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Motivation: Interleaving explosion problem

• Testing is the main technique for correctness in 
the industry

• Fundamentally challenged for concurrent 
programs:
– Given even a  single test input for a concurrent 

program, testing is hard!

– Too many interleavings to check thoroughly

Idea: Select a small subset of interleavings to test  
that are likely to expose  concurrency bugs



How to select schedules cleverly

– CHESS: Microsoft Research
Explores all possible interleavings with at most k context-switches, 

for a small k.
We believe atomicity errors will constitute a far smaller but more 

interesting class of runs to test.

– A bunch of tools that try to somehow come up with 
interleavings that may have errors
• Eg. ConTest:  IBM

– Our view: 
Don’t look randomly for schedules!

Look systematically for interesting patterns
of thread interaction that are more likely to have errors.



In this talk: Atomicity

Atomicity : 

One particular high-level pattern that gets violated
in many concurrency bugs:

– A local piece of code needs to access shared data without 
(real) interference from other threads.

– Extremely common intention, the violation of which leads
to many errors.

– In concurrency bug studies, we as well as

others (Lu-Park-Seo-Zhou’08) have found that the majority 
of errors (~70%) are due to atomicity violations.

– Hence finding  executions that violate atomicity and testing

them is a good way to prune the interleavings to test!



• https://bugzilla.mozilla.org/show_bug.cgi?id=290446

• Summary:
Update of remote calendar does not use WebDAV locking (concurrency control) 

• When updating/inserting a new event in a remote WebDAV calendar, the calendar file is 
not locked. In order to avoid losing data the concurrency control of WebDAV should be   
used (Locking). 

• Steps to Reproduce: 
• 1. User A starts creating a new event in the remote calendar 
• 2. User B starts creating a new event in the remote calendar 
• 3. Users A and B read-modify-write  operations are interleaved incorrectly

•Actual Results: The actual sequence could/would be: 1. User A - GET test.ics 2. User B -
GET test.ics 3. User A - PUT test.ics 4. User B - PUT test.ics

• In this case the new event posted by user A is lost. 

Atomicity error: example

https://bugzilla.mozilla.org/show_bug.cgi?id=290446
https://bugzilla.mozilla.org/show_bug.cgi?id=290446


Atomicity 

● An execution r of a concurrent program P is atomic if there 

exists an equivalent run of P in which every transaction is 

non-interleaved. 

● Transaction: sequential logical unit of computation:

syntactically identified: small methods, procedures, etc.

execution

equivalent 

serial execution
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Application: Finding bugs while testing

Run concurrent program
on test input

Concurrent Program 

Annotate (heuristically)  blocks of code that we 
suspect should execute atomically

Example: Annotate all methods/procedures in a 
Java program

BUGS
Test input

under a test 
harness that

checks for errors

Obtain one execution
(respects transaction

boundaries)

Predict alternate
schedules

that violate
atomicity

Run alternate
schedules against

test harness



Main problem

• Given programs   P1 || P2 ||…. Pn where

– Each Pi is be a straight-line program

(useful when attacking the testing problem)

– Each Pi is be a regular program

(modeled as finite automata; useful in abstracted pgms)

– Each Pi is a recursive program

(modeled as PDS; for abstracted pgms with recursion)

Question:

Is there any interleaved run that violates atomicity?



Atomicity based on Serializability;
When are two runs equivalent?

Concurrent Run: sequence of events.

Events: { T:begin,  T:end }  U  { T:read(x) , T:write(x)  |  x is a shared var }

Dependence/ 

Conflicting events:

Serial Run: all transactions are executed non-interleaved.

Atomic (Serializable) Run: there exists an equivalent serial run.

