
259

Complete First-Order Reasoning for Properties of Functional

Programs

ADITHYA MURALI, University of Illinois Urbana-Champaign, USA
LUCAS PEÑA, University of Illinois Urbana-Champaign, USA
RANJIT JHALA, University of California San Diego, USA
P. MADHUSUDAN, University of Illinois Urbana-Champaign, USA

Several practical tools for automatically verifying functional programs (e.g., Liquid Haskell and Leon for Scala
programs) rely on a heuristic based on unrolling recursive function definitions followed by quantifier-free
reasoning using SMT solvers. We uncover foundational theoretical properties of this heuristic, revealing that
it can be generalized and formalized as a technique that is in fact complete for reasoning with combined
First-Order theories of algebraic datatypes and background theories, where background theories support
decidable quantifier-free reasoning. The theory developed in this paper explains the efficacy of these heuristics
when they succeed, explain why they fail when they fail, and the precise role that user help plays in making
proofs succeed.

CCS Concepts: • Software and its engineering → Formal software verification; Functional languages; •
Theory of computation→ Logic and verification; Automated reasoning.

Additional Key Words and Phrases: First-Order Logic, Completeness, Liquid Haskell, Refinement Types,
Algebraic Datatypes (ADTs), Natural Proofs, Thrifty Instantiation

ACM Reference Format:

Adithya Murali, Lucas Peña, Ranjit Jhala, and P. Madhusudan. 2023. Complete First-Order Reasoning for
Properties of Functional Programs. Proc. ACM Program. Lang. 7, OOPSLA2, Article 259 (October 2023), 30 pages.
https://doi.org/10.1145/3622835

1 INTRODUCTION

The automation of program verification has been revolutionized with the advent of efficient logic
engines that check validity of logical formulas over various theories that capture domains that
programs work with (arithmetic, strings, arrays, algebraic datatypes, pointer-based heaps, etc.). In
particular, quantifier-free logics over various theories admit decidable validity checking, and further,
permit decision procedures for the combination of theories (Nelson-Oppen style combinations) that
have been realized by efficient DPLL(T)-based SMT solvers [Bradley and Manna 2007; De Moura
and Bjørner 2008; Nelson 1980; Nelson and Oppen 1979].
However, automation’s grip becomes tenuous when it comes to the verification of first-order

properties of functional programs over algebraic data types (ADTs) such as lists or trees over basic
types like integers. Functional programs over ADTs can be expressed mathematically using a set of
recursively defined functions over types. Programs hence can be expressed as a set of first-order

Authors’ addresses: Adithya Murali, adithya5@illinois.edu, University of Illinois Urbana-Champaign, Urbana, USA; Lucas
Peña, lucaspena13@gmail.com, University of Illinois Urbana-Champaign, Urbana, USA; Ranjit Jhala, rjhala@eng.ucsd.edu,
University of California San Diego, San Diego, USA; P. Madhusudan, madhu@illinois.edu, University of Illinois Urbana-
Champaign, Urbana, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
2475-1421/2023/10-ART259
https://doi.org/10.1145/3622835

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

HTTPS://ORCID.ORG/0000-0002-6311-1467
HTTPS://ORCID.ORG/0000-0002-1898-439X
HTTPS://ORCID.ORG/0000-0002-1802-9421
HTTPS://ORCID.ORG/0000-0002-9782-721X
https://doi.org/10.1145/3622835
https://orcid.org/0000-0002-6311-1467
https://orcid.org/0000-0002-1898-439X
https://orcid.org/0000-0002-1898-439X
https://orcid.org/0000-0002-1802-9421
https://orcid.org/0000-0002-9782-721X
https://doi.org/10.1145/3622835

259:2 Adithya Murali, Lucas Peña, Ranjit Jhala, and P. Madhusudan

definitions of functionsDefs that are universally quantified over their inputs. The goal of verification,
then, is to determine whether a particular FO (First-Order) theorem 𝑇 involving these defined (or
interpreted) functions is mathematically valid under a set of definitions Defs.
Automation is Impossible in Theory. Even though the theorem 𝑇 that needs to be validated
is universally quantified (and hence can be seen as a quantifier-free formula), reasoning about
the validity of 𝑇 under interpreted definitions Defs is extremely hard. The validity problem is not
decidable (while validity of 𝑇 under uninterpreted functions is typically decidable). Worse, the
problem is not even recursively enumerable (there is no complete proof system nor a semi-decision
procedure that is guaranteed to terminate on at least all valid theorems). A simple proof of this fact
is that we can define addition and multiplication as defined (interpreted) functions using recursion,
and use universal quantification to specify the neither decidable nor recursively enumerable problem
of determining the non-existence of solutions to Diophantine equations [Matiyasevich 1993].
Automation is Effective in Practice. Despite the above hardness, there has been significant
progress in systems that provide varying degrees of automation to the process of verifying such
theorems. Liqid Haskell (LH) [Vazou et al. 2018] and Leon/Stainless [Blanc et al. 2013; Hamza
et al. 2019] both exploit the automation provided by logic engines via decidable quantifier-free
reasoning to prove FO theorems. Extrinsic-style verification in LH reduces checking quantifier-free
(implicitly universal) properties of functions over ADTs to proving pre- and post-condition contracts
that assert those properties in the code (“proofs”) written by the verification engineer. 1 The Leon
verifier [Blanc et al. 2013] (as well as its successor Stainless [Hamza et al. 2019]) uses a similar
style of reasoning for Scala programs with quantifier-free contracts, where the contracts themselves
are written using recursively defined pure Scala functions. Leon verifies each function’s contract
by compiling the body of the function to a verification condition (VC), modeling functions called in
the body using defined functions and assuming they satisfy their contracts 2. While LH and Leon
provide different mechanisms for users to prove properties via induction and auxiliary lemmas, we
observe that they share a common fundamental interface to logic engines: verification is reduced to
proving VCs of the form Defs → 𝜑 where 𝜑 is universally quantified. LH treats functions defined in
Defs as uninterpreted using a heuristic called logical evaluation that finitely unfolds the definitions
for terms that appear in 𝜑 . Leon’s strategy is also to unfold the recursive definitions based on
function applications that occur in 𝜑 . However, it differs from LH in that it does this recursively,
unfolding definitions iteratively for larger and larger depths and assuming that such unfolded calls
to functions satisfy their contract.

