A class C of recursively defined data-structures
is specified by a tuple R = (ψTr, ψU , {αa}a∈Lv , {βb}b∈Le),
where ψTr is an MSO sentence, ψU is a unary predicate defined
in MSO, and each αa and βb are monadic and binary predicates
defined using MSO, where all MSO formulas are over k-ary trees,
for some k ∈ N, .

Let R = (ψTr , ψU , {αa}a∈Lv , {βb}b∈Le) and T be a k-ary
Σ-labeled tree. Then T = (V, {Ei}i∈[k]) defines (according to R)
a graph Graph(T) = (N,E, μ, ν, Lv, Le) defined as follows:

• N = {s ∈ V | ψU (s) holds in T}
• E = {(s, s′) | βb(s, s′) holds in T for some b ∈ Le}
• μ(s) = {a ∈ Lv | αa(s) holds in T}
• ν((s, s′)) = {b ∈ Le | βb(s, s′) holds in T}.

The class of graphs defined by R is the set Graph(R) =
{Graph(T) | T |= ψTr}.

EXAMPLE 3.2. Let us define a class of recursive data-structures
that consists of trees where the leaves of the tree are connected by
a linked list. The class of trees will be the class of binary trees (with
edges E1 and E2 representing left- and right-child relations), and
we define the next-edge relation for the list using an MSO predi-
cate:

Enext(s, t) ≡ leaf(s) ∧ leaf(t) ∧ ∃z1, z2, z3(E1(z3, z1) ∧
E2(z3, z2) ∧ RightMostPath(z1, s) ∧ LeftMostPath(z2, t))

where leaf(x) is a subformula that checks if x is a leaf, and
RightMostPath(x, y) (and LeftMostPath(x, y)) is a formula that
checks if y is in the right-most (left-most, respectively) path from x.

4. STRAND: A logic over heap structures and data
4.1 Definition of STRAND

We now introduce our logic STRAND (“STRucture ANd Data”).
STRAND is a two-sorted logic interpreted on program heaps with
both locations and their carried data. Given a first-order theory D
of sort Data, and given L, a monadic second-order (MSO) theory
over (Lv, Le)-labeled graphs, of sort Loc, the syntax of STRAND
is presented in Figure 1. STRAND is defined over the two-sorted
signature Γ(D,L) = Sig(D) ∪ Sig(L) ∪ {data}, where data
is a function of sort Loc → Data. STRAND formulas are of the
form ∃�x∀�yϕ(�x, �y), where �x and �y are ∃DVar and ∀DVar, respec-
tively, of sort Loc (we also refer to both as DVar), ϕ is an MSO
formula with atomic formulas of the form either γ(e1, . . . , en)
or α(v1, . . . , vn). γ(e1, . . . , en) is an atomic D-formula in which
the data carried by Loc-variables can be referred as data(x) or
data(y). α(v1, . . . , vn) is just an atomic formula from L. Note
that additional variables are allowed in ϕ(�x, �y), both first-order and
second-order, but γ(e1, . . . , en) is only allowed to refer to �x and �y.

A model for STRAND is a structure M = 〈MLoc,MData,
Mmap〉. MLoc is an L-model (i.e. a labeled graph) with MLoc as
the underlying set of nodes, and MData is a D-model withMData

as the underlying set. Mmap is an interpretation for the function
data of sortMLoc → MData. The semantics of STRAND formulas
is the natural extension of the logics L and D.

∃DVar x ∈ Loc
∀DVar y ∈ Loc
GVar z ∈ Loc
Variable v ::= x | y | z
Set − Variable S ∈ 2Loc

Constant c ∈ Sig(D)
Function g ∈ Sig(D)
D−Relation γ ∈ Sig(D)
L−Relation α ∈ Sig(L)

Expression e ::= data(x) | data(y) | c | g(e1, . . . , en)
AFormula ϕ ::= γ(e1, . . . , en) | α(v1, . . . , vn)

| ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

| ∃z.ϕ | ∀z.ϕ | ∃S.ϕ | ∀S.ϕ
∀Formula ω ::= ϕ | ∀y.ω
Formula ψ ::= ω | ∃x.ψ

Figure 1. Syntax of STRAND

We will refer to an L-model as a graph-model. A data-extension
of a graph model MLoc is a STRAND model 〈MLoc,MData, Mmap〉.
Undecidability. STRAND is an expressive logic, as we will show
below, but it is undecidable in general, even if both its underlying
theories D and L are decidable. Let D be linear integer arithmetic
and L be the standard MSO logic over lists. It is easy to model
an execution of a 2-counter machine using a list with integers.
Each configuration is represented by two adjacent nodes, which are
labeled by the current instruction. The data fields of the two nodes
hold the value of the two registers, respectively. Then a halting
computation can be expressed by a STRAND formula. Hence the
satisfiability of the STRAND logic is undecidable, even though the
underlying logics L and D are decidable.

4.2 Examples

We now show various examples to illustrate the expressiveness of
STRAND. We sometimes use d() instead of data(), for brevity.

EXAMPLE 4.1 (Binary search tree). In STRAND, a binary search
tree (BST) is interpreted as a binary tree data structure with an
additional key field for each node. The keys in a BST are always
stored in such a way as to satisfy the binary-search-tree property,
expressed in STRAND as follows:

leftsubtree(y1, y2) ≡ ∃z(left(y1, z) ∧ z →∗ y2)
rightsubtree(y1, y2) ≡ ∃z(right(y1, z) ∧ z →∗ y2)
ψbst ≡ ∀y1∀y2((leftsubtree(y1, y2) ⇒ d(y2) < d(y1)) ∧

((rightsubtree(y1, y2) ⇒ d(y1) ≥ d(y2)))

Note that ψbst has an existentially quantified variable z in GVar
after the universal quantification of y1, y2. However, as z is a
structural quantification (whose data-field cannot be referred to),
this formula is in STRAND.

EXAMPLE 4.2 (Two disjoint lists). In separation logic[26], a novel
binary operator ∗, or separating conjunction, is defined to as-
sert that the heap can be split into two disjoint parts where
its two arguments hold, respectively. Such an operator is use-
ful in reasoning with frame conditions in program verification.
Thanks to the powerful expressiveness of MSO logic, the sepa-
rating conjunction is also expressible in STRAND. For example,
(head1 →∗ tail1) ∗ (head2 →∗ tail2) states, in separation
logic, that there are two disjoint lists such that one list is from
head1 to tail1, and the other is from head2 to tail2. This for-
mula can be written in STRAND as:

∃S1∃S2(disjoint(S1, S2) ∧ head1∈S1 ∧ tail1∈S1 ∧
head2∈S2∧tail2∈S2 ∧head1→∗ tail1∧head2→∗ tail2)∧
(∀z(head1→∗ z ∧ z→∗ tail1) ⇒ z ∈ S1)∧
(∀z(head2→∗ z ∧ z→∗ tail2) ⇒ z ∈ S2)

where disjoint(S1, S2) ≡ ¬∃z(z ∈ S1 ∧ z ∈ S2).