9

Equivalence of Runs: two runs are equivalent if conflicting events 

are not reordered

r ~ r' iff for every  e1 D e2,   r  {e1, e2 }= r'  {e1, e2 }



Atomicity based on Serializability

T1: 
T1: read(x)
T1: read (y)

T2:
T2: write(y)
T2: write(x)
T2: 

T1: write(z1)

T1:         

Ind



Atomicity based on Serializability

T1: 
T1: read(x)
T1: read (y)

T2:
T2: write(y)

T1: write(z1)

T1:
T2: write(x)
T2:         

Ind



Atomicity based on Serializability

T1: 
T1: read(x)
T1: read (y)

T1: write(z1)

T1:
T2:
T2: write(y)
T2: write(x)
T2:         



Before we predict, can we monitor 
atomicity efficiently?

• Monitoring: Given an execution r,  is  r atomic?

• An extremely satisfactory solution 
[Farzan-Madhusudan: CAV08]

We can build sound and 
complete  monitoring 
algorithms that keeps track of:
- a set of vars for each thread
- a graph with vertices as threads

• If #vars = V, # threads = n, then

algorithm uses  O(n2 + nV)  space.

Efficient  streaming algorithm. 

Independent of length of run!



Predicting Atomicity Violations

Example:

Given programs

P1 and P2 

(here straight-line)

check whether

there is an 

interleaving that

violates 

atomicity.

T1:  begin
T1:  acq (l)
T1:    read(Amount)
T1:  rel (l) 

T2:  begin
T2:  acq (l)
T2:    read(Amount)
T2:  rel (l) 
T2:  acq(l)
T2:    write(Amount)
T2:  rel(l)
T2:  end

T1:  acq(l)
T1:    write(Amount)
T1:  rel(l)
T1:  end

T1:  begin
T1:  acq (l)
T1:    read(Amount)
T1:  rel (l)
T1:  acq(l)
T1:    write(Amount)
T1:  rel(l)
T1:  end

T2:  begin
T2:  acq (l)
T2:    read(Amount)
T2:  rel (l)
T2:  acq(l)
T2:    write(Amount)
T2:  rel(l)
T2:  end

P1:

P2:

Interleaved execution of P1 and P2 
that violates atomicity



Prediction Model

• Given an execution r,    look at the local executions

each thread executes            r1,  r2, … rn

• Can we find another execution r’ that is 
obtained by recombining this set of local runs such
that r’ is non-atomic?

• Predicted runs could
– respect no synchronization constraints (less  accurate)
– respect concurrency control constraints such as locking (more accurate)

• The run r’ may not be actually feasible!
– Conditionals in programs may lead the program to different code
– Certain operations on datastructures may disable other operations ….

• Key requirement: 
We should not enumerate all interleavings! 
Must be more efficient.

r1 r2 …….   rn



Predicting atomicity violations
How to predict atomicity violations for st-line or regular programs?

• Naïve algorithm:  
– Explore all interleavings and monitor each for atomicity violations

– Runs in time  O(kn)    for n-length runs and k threads    --- infeasible in practice!

• Better algorithm:  Dynamic programming using the monitoring algm

– Predicting from a single run with a constant number of variables, can be done 
in time

O(nk
2k2)            ---- better than n

k
,    the number of interleavings

But even  nk is huge!  Too large to work in practice even for k=2!

(m  is 100 million events!          k=2,..10,..)

Also, exponential dependence in k is unavoidable (problem is NP-hard).

• We want to avoid the k being on the exponent of m
Main question of the paper:  Can we solve in time linear in m? (like n+2k)
i.e. can we remove the exponent k from n?



Main results - I

• Good news:

If prediction need not respect any synchronization constraint 

(no locks)

– Predicting from a single run with a constant number of 
variables, can be done in time

O(n + kck) n=length of runs;    k= # threads

– Regular programs also can be solved in time  O(n + kck)
where n=size of each local program,  k = #threads

– Recursive programs are also (surprisingly) decidable.

O(n3 + kck) 

where n=size of each local program, k = #threads



Main results - II

• Bad news:
If prediction needs to respect locking, 

existence of prediction algorithm for regular programs

running in time linear in m is unlikely.