5. Deciding STRAND fragments
5.1 Removing existential quantification:

Given a STRAND formula ∃�x∀�yϕ(�x, �y) over a class of recursively
defined data-structures R = (ψTr, ψU , {αa}a∈Lv , {βb}b∈Le),
we can transform this to an equisatisfiable formula ∀�x∀�yϕ′(�x, �y)
over a different class of recursive data-structures R′, where data-
structures in R′ are data-structures in R with new unary predi-
cates that give a valuation for the variables in �x. We won’t define
this formally, but this is an easy transformation: we modify ψTr
to accept trees with extra labelings ai that give (an arbitrary) sin-
gleton valuation of each xi ∈ �x that satisfies ψU , and introduce
new unary predicates V ali(x) = Qai(x), and define ϕ′(�x, �y) to
be (∧iV ali(xi)) ⇒ ϕ(�x, �y). It is easy to see there is a graph
in Graph(R) that satisfies ∃�x∀�yϕ(�x, �y) iff there is a graph in
Graph(R′) that satisfies ∀�x∀�yϕ′(�x, �y). The latter is a STRAND
formula with no existential quantification of variables whose data
is referred to by the formula. Let us refer to these formulas with
no leading existential quantification on data-variables as universal
STRAND formulas; we will now outline techniques to solve the sat-
isfiability problem of a certain class of universal STRAND formulas.

5.2 Submodels

Let us fix a class of recursively defined data-structures R =
(ψTr, ψU , {αa}a∈Lv , {βb}b∈Le) for the rest of this section.

We first need to define the notion of submodels of a model.
The definition of a submodel will depend on the particular class
of recursively defined data-structures we are working with, since
we want to exploit the tree-representation of the models, which in
turn will play a crucial role in deciding fragments of STRAND, as it
will allow us to check satisfiability-preserving embeddings. In fact,
we will define the submodel relation between trees that satisfyψTr .

DEFINITION 5.1. Let T = (V, λ) be a tree that satisfies ψTr , and
let S ⊆ V . Then we say that S is a valid subset of V if the following
hold:

• S is non-empty, and least-ancestor closed (i.e. for any s, s′ ∈
S, the least common ancestor of s and s′ in T also belongs to
S).

• The subtree defined by S, denoted Subtree(T, S), is the tree
with nodes S, and where the i’th child of a node u ∈ S is
the (unique) node u′ ∈ S closest to u that is in the subtree
rooted at the i’th child of u. (This is uniquely defined since S is
least-ancestor closed.) Then we require that Subtree(T, S) also
satisfies ψTr .

• We also require that for every s ∈ S, if ψU (s) holds in
Subtree(T, S), then ψU (s) holds in T as well.

A tree T ′ = (V ′, λ′) is said to be a submodel of T = (V, λ)
if there is a valid subset S of V such that T ′ is isomorphic to
Subtree(T, S).

Note that a submodel is necessarily a valid data-structure.
Intuitively, T ′ = (V ′, λ′) is a submodel of T = (V, λ) if

the vertices of T ′ can be embedded in T , preserving the tree-
structure. The nodes of the Graph(T ′), are a subset of the nodes
of Graph(T) (because of the last condition in the definition of a
submodel), and, given a valid subset S, there is in fact an injective
mapping from the nodes of Graph(T ′) to Graph(T). For technical

convenience, we will work with valid subsets mostly, as fixing the
precise embedding helps in the decision procedures.

5.3 Structural abstractions of STRAND formulas

Let ψ = ∀�y ϕ(�y) be a universal STRAND formula.
We now define the structural abstraction of ψ as follows. Let

γ1, γ2, . . . , γr be the atomic relational formulas of the data-logic
in ϕ. Note that each of these relational formulas will be over the
data fields of variables in �y only (since the data-logic is restricted
to working over the terms data(y), where y ∈ �y).

Consider evaluating ψ over a particular model. After fixing a
particular valuation of �y, notice that the data-relations γi get all
fixed, and evaluate to true or false. Moreover, once the values of
γi are fixed, the rest of the formula is purely structural in nature.
Now, if ψ is to hold in the model, then no matter how we choose
to evaluate �y over the nodes of the model, the γi relations must
evaluate to true or false in such a way that ϕ holds.

Since we want, in the first phase, to ignore the data-constraints
entirely, we will abstract ψ using a purely structural formula by
using Boolean variables b1, . . . br instead of the data-relations
γ1, γ2, . . . , γr . However, since these Boolean variables get deter-
mined only after the valuation of �y gets determined, and since we
are solving for satisfiability, we existentially quantify over these
Boolean variables and quantify them after the quantification of �y.
Formally2,

DEFINITION 5.2. Let ψ = ∀�y ϕ(�y) be a universal STRAND for-
mula, and let the atomic relational formulas of the data-logic that
occur in ϕ be γ1, γ2, . . . , γr. Then its structural abstraction bψ is
defined as the pure MSO formula on graphs:

∀�y ∃b1 . . . br ϕ′(�y,�b)

where ϕ′ is ϕ with every occurrence of γi replaced with bi.

For example, consider the sortedness formula ψsorted from Exam-
ple 2.1. Then

bψsorted : ∀y1∀y2 ∃b1 (d(head)=c1 ∧ d(tail)=c2 ∧
((y1 →∗ y2) ⇒ b1)

Note that each Boolean variable bi replaces an atomic relational
formula γi, where γi places some data-constraint on the data-fields
of some of the universally quantified variables.

The following proposition is obvious; it says that if a universal
STRAND formula ψ is satisfiable, then so is its structural abstrac-
tion bψ. The proposition is true because the values for the Boolean
variables can be set in the structural abstraction precisely according
to how the relational formulas γi evaluate in ψ:

PROPOSITION 5.3. Let ψ = ∀�yϕ(�y) be a universal STRAND

formula, and bψ be its structural abstraction. If ψ is satisfiable
over a set of recursive data-structures R, then the MSO formula
on graphs (with no constraints on data) bψ is also satisfiable over
R.

2 The definition of structural abstractions can be strengthened in two ways.
First, if γi and γj are of the same arity and over �z and �z′, respectively, and
further uniformly replacing zi with z′i in γi yields γ′, then we can express
the constraint ((�zi= �zi

′) ⇒ (bi ⇔ bj)), in the inner formula ϕ′. Sec-
ond, if a constraint γi involves only existentially quantified variables in �x,
then we can move the quantification of bi outside the universal quantifica-
tion. Doing these steps gives a more accurate structural abstraction, and in
practice, restricts the number of models created. We use these more precise
abstractions in the experiments, but use the less precise abstractions in the
theoretical narrative. The proofs in this section, however, smoothly extend
to the more precise abstractions.

5.4 Satisfiability-preserving embeddings

We are now ready to define satisfiability-preserving embeddings
using structural abstractions. Given a model defined by a tree T =
(V, λ) satisfying ψTr , and a valid subset S ⊆ V , and a universal
STRAND formula ψ, we would like to define the notion of when
the submodel defined by S satisfiability-preservingly embeds in the
model. The most crucial requirement for the definition is that if S
satisfiability-preservingly embeds in T , then we require that if there
is a data-extension of Graph(T) that satisfies ψ, then the nodes of
the submodel defined by S, Graph(Subtree(T, S)), can inherit the
data-values and also satisfy ψ. The notion of structural abstractions
defined above allows us to define such a notion.

Intuitively, if a model satisfies ψ, then it would satisfy bψ too,
as for every valuation of �y, there is some way it would satisfy the
atomic data-relations, and using this we can pull out a valuation for
the Boolean variables to satisfy bψ (as in the proof of Proposition 5.3
above). Now, since the data-values in the submodel are inherited
from the larger model, the atomic data-relations would hold in the
same way as they do in the larger model. However, the submodel
may not satisfy ψ if the conditions on the truth- and false-hood of
these atomic relations demanded by ψ are not the same.

For example, consider a list and a sublist of it. Consider a
formula that demands that for any two successor elements y1, y2
in the list, the data-value of y2 is the data-value of y1 incremented
by 1 (as in the successor example in Section 2):

ψ ≡ ∀y1∀y2((y1 → y2) ⇒ (d(y2) = d(y1) + 1))

Now consider two nodes y1 and y2 that are successors in the
sublist but not successors in the list. The list hence could satisfy
the formula by setting the data-relation γ : d(y2) = d(y1) + 1 to
false. Since the sublist inherits the data values, γ would be false
in the sublist as well, but the sublist will not satisfy the formula
ψ. We hence want to ensure that no matter how the larger model
satisfies the formula using some valuation of the atomic data-
relations, the submodel will be able to satisfy the formula using
the same valuation of the atomic data-relations. This leads us to
the following definition:

DEFINITION 5.4. Let ψ = ∀�y ϕ(�y) be a universal STRAND for-
mula, and let its structural abstraction be bψ = ∀�y ∃�b ϕ′(�y,�b). Let
T = (V, λ) be a tree that satisfies ψTr , and let a submodel be de-
fined by S ⊆ V . Then S is said to satisfiability-preservingly embed
into T wrtψ if for every possible valuation of �y over the elements of
S, and for every possible Boolean valuation of�b, if ϕ′(�y,�b) holds
in the graph defined by T under this valuation, then the submodel
defined by S, Graph(Subtree(T, S)), also satisfies ϕ′(�y,�b) under
the same valuation.

The satisfiability-preserving embedding relation can be seen
as a partial order over trees (a tree T ′ satisfiability-preservingly
embeds into T if there is a subset S of T such that S satisfiability-
preservingly embeds into T and Subtree(T, S) is isomorphic to
T ′); it is easy to see that this relation is reflexive, anti-symmetric
and transitive.

It is now not hard to see that if S satisfiability-preservingly em-
beds into T wrt ψ, and Graph(T) satisfies ψ, then Graph(Subtree(
T, S)) also necessarily satisfies ψ, which is the main theorem we
seek.

THEOREM 5.5. Let ψ = ∀�yϕ(�y) be universal STRAND formula.
Let T = (V, λ) be a tree that satisfies ψTr , and S be a valid subset
of T that satisfiability-preservingly embeds into T wrt ψ. Then, if
there is a data-extension of Graph(T) that satisfies ψ, then there is
a data-extension of Graph(Subtree(T, S)) that satisfies ψ.

Notice that the above theorem crucially depends on the formula
being universal over data-variables. For example, if the formula
was of the form ∀y1∃y2γ(y1, y2), then we would have no way
of knowing which nodes are used for y2 in the data-extension of
Graph(T) to satisfy the formula. Without knowing the precise
meaning of the data-predicates, we would not be able to declare
that whenever a data-extension of Graph(T) is satisfiable, a data-
extension of a strict submodel S is satisfiable (even over lists).

The above notion of satisfiability preserving embeddings is the
property that will be used to decide if a formula falls into our
decidable fragment.

5.5 STRANDsem
dec : A semantic decidable fragment of STRAND

We are now ready to define STRANDsem
dec , the most general decid-

able fragment of STRAND in this paper. This fragment is semanti-
cally defined (but syntactically checkable, as we show below), and
intuitively contains all STRAND formulas that have a finite num-
ber of minimal models with respect to the partial-order defined by
satisfiability-preserving embeddings.

Formally, let ψ = ∀�yϕ(�y) be a universal STRAND formula, and
let T = (V, λ) be a tree that satisfies ψTr . Then we say that T is a
minimal model with respect to ψ if there is no strict valid subset S
of V that satisfiability-preservingly embeds in T .

DEFINITION 5.6. Let R be a recursively defined set of data-
structures.

A universal formula ψ = ∀�y ϕ(�y) is in STRANDsem
dec iff the

number of minimal models with respect to R and ψ is finite.
A STRAND formula of the form ψ = ∃�x ∀�y ϕ(�x, �y) is in

STRANDsem
dec iff the corresponding equi-satisfiable universal formula

ψ′ over set of data-structure R′ (as defined in Section 5.1) is in
STRANDsem

dec .

We now show that we can effectively check if a STRAND for-
mula belongs to the decidable fragment STRANDsem

dec . The idea, in-
tuitively, is to express that a model is a minimal model with respect
to satisfiability-preserving embeddings, and then check, using au-
tomata theory, that the number of minimal models is finite.

Let ψ = ∀�yϕ(�y) be universal STRAND formula, and let its
structural abstraction be bψ = ∀�y ∃�b ϕ′(�y,�b).

We now show that we can define an MSO formula MinModelψ ,
such that it holds on a tree T = (V, λ) iff T defines a minimal
model with respect to satisfiability-preserving embeddings.

Before we do that, we need some technical results and notation.
Let R = (ψTr, ψU , {αa}a∈Lv , {βb}b∈Le).

We first show that any (pure) MSO formula δ on (Lv, Le)-
labeled graphs can be interpreted on trees. Formally, we show
that any (pure) MSO formula δ on (Lv, Le)-labeled graphs can be
transformed syntactically to a (pure) MSO formula δ′ on trees such
that for any tree T =(V,λ), Graph(T)) satisfies δ iff T satisfies δ′.

This is not hard to do, since the graph is defined using MSO
formulas on the trees, and we can adapt these definitions to work
over the tree instead. The transformation is given by the following
function interpret; the predicates for edges, and the predicates that
check vertex labels and edges labels are transformed according
to their definition, and all quantified variables are restricted to
quantify over nodes that satisfy ψU .

• interpret(p) = p
• interpret(Qa(s)) = αa(s), for every a ∈ Lv
• interpret(E(s, t)) =

W
b∈Le βb(s, t)

• interpret(Eb(s, t)) = βb(s, t), for every b ∈ Le
• interpret(s = t) = (s = t)
• interpret(s ∈W) = s ∈W
• interpret(ϕ1 ∨ ϕ2) = interpret(ϕ1) ∨ interpret(ϕ2)

• interpret(¬ϕ) = ¬(interpret(ϕ))
• interpret(∃s.ϕ) = ∃s.(ψU (s) ∧ interpret(ϕ))
• interpret(∃W.ϕ) = ∃W.((∀s.(s ∈W ⇒ ψU (s)))∧interpret(ϕ))

It is not hard to show that for any formula δ on (Lv, Le)-labeled
graphs Graph(T) satisfies δ iff T satisfies interpret(δ).

Now, we give another transformation, that transforms an MSO
formula δ on trees to a formula δ′(X) on trees, over a free set-
variable X, such that for any tree T = (V, λ) and any valid subset
S ⊆ V , Subtree(T, S) satisfies δ iff T satisfies δ′(X) when X
is interpreted to be S. In other words, we can transform a formula
that expresses a property of a subtree to a formula that expresses the
same property on the subtree defined by the free variable X. The
transformation is given by the following function tailor; the crucial
transformation are the edge-formulas, which has to be interpreted
as the edges of the subtree defined by X.