In fact, algorithms for regular programs that take time a fixed 
polynomial in n is unlikely.

i.e. O(poly(m).  f(k) )    for any function f() is unlikely!

The problem is W[1]-hard.

• Also,  prediction for concurrent recursive programs in the presence of 
locks is undecidable.



Prediction without 
synchronization  constraints

• Idea: Compositional reasoning

– Extract from each local thread run a small amount 
of information (in time linear in the run)

– Combine the information across threads to check 
for atomicity violations

– Information needed from each local run is called a 
profile.



Profiles

• Key idea:

If there is a serializability violation, then there are really

only two events in each thread that are important!

Also, we need to know if these events occur in the same               
transaction or not.

Let   r  be a local run of a thread T.

Profiles of r are:

 T:beg T:a T:end                                 event a occurs in r

 T:beg T:a  T:b T:end                          a occurs followed by b 

within the same transaction

 T:beg T:a T:end T:beg T:b T:end     a occurs followed by b 

but in different transactions



Reasoning atomicity using profiles

Key lemma:

A set of programs with no locks (straight-line, regular or 

recursive) has a non-serializable execution  iff

there is a profile of each local program such that the profiles, 
viewed as a program, have a non-serializable execution.

Proof idea:  skeleton of a serializability violation:

Only two events
per thread are needed
to witness  “cycle” for
non-serializability



Prediction  without  synchronization  constraints

• Straight-line  and  regular  programs:   O(n+kck) time
– Extract profiles from each local program

O(n) time  --- constant number of profiles

– Check if the profiles have a serializability violation

O(kck) time – check all possible interleavings of

profiles for serializability violations

• Recursive programs: O(n3+kck) time
– Extract profiles from each local thread using PDS reachability

• O(n3)  time  

– Check if profiles have a serializability violation   O(kck) time 



Prediction with  locking constraints

• Consider a set of regular programs   P1 || P2 ||…. Pn

• Then it is unlikely that the atomicity prediction problem

is solvable in time O(poly(n). f(k))  for any  function f !

i.e. we cannot remove the exponent k from n

• How do we prove this?
– Using parameterized complexity theory

– The problem is W[1]-hard (with parameter k).



Prediction with  locking constraints

• Parameterized complexity theory:
– Consider an algorithmic problem where input is of length n,

but every instance has a parameter k associated with it. 

– A problem is fixed-parameter tractable  (FPT) over parameter k

if it is solvable in time  O(poly(n). f(k))  

where f() is any function. 

– I.e. solved in a fixed-polynomial time in  n, for any k.

• W[1]-hard problems
– No fixed-parameter algorithms known

– Believed not to be FPT.      

• Example:
– Vertex cover is FPT in parameter k=number of colors

– Independent-set  is W[1]-hard in parameter k = number of sets



Prediction with  locking constraints

• Prediction of atomicity violations in regular programs is W[1]-hard

• Hence an algorithm that runs in time O(poly(n).f(k)) is unlikely

(let alone an algorithm that runs linear in n).

• Proof is by a  (parameterized) reduction from  the  finite-state automata 
intersection problem (where the parameter is the number of 
automata), which is known to be W[1]-hard.

• Note:
– Prediction of atomicity violations in straight-line programs is still open!

• Prediction of atomicity violations in recursive programs is undecidable
– not surprising as locks can be used to communicate (Kahlon et al)



Current and future directions

• Key project:
– Testing tool that executes alternate schedules that violate 

atomicity  in order to find bugs.

– More recent work has shown that nested locking yields 
tractable algorithms!   (using ideas from Kahlon et al)

– For non-nested locking, in practice, one can do more coarse 
analysis simply using locksets, and this yields reasonably good 
prediction algorithms.

• Open problem:
– Atomicity for straight-line programs with locks still open.