• tailorX(p) = p
• tailorX(Qa(s)) = Qa(s), for every a ∈ Lv
• tailorX(Ei(s, t)) = ∃s′ [Ei (s, s

′) ∧ s′≤ t ∧
∀t′. ((t′ ∈ X ∧ s′ ≤ t′) ⇒ t ≤ t′)],

for every i ∈ [k].
• tailorX(s = t) = (s = t)
• tailorX(s ∈W) = s ∈W
• tailorX(ϕ1 ∨ ϕ2) = tailor(ϕ1) ∨ tailor(ϕ2)
• tailorX(¬ϕ) = ¬(tailor(ϕ))
• tailorX(∃s.ϕ) = ∃s.(s ∈ X ∧ tailor(ϕ))
• tailorX(∃W.ϕ) = ∃W.(W ⊆ X ∧ tailor(ϕ))

The above transformation satisfies the following property. For
any MSO sentence δ on k-ary trees, for any tree T = (V, λ) and
for any valid subset S ⊆ V , Subtree(T, S) satisfies δ iff T satisfies
tailorX(δ) when X is interpreted to be S.

Note that the above transformations can be combined. For any
MSO formula δ on (Lv, Le) labeled graphs, consider the formula
tailorX(interpret(δ)). Then for any tree T = (V, λ) and for any
valid subset S ⊆ V , Graph(Subtree(T, S)) satisfies δ iff T satisfies
tailorX(interpret(δ)), where X is interpreted as S.

Expressing minimal models in MSO. First, we can also express,
with an MSO formula ValidSubModel(X), with a free set variable
X, that holds in a tree T = (V, λ) iff X is interpreted as a valid
submodel of T :

ValidSubModel(X) ≡
∀s, t, u ((s ∈ X ∧ t ∈ X ∧ lca(s, t, u)) ⇒ u ∈ X)∧tailorX(ψTr)

∧ (∀s(s ∈ X ∧ tailorX(ψU (s))) ⇒ ψU (s))

where lca(s, t, u) is an MSO formula that checks whether u is the
least-common ancestor of s and t in the tree; this expresses the
requirements in Definition 5.1.

We are now ready to define the MSO formula on k-ary trees
MinModelψ that captures minimal models. Let the structural ab-
straction of ψ be bψ = ∀�y ∃�b ϕ′(�y,�b), then

MinModelψ ≡ ¬∃X.(ValidSubModel(X) ∧
∃s.(s ∈ X) ∧ ∃s.(s �∈ X) ∧
(∀�y ∀�b ((∧y∈�y(y ∈ X ∧ ψU (y)) ∧ interpret(ϕ′(�y,�b)))

⇒ tailorX(interpret(ϕ′(�y,�b)))))

The above formula when interpreted on a tree T says that there
does not exists a set X that defines a non-empty valid strict subset
of the nodes of T , which defines a model Graph(Subtree(T,X))
that further satisfies the following: for every valuation of �y over
the nodes of Graph(Subtree(T, S)) and for every valuation of the
Boolean variables�b such that the structural abstraction ofϕ holds in

Graph(T), the same valuation also makes the structural abstraction
of ϕ hold in Graph(Subtree(T, S)).

Note that the above is a pure MSO formula on trees, and en-
codes the properties required of a minimal model with respect
to satisfiability-preserving embeddings. Using the classical logic-
automaton connection [6], we can transform the MSO formula
MinModelψ ∧ ψTr ∧ bψ to a tree automaton that accepts precisely
those trees that define data-structures that satisfy the structural ab-
straction and are minimal models. Since the finiteness of the lan-
guage accepted by a tree automaton is decidable, we can check
whether there are only a finite number of minimal models wrt
satisfiability-preserving embeddings, and hence decide member-
ship in the decidable fragment STRANDsem

dec .

THEOREM 5.7. Given a sentence ∃�x∀�y ϕ(�x, �y), the problem of
checking whether the sentence belongs to the fragment STRANDsem

dec
is decidable.

In fact, we develop, using the tool MONA, the decision proce-
dure above (see Section 7).

Deciding formulas in STRANDsem
dec . We now give the decision

procedure for satisfiability of sentences in STRANDsem
dec over a re-

cursively defined class of data-structures. First, we transform the
satisfiability problem to that of satisfiability of universal formulas
of the form ψ = ∀�y ϕ(�y). Then, using the formula MinModelψ de-
scribed above, and by transforming it to tree automata, we extract
the set of all trees accepted by the tree-automaton in order to get
the tree-representation of all the minimal models. Note that this set
of minimal models is finite, and the sentence is satisfiable iff it is
satisfiable in some data-extension of one of these models.

We can now write a quantifier-free formula over the data-logic
that asserts that one of the minimal models has a data-extension that
satisfies ψ. This formula will be a disjunction of m sub-formulas
η1, . . . , ηm, where m is the number of minimal models. Each for-
mula ηi will express that there is a data-extension of the i’th min-
imal model that satisfies ψ. First, since a minimal model has only
a finite number of nodes, we create one data-variable for each of
these nodes, and associate them with the nodes of the model. It is
now not hard to transform the formula ψ to this model using no
quantification. The universal quantification over �y translates to a
conjunction of formulas over all possible valuations of �y over the
nodes of the fixed model. Existential (universal) quantified vari-
ables are then “expanded” using disjunction (conjunction, respec-
tively) of formulas for all possible valuations over the fixed model.
The edge-relations between nodes in the model are interpreted on
the tree using MSO formulas in R, which are then expanded to
conditions over the fixed set of nodes in the model. Finally, the
data-constraints in the STRAND formula are directly written as con-
straints in the data-logic.

The resulting formula is a pure data-logic formula without quan-
tification that is satisfiable if and only ifψ is satisfiable overR. This
is then decided using the decision procedure for the data-logic.

THEOREM 5.8. Given a sentence ∃�x∀�y ϕ(�x, �y) over R in
STRANDsem

dec , the problem of checking whether ψ is satisfiable re-
duces to the satisfiability of a quantifier-free formula in the data-
logic. Since the quantifier-free data-logic is decidable, the satisfia-
bility of STRANDsem

dec formulas is decidable.

5.6 STRANDdec: A syntactic decidable fragment of STRAND

We utilize the semantically defined decidable class in the previous
section to define a logic that has a simple syntactic restriction and is
entirely decidable. The decidable fragment allows only formulas of
the kind ∃�x∀�yϕ where ϕ has no further quantification. Moreover,
some of the structural edge relations R on the data-structure are
classified as elastic relations. In ϕ, elastic relations are allowed to

relate any pair of variables, while non-elastic relations are allowed
only to relate existentially quantified variables in �x.

A relation R is elastic if, intuitively, for any model M and a
submodel M ′ of M , R holds on a pair of nodes of M′ iff R holds
for the corresponding pair of nodes in M .

More formally, let us fix a class of recursively defined data-
structures R = (ψTr, ψU , {αa}a∈Lv , {βb}b∈Le). Let Eb denote
the edge-relation defined by βb. Then we say Eb is elastic if the
following holds: for every tree T = (V, {Ei}i∈[k]) satisfying ψTr ,
for every valid subset S of V , and for every pair of nodes u, v in
the model M ′ = Graph(Subtree(T, S)), Eb(u, v) holds in M ′ iff
Eb(u, v) holds in Graph(T).

For example, over trees, the ≤ relation relating a node with any
of its descendants is an elastic relation; however, the relation that
relates a node to its parent is not elastic, as we can take two nodes
u and v in a subtree Subtree(S, T) where u is the parent of v, but
u is not the parent of v in T .

We can express the property that Rb is elastic in MSO over a
particular tree T using the following formula:

∀S∀u∀v((ValidSubModel(S) ∧ u∈S ∧ v∈S ∧ tailorS(ψU (u))
∧ tailorS(ψU (v))) ⇒ (βb(u, v) ⇔ tailorS(βb(u, v))))

Hence, we can decide whether a relation is elastic or not, by check-
ing the validity of the above formula over all trees satisfying ψTr .

The syntactic decidable fragment STRANDdec is defined as the
class of all STRAND formulas of the form ∃�x∀�yϕ such that (a) ϕ
has no quantification, (b) every occurrence of an atomic relation in
ϕ is of the form R(z1, z2) where either R is an elastic relation or
z1 and z2 are in �x, or are constants. We can now show:

THEOREM 5.9. Over any class of recursively defined structures R,
STRANDdec is decidable.

We omit the proof for lack of space; it’s gist is as follows.
When all relations are elastic, for any valid subset S, tailorS(ϕ)
holds on any valuation of variables over S iff ϕ holds on the
same valuation over T (since the atomic relations are elastic).
Hence the submodel can always inherit the data-values from the
model to satisfy the formula. The minimal models with respect
to satisfiability-preserving embeddings are hence a subset of the
minimal models with respect to the submodel-relation, which we
can show is finite. When all relations are not elastic, the proof
is much more complex, and relies on the fact that the non-elastic
relations define only a finite number of equivalence classes of
relationships over �x.

All of verification conditions in our experiments turn out to be
in the syntactic decidable class STRANDdec.

6. Program Verification Using STRAND

In this section we show how STRAND can be used to reason about
the correctness of programs, in terms of verifying Hoare-triples
where the pre- and post-conditions express both the structure of
the heap as well as the data contained in them. The pre- and
post-conditions that we allow are STRAND formulas that consist
of Boolean combinations of the formulas with pure existential or
pure universal quantification over the data-variables (i.e. Boolean
combinations of formulas of the form ∃�xϕ and ∀�yϕ); let us call
this fragment STRAND∃,∀.

Given a straight-line program P that does destructive pointer-
updates and data updates, we model a Hoare-triple as a tuple
(R,Pre, P,Post), where the pre-condition is given by the data-
structure constraint R with the STRAND∃,∀ formula Pre , and the
post-condition is given by the STRAND∃,∀ formula Post (note that
structural constraints on the data-structure for the post-condition
are also expressed in Post , using MSO logic).

In this section, we show that given such a Hoare-triple, we
can reduce checking whether the Hoare-triple is not valid can be
reduced to a satisfiability problem of a STRAND formula over a
class of recursively defined data-structures RP . This then allows
us to use STRAND∃,∀ to verify programs (where, of course, loop-
invariants are given by the programmer, which breaks down ver-
ification of a program to verification of straight-line code). Intu-
itively, this reduction augments the structures in R with extra nodes
that could be created during the execution of P , and models the
trail the program takes by logically defining the configuration of
the program at each time instant. Over this trail, we then express
that the pre-condition holds and the post-condition fails to hold.
We also construct formulas that check if there is any memory ac-
cess violation during the run of P (e.g. free-ing locations twice,
dereferencing a null pointer, etc.).

Syntax of programs. Let us define the syntax of a basic pro-
gramming language manipulating heaps and data; more complex
constructs can be defined by combining these statements appro-
priately. Let Var be a countable set of pointer variables, F be a
countable set of structural pointer fields, and data be a data field.
A condition is defined as follows: (for technical reasons, negations
are pushed all the way in):

ψ ∈ Cond ::= γ(q1.data, . . . , qk.data) | ¬γ(q1.data, . . . , qk.data)
| p == q | p �= q | p == nil | p �= nil| ψ1 ∧ ψ2 | ψ1 ∨ ψ2

where p, q, q1, . . . , qk ∈ Var, and γ is a predicate over data values.
The set of statements Stmt defined over Var, F , and data is de-
fined as follows:

s ∈ Stmt ::= p := new | free(p) | assume(ψ) | p := nil |
p := q | p.f := q | p := q.f | p.data := h(q1.data, . . . , qk.data)

where p, q, q1, . . . , qk ∈ Var, f ∈ F , h is a function over data,
and ψ is a condition. A program P over Var, F , and data is
a non empty finite sequence of statements s1; s2; . . . ; sm, with
si ∈ Stmt.

The semantics of a program is the natural one and we skip its
definition.

LetR be a recursive data-structure, Pre,Post be two STRAND∃,∀
formulas, and P ::= s1; s2; . . . ; sm be a program. The configura-
tion of the program at any point is given by a heap modeled as
a graph, where nodes of the graph are assigned data values. For
a program with m statements, let us fix the configurations to be
G0, . . . , Gm.

The trail. The idea is to capture the entire computation starting
from a particular data-structure using a single data-structure. The
main intuition is that if we run P over a graph G0 ∈ Graph(R)
then a new class of recursive data-structures RP will define a graph
Gtrail which encodes in itG0, as well as all the graphsGi, for every
i ∈ [m].Gtrail has the nodes ofG0 plusm other fresh nodes (these
nodes will be used to model newly created nodes P creates as well
as to hold new data-values of variables that are assigned to in P).
Each of these new nodes are pointed by a distinguished pointer
variable newi. Initially, these additional nodes are all inactive in
G0. We build an MSO-defined unary predicate activei that captures
at each step i the precise set of active nodes in the heap. To capture
the pointer variables at each step of the execution, we define a new
unary predicate pi, for each p ∈ Var and i ∈ [0, m]. Similarly,
we create MSO-defined binary predicates fi for each f ∈ F and
i ∈ [0, m], to capture structural pointer fields at step i. The heap
Gi at step i is hence the graph consisting of all the nodes x ofGtrail

such that activei(x) holds true, and the pointers and edges ofGi are
defined by pi and fi predicates, respectively.

Formally, fix a recursively defined data-structure R =
(ψTr, ψU , {αp}p∈Var, {βf}f∈F), with a monadic predicate αxnil,
which evaluates to a unique NIL node in the data-structure. Then
its trail with respect to the program P is defined as RP =
(ψ′
Tr, ψ

′
U , {α′

p}p∈Var′ , {β′
f}f∈F ′) where:

• ψ′
Tr is designed to hold on all trees in which the first subtree

of the root satisfies ψTr and the second child of the root has a
chain ofm−1 nodes where each of them is the second child of
the parent.

• ψ′
U holds true on the root, on all the second child descendent

of the root, and on all first child descendent on which ψU holds
true.

• Var′ = {newi|i ∈ [m]} ∪ {pi|p ∈ Var, i ∈ [0, m]}, and
-(1) α′

new1 holds only on the root, and α′
newi holds true only on

the i+1’th descendent of the second child of the root, for every
i ∈ [m− 1].
-(2) for every p ∈ Var and i ∈ [m], α′

p0 = αp and α′
pi

is
defined as in Figure 2.

• F ′ = {fi|f ∈ F, i ∈ [0,m]}, and for every f ∈ F and i ∈ [m],
β′
f0 = βf and β′

fi
is defined as in Figure 2.

In Figure 2, the MSO formulas α′
pi and β′

fi
are derived in the

natural way from the semantics of the statements, except for the
statement p.data := h(q1.data, . . . , qk.data). Although the se-
mantics for this statement does not involve any structural modifi-
cation of the graph (it changes only the data value associated p),
we represent this operation by making a new version of the node
pointed by p in order to represent explicitly the change for the data
value corresponding to that node. We deactivate the node pointed
by pi−1 and activate the dormant node pointed by newi. All the
edges in the graph and the pointers are rearranged to reflect this
exchange of nodes.

In Figure 2, we also define two more MSO formulas, activei
and errori, which are not part of the trail, where the first models
the active nodes at step i, and the second expresses when an error
occurs due to the dereferencing of a variable pointing to xnil,
respectively.

Handling data constraints. The trail RP captures all the struc-
tural modifications made to the graph during the execution P .
However, data constrains entailed by assume statements and data-
assignments cannot be expressed in the trail as they are not express-
ible in MSO. We impose them in the STRAND formula. We define
a formula ϕi for each statement index i ∈ [m], where if si is not
an assume or a data-assignment statement, then ϕi = true. Other-
wise, there are two cases:
Handling assume assignments. If si is the statement assume(ψ),
then ϕi is the STRAND formula obtained by adapting the constraint
ϕ to the i’th stage of the trail. This is not hard, but is tedious, and
we skip its definition. Constraints on data-variables asserted in the
formula using data-logic constraints.
Handling data-assignments. The STRAND formula ϕi for a data-
assignment statement p.data := h(q1.data, . . . , qk.data) is:

ϕi := ∃ex, ex1, . . . , exk. pi(ex)∧
(

^
i∈[k]

qji−1(exj)) ∧ data(ex) = h(data(ex1), . . . , data(exk))

which translates si into STRAND making sure that it refers to the
heap at step i−1.

Adapting pre- and post-conditions to the trail. The last ingredi-
ent that we need is to express the STRAND∃,∀ formulas Pre and the
negation of the Post on the trail RP . More specifically, we need to

[p := new]:
α′

pi
(x)=α′

newi
(x), α′

qi
(x) = α′

qi−1
(x), ∀q ∈ Var \ {p},

β′
fi
(x, y)=β′

fi−1
(x, y), activei(x) = activei−1(x) ∨ α′

newi
(x)

errori=false

[free(p)]:

α′
zi

(x) = (α′
zi−1

(x) ∧ (α′
xnili−1

(x) ∨ ¬α′
pi−1

(x)))

∨ (α
′
xnili−1

(x) ∧ ¬α′
zi−1

(x))

β′
fi
(x, y) = (β′

fi−1
(x, y) ∧ ¬α′

pi−1
(x))

∨ (α′
xnili−1

(y) ∧ ∃ex. (β′
fi−1

(x, ex) ∧ α′
pi−1

(ex)))

activei(x) = activei−1(x) ∧ ¬α′
pi−1

(x)

errori = ∃x.(α′
pi−1

(x) ∧ α′
xnili−1

(x))

[p := nil]:

α′
pi(x) = α′

xnili−1
(x), α′

zi
(x) = α′

zi−1
(x), ∀z ∈ Var \ {p}

β′
fi
(x, y) = β′

fi−1
(x, y), activei(x)=activei−1(x), errori=false

[p := q]:

α′
pi

(x) = α′
qi−1

(x), α′
zi

(x) = α′
zi−1

(x), ∀z ∈ (Var \ {p})
β′

fi
(x, y) = β′

fi−1
(x, y), activei(x)=activei−1(x), errori=false

[p.f := q]:

α′
zi

(x) = α′
zi−1

(x), ∀z ∈ Var

β
′
fi
(x, y) = (¬α′

pi−1
(x) ∧ β′

fi−1
(x, y)) ∨ (α

′
pi−1(x) ∧ α′

qi−1
(y))

α′
gi

(x, y) = α′
gi−1

(x, y), ∀g ∈ (F \ {f})
activei(x) =activei−1(x), errori=∃x.(α′

pi−1
(x) ∧ α′

xnili−1
(x))

[p := q.f]:

α′
pi(x) = ∃ex. (α′

qi−1
(ex) ∧ β′

fi−1
(ex, x))

α
′
qi

(x) = α
′
qi−1

(x), ∀q ∈ (Var \ {p})
β′

fi
(x, y) = β′

fi−1
(x, y)

α′
gi

(x, y) = α′
gi−1

(x, y), ∀g ∈ (F \ {f})
activei(x) = activei−1(x), errori=∃x. (α

′
qi−1

(x) ∧ α′
xnili−1

(x))

[assume(ψ)]:

α′
qi

(x) = α′
qi−1

(x), ∀q ∈ Var, β′
fi
(x, y) = β′

fi−1
(x, y), ∀f ∈ F

activei(x) = activei−1(x), errori=∃x.
_

p∈Varψ

(α′
pi−1

(x) ∧ α′
xnili−1

(x))

where Varψ is the set of all variables occurring in ψ.

[p.data := h(q1.data, . . . , qk.data)]:

α′
pi

(x) = α′
newi

(x), α′
qi

(x) = α′
qi−1

(x), ∀q ∈ Var \ {p}
β′

fi
(x, y) = (β′

fi−1
(x, y) ∧ ¬α′

pi−1
(x))

∨(α
′
newi

(y) ∧ ∃ex. (β
′
fi−1

(x, ex) ∧ α′
pi−1

(ex)))

activei(x) = (activei−1(x) ∧ ¬pi−1(x)) ∨ α′
newi

(x)

errori = ∃x.(
_

z ∈{p,q1,...,qk}
(α′

zi−1
(x) ∧ α′

xnili−1
(x)))

Figure 2. Predicates defining the new data-structure.

adapt Pre to the trail for index 0, which corresponds to the original
graph, i.e. the predicates p are replaced with p0, for every p ∈ Var,
and the edge predicates f with f0, for every f ∈ F . Moreover, when-
ever we refer to a node in the graph we need to be sure that node is
active which can be done by using the predicate active0(x) which
holds true if x is in the first subtree of the root and ψ′

U (x) holds. A

similar transformation is done for the formula ¬Post , where now
we consider pointers, edge labels, and active nodes at the last step
m. Let PreRP (resp., PostRP) be the STRAND formula corre-
sponding to the adaptation of Pre (resp., Post)

Reduction to satisfiability problem on the trail. It is easy to see
that an error occurs during the execution of P on a graph defined
through R that satisfies Pre if the following STRAND formula is
satisfiable on the trail RP :

Error =
W
i∈[m](PreRP ∧ V

j∈[i−1] ϕj ∧ errori)

Similarly, the Hoare-triple is not valid iff the following STRAND

formula is satisfiable on the trail:

ViolatePost = PreRP ∧ (
V
j∈[m] ϕj) ∧ ¬PostRP

THEOREM 6.1. Let P be a program, R be a recursive data-
structure, and Pre,Post be two STRAND∃,∀ formulas over Var,
F , and data. Then, there is a graph G ∈ Graph(R) that sat-
isfies Pre and where either P terminates with an error or the
obtained graph G′ does not satisfy Post iff the STRAND formula
Error ∨ ViolatePost is satisfiable on the trail RP .

7. Evaluation
7.1 Implementation

In this section, we demonstrate the effectiveness and practical-
ity of the decision procedures for STRAND by checking verifica-
tion conditions generated in proving properties of several heap-
manipulating programs. Given pre-conditions, post-conditions and
loop-invariants, each linear block of statements of a program yields
a Hoare-triple, which is manually translated into a STRAND for-
mula ψ over trees and integer arithmetic, as a verification condi-
tion.

The decision procedure for STRAND implements the deci-
sion procedure for the semantically defined fragment STRANDsem

dec .
Given a STRAND formula, our procedure will first determine if it is
in the semantic decidable fragment, and if not, will halt and report
that satisfiability of the formula is not checkable. When given a
formula in the syntactic fragment STRANDdec, this procedure will
always succeed, and the decision procedure will determine satisfi-
ability of the formula.

The decision procedure consists of a structural phase, where we
determine whether the number of minimal models is finite, and if
so, determine a bound on the size of the minimal models. This
phase is effected by using MONA [13], a monadic second-order
logic solver over (strings and) trees. In the second data-constraint
solving phase, the finite set of minimal models, if any, are examined
by the data-solver Z3 [9] to check if they can be extended with
data-values to satisfy the formula.

Instead of building an automaton representing the minimal
models and then checking it for finiteness, we check the finite-
ness formula MinModelψ using WS2S, supported by MONA,
which is a monadic second-order logic over infinite trees with set-
quantification restricted to finite sets. By quantifying over a finite
universe U , and transforming all quantifications to be interpreted
over U , we can interpret MinModelψ over all finite trees. Let us
denote this emulation as MinModel′U,ψ. The finiteness condition
can now be checked by asking if there exists a finite setB such that
any minimal model for ψ is contained within the nodes of B:

∃ Bound ∀U ∀Qa(a∈Σ) (MinModel′U,ψ ⇒ (U ⊆ Bound))

This formula has no free-variables, and hence either holds on the
infinite tree or not, and can be checked by MONA. This formula
evaluates to true iff the formula is in STRANDsem

dec .
We also follow a slightly different procedure to synthesize the

data-logic formula. Instead of extracting each minimal model, and

Program
Verification

Structural solving (MONA) Data-constraint Solving (Z3 with QF-LIA)

condition
in STRANDsem

dec ?
#States

Final
Time(s)

Graph
Bound

Formula
Satisfiable? Time(s)(finitely-many BDD model (#Nodes) size

minimal models) size exists? (KB)

sorted-
before-loop Yes 67 264 0.34 No - - - -

list-search in-loop Yes 131 585 0.59 No - - - -
after-loop Yes 67 264 0.18 No - - - -

sorted-
before-head Yes 73 298 1.66 Yes 5 6.2 No 0.02

list-insert
before-loop Yes 259 1290 0.38 No - - - -

in-loop Yes 1027 6156 4.46 No - - - -
after-loop Yes 146 680 13.93 Yes 7 14.5 No 0.02

sorted-list- before-loop Yes 298 1519 0.34 Yes 7 9.5 Yes 0.02
insert-error

sorted- before-loop Yes 35 119 0.24 No - - - -

list-reverse
in-loop Yes 513 2816 2.79 No - - - -

after-loop Yes 129 576 0.35 No - - - -
loop-if-if Yes 2049 13312 7.70 No - - - -

bubblesort loop-if-else Yes 1025 6144 6.83 No - - - -
loop-else Yes 1033 6204 2.73 Yes 8 22.2 No 0.02

bst-search
before-loop Yes 52 276 5.03 No - - - -

in-loop Yes 160 1132 32.80 Yes 9 7.7 No 0.02
after-loop Yes 52 276 3.27 No - - - -

bst-insert
before-loop Yes 36 196 1.34 No - - - -

in-loop Yes 68 452 9.84 No - - - -
after-loop Yes 20 84 1.76 No - - - -

left/right-rotate bst-preserving Yes 29 117 1.59 Yes 19 70.3 No 0.05

Figure 3. Results of program verification

checking if there is a data-extension for it, we obtain a bound on
the size of minimal models, and ask the data-solver to check for
any model within that bound. This is often a much simpler formula
to feed to the data-solver.

In our current implementation, the MONA constraints are en-
coded manually, and once the bound is obtained, we write a pro-
gram that outputs the Z3 constraints for the verification condition
and the bound. The translation from STRAND to MONA formulas
and the translation from STRAND formulas to Z3 formulas for any
bound can be automated, and is a plan for the future.

7.2 Experiments

Figure 3 presents the evaluation of our tools on checking a set
of programs that manipulate sorted singly-linked lists and binary
search trees. Note that the binary search trees presented here are
out of the scope of the logics HAVOC [16] and CSL [7].

The programs sorted-list-search and sorted-list-
insert search and insert a node in a sorted singly-linked list,
respectively, while sorted-list-insert-error is the inser-
tion program with an intended error. The program sorted-list
-reverse is a routine for in-place reversal of a sorted singly-
linked list, which results in a reverse-sorted list, and bubblesort
is the code for Bubble-sort of a list. The routines bst-search and
bst-insert search and insert a node in a binary search tree, re-
spectively, while the programs left-rotate and right-rotate
perform rotations (for balancing) in a binary search tree.

For all these examples, a set of partial correctness properties
including both structural and data requirements is checked. For
example, assuming a node with value k exists, we check if both
sorted-list-search and bst-search return a node with value
k. For sorted-list-insert, we assume that the inserted value
does not exist, and check if the resulting list contains the inserted
node, and the sortedness property continues to hold. In the pro-
gram bst-insert, assuming the tree does not contain the inserted
node in the beginning, we check whether the final tree contains
the inserted node, and the binary-search-tree property continues
to hold. In sorted-list-reverse, we check if the output list
is a valid list that is reverse-sorted. The code for bubblesort is

checked to see if it results in a sorted list. And the left-rotate
and right-rotate codes are checked to see whether they main-
tain the property that maintain the binary search-tree property.

Note that each program requires checking several verification
conditions (typically for the linear block from the beginning of the
program to a loop, for the loop invariant linear block, and for the
block from the loop invariant to the end of the program).

The experiments were conducted on a 2.2GHz, 4GB machine
running Windows 7, and the formulas and results are available at
http://www.cs.uiuc.edu/∼qiu2/strand.

For the structural solving phase, we report first whether the ver-
ification condition falls within our semantic decidable fragment
STRANDsem

dec . In fact, it turns out that all of our verification con-
ditions can be written entirely in the syntactic decidable fragment
STRANDdec!

We also report the number of states, the BDD sizes to represent
automata, and the time taken by MONA to compute the minimal
models. We report whether there were any models found; note that
if the formula is unsatisfiable and there are no models, the Z3 phase
is skipped (these are denoted by “-” annotations in the table for Z3).

For the data-constraint solving phase, we first report the number
of nodes of the tree (or string) that is an upper bound for all
minimal models. The Z3 formulas are typically large (but simple)
as one can see from the size of the formulas in the table. We report
whether Z3 found the formula to be satisfiable or not (all cases were
unsatisfiable, except sorted-list-insert-error, as the Hoare-
triples verified were correct), and the time it took to determine this.

The experimental results show that natural verification condi-
tions tend to be expressible in the syntactic decidable fragment
STRANDdec. Moreover, the expressiveness of our logic allows us
to write complex conditions involving structure and data, and yet
are handled well by MONA and Z3. We believe that a full-fledged
engineering of an SMT solver for STRANDsem

dec that answers queries
involving heap structures and data is a promising future direction.
Towards this end, an efficient non-automata theoretic decision pro-
cedure (unlike MONA) that uses search techniques (like SAT) in-
stead of representing the class of all models (like BDDs and au-
tomata) may yield more efficient decision procedures.

8. Related Work
We first discuss related work that can reason with combinations of
heaps and data. In handling heaps, first-order theories that can rea-
son with restricted forms of the reachability relation for ensuring
decidability are the most common. The work most closely related
to our work is the logic in HAVOC, called LISBQ [16], that offers
a reasoning with generic heaps combined with an arbitrary data-
logic. The logic has restricted reachability predicates and universal
quantification, but is syntactically severely curtailed, to obtain de-
cidability. We find the restrictions on the syntax quite awkward,
with sort-based restrictions in the logic. Furthermore, the logic
cannot handle even simple constraints over trees with unbounded
depth where the nodes are of the same sort (like a tree being a bi-
nary search tree). However, the logic is extremely efficient, as it
uses no structural solver, but translates the structure-solving also to
(the Boolean aspect of) the SMT solver. We gained a lot of insight
into decidability by studying the expressive power of HAVOC, and
we believe that STRAND generalizes some of the underlying ideas
present in HAVOC to a much more powerful technique for decid-
ability. The logic CSL [7] has a similar flavor as HAVOC, with sim-
ilar sort-restrictions on the syntax, but generalizes to handle doubly
linked lists, and allows size constraints on structures. The work re-
ported in [5] gives a logic that extends an LTL-like syntax to define
certain decidable logic fragments on heaps.

Rakamarić et al [23] propose an inference rule system for rea-
soning with restricted reachability (but this logic does not have uni-
versal quantification and cannot express disjointness constraints),
and an SMT solver based implementation has been reported [24].
Restricted forms of reachability were first axiomatized in early
work by Nelson [21]. Several mechanisms without quantification
exist, including the work reported in [1, 25]. Automatic decision
procedures that approximate higher-order logic using first-order
logic, using approximate logics over sets and their cardinalities,
have been proposed [15].

There is a rich literature on heap analysis without data. Since
first-order logic over graphs is undecidable, decidable logics must
either restrict the logic or the class of graphs. The closest work to
ours in this realm is PALE [20], which restricts structures to be de-
finable over tree-skeletons, similar to STRAND, and reduces prob-
lems to the MONA system [13]. Several approximations of first-
order axiomatizations of reachability have been proposed: axioms
capturing local properties [19], a logic on regular patterns that is
decidable [28], among others.

Finally, separation logic [26] has emerged as a convenient logic
to express heap properties of programs, and a decidable fragment
(without data) on lists is known [4]. However, not many extensions
of separation logics handle data constraints (see [18] which com-
bines this logic for linked lists with arithmetic).

Acknowledgments

We thank Christof Löding for the fruitful discussions we had when
we started this project a few years back. This work is partially
funded by NSF CAREER award #0747041 and French ANR-09-
SEGI project Veridyc.

References
[1] I. Balaban, A. Pnueli, and L. D. Zuck. Shape analysis by predicate

abstraction. In VMCAI’05, volume 3385 of LNCS, pages 164–180.
Springer, 2005.

[2] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic
predicate abstraction of C programs. In PLDI’01, pages 203–213.
ACM, 2001.

[3] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In
FMCO’05, volume 4111 of LNCS, pages 364–387. Springer, 2005.

[4] J. Berdine, C. Calcagno, and P. W. O’Hearn. A decidable fragment
of separation logic. In FSTTCS’04, volume 3328 of LNCS, pages 97–
109. Springer, 2004.

[5] N. Bjørner and J. Hendrix. Linear functional fixed-points. In CAV’09,
volume 5643 of LNCS, pages 124–139. Springer, 2009.

[6] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Prob-
lem. Springer, 2001.

[7] A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. A logic-
based framework for reasoning about composite data structures. In
CONCUR’09, volume 5710 of LNCS, pages 178–195. Springer, 2009.

[8] L. M. de Moura and N. Bjørner. Deciding effectively propositional
logic using DPLL and substitution sets. In IJCAR’08, volume 5195 of
LNCS, pages 410–425. Springer, 2008.

[9] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In
TACAS’08, volume 4963 of LNCS, pages 337–340. Springer, 2008.

[10] J. Engelfriet. Context-free graph grammars. In Handbook of Formal
Languages, volume 3, pages 125–214. Springer, 1997.

[11] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for Java. In PLDI’02, pages
234–245. ACM, 2002.

[12] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated
random testing. In PLDI’05, pages 213–223. ACM, 2005.

[13] N. Klarlund and A. Møller. MONA. BRICS, Department of Com-
puter Science, Aarhus University, January 2001. Available from
http://www.brics.dk/mona/.

[14] N. Klarlund and M. I. Schwartzbach. Graph types. In POPL’93, pages
196–205. ACM, 1993.

[15] V. Kuncak. Modular Data Structure Verification. PhD thesis, Mas-
sachusetts Institute of Technology, 2007.

[16] S. Lahiri and S. Qadeer. Back to the future: revisiting precise program
verification using SMT solvers. In POPL’08, pages 171–182. ACM,
2008.

[17] T. Lev-Ami and S. Sagiv. Tvla: A system for implementing static
analyses. In SAS’00, volume 1824 of LNCS, pages 280–301. Springer,
2000.

[18] S. Magill, M.-H. Tsai, P. Lee, and Y.-K. Tsay. THOR: A tool for
reasoning about shape and arithmetic. In CAV’08, volume 5123 of
LNCS, pages 428–432. Springer, 2008.

[19] S. McPeak and G. C. Necula. Data structure specifications via local
equality axioms. In CAV’05, volume 3576 of LNCS, pages 476–490.
Springer, 2005.

[20] A. Møller and M. I. Schwartzbach. The pointer assertion logic engine.
In PLDI’01, pages 221–231. ACM, 2001.

[21] G. Nelson. Verifying reachability invariants of linked structures. In
POPL’83, pages 38–47. ACM, 1983.

[22] G. Nelson and D. C. Oppen. Simplification by cooperating decision
procedures. ACM Trans. Program. Lang. Syst., 1:245–257, 1979.

[23] Z. Rakamarić, J. D. Bingham, and A. J. Hu. An inference-rule-based
decision procedure for verification of heap-manipulating programs
with mutable data and cyclic data structures. In VMCAI’07, volume
4349 of LNCS, pages 106–121. Springer, 2007.

[24] Z. Rakamarić, R. Bruttomesso, A. J. Hu, and A. Cimatti. Verifying
heap-manipulating programs in an SMT framework. In ATVA’07,
volume 4762 of LNCS, pages 237–252. Springer, 2007.

[25] S. Ranise and C. Zarba. A theory of singly-linked lists and its ex-
tensible decision procedure. In SEFM’06, pages 206–215. IEEE-CS,
2006.

[26] J. Reynolds. Separation logic: a logic for shared mutable data struc-
tures. In LICS’02, pages 55–74. IEEE-CS, 2002.

[27] G. Yorsh, T. W. Reps, and S. Sagiv. Symbolically computing most-
precise abstract operations for shape analysis. In TACAS’04, volume
2988 of LNCS, pages 530–545. Springer, 2004.

[28] G. Yorsh, A. M. Rabinovich, M. Sagiv, A. Meyer, and A. Bouajjani. A
logic of reachable patterns in linked data-structures. In FoSSaCS’06,
volume 3921 of LNCS, pages 94–110. Springer, 2006.