To summarize, both tools automate verification via logical engines by (1) generating VCs of the
form Defs → 𝜑 (where 𝜑 is a universally quantified FO formula), (2) treating all defined functions
as largely uninterpreted, (3) instantiating definitions repeatedly only on certain terms, and (4)
dispatching them to an SMT solver that does quantifier-free decidable reasoning. This technique is
certainly sound but clearly not a decision procedure: LH just makes a fixed set of instantiations,
which may be insufficient; Leon can continuously unfold definitions and may proceed forever
(timeout). Yet, despite the hardness results, this heuristic works well in practice, giving predictable
results though they may require users to find new inductive lemmas and guidance in proofs!

Why does the heuristic of unfolding recursive definitions followed by quantifier-free reasoning work

so well in practice? In this paper, we establish foundational results that this procedure is in fact a
complete procedure for the underlying combination of first-order theories. Our results not only

1LH implements various algorithms including refinement inference. In this work, when we say LH, we refer specifically to
extrinsic-style full functional correctness proofs over user-defined functions using methods proposed in [Vazou et al. 2018].
2This is an inductive proof (induction on the size of the implicit call stack) that all functions satisfy their contracts.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

Complete First-Order Reasoning for Properties of Functional Programs 259:3

explain when this heuristic method works well, but also explains when and why they fail, and the
role of further help asked of the user.

The Standard Model vs Combined Theories

The answer to this question lies in the tension between the theory of the standard model and the
combined FO theory of the various sorts. First-order theorems that express properties of functional
programs can be seen as formulas over a combination of sorts, in particular sorts that refer to ADTs
(e.g. trees) and the base sorts (e.g. integers) that the datatypes are built upon. When a verification
engineer wishes to prove a theorem, they want it to be proven for the fixed universe (the standard
model) consisting of the various sorts. In this universe, the ADT sort is the natural universe of
algebraic terms of the appropriate type, with constructors and destructors interpreted in the standard
manner, and the integer sort and functions over them (e.g. +) are interpreted in the standard manner.

Axiomatized Models. In first-order logic, however, we often reason with models that are axioma-

tized: we capture various properties of models using a finite or recursive set of axioms, and reason
over any model that satisfies the axioms. In particular, ADTs can be axiomatized and the universe
of integers with addition can be axiomatized. In fact, they can be individually given complete

axiomatizations— i.e., all models satisfying the axioms satisfy the same first-order theorems as
the standard model [Barwise 1977; Bjorner 1999; Hodges 1997; Kovács et al. 2017; Mal’tsev 1962;
Presburger and Jabcquette 1991]. There may be other models, called nonstandard models, that are
not isomorphic to the standard model (in fact they always exist, say, by the Löwenheim-Skolem
Theorem) but one cannot distinguish them using a first-order formula. Nonstandard models are
well-known in the literature [Hodges 1997; Skolem 1934].

Rogue Nonstandard Models that Disagree with the Standard Model. However, when we
combine universes and their theories, interfacing them with uninterpreted functions, the combined
axioms are no longer powerful enough. More precisely, it is well known that the combined axioms
can admit rogue nonstandard models that disagree with standard models on first order expressible
theorems, and hence the theory entailed by the combined axioms becomes weaker. Rogue nonstan-
dard models are a special case of nonstandard models of the combined theory that disagree with the
standard model on some first-order formulas. For example, if we take the complete axiomatization
of ADTs and the complete axiomatization of uninterpreted functions (congruence axioms) and
combine them, the union of the axioms admits rogue nonstandard models of ADTs that contradict
theorems true in the standard model of ADTs with uninterpreted functions.
Nonstandard models exist even for complete theories, but there are no rogue models in such

theories since, by the definition of completeness, all nonstandard models agree with the standard
model on all FO expressible theorems. Combined theories are incomplete as there are rogue
nonstandard models. However, quantifier-free formulas over combinations of theories (using the
Nelson-Oppen method) do not suffer from such issues, which is why we can think of validity
procedures for them as provers for the standard model.

Main Contributions

Our central insight in this paper is that themethod of unfolding recursive definitions and performing
quantifier-free reasoning can always prove and only prove the subset of theorems that are valid
over the combined theory of ADTs and the background sorts. Consequently, it cannot prove theorems
that are valid in the standard model but invalid in a rogue nonstandard model. We develop this
insight to explain the unusual effectiveness of unfolding recursive definitions into uninterpreted
function applications, via four concrete contributions.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

259:4 Adithya Murali, Lucas Peña, Ranjit Jhala, and P. Madhusudan

1. A FLUID Logic (§ 4). Our first contribution is the definition of a logic called FLUID (First-order
Logic for Universal properties under Inductive Definitions) that captures the essence of definitions3
and VCs generated by LH4 and Leon. FLUID formulas are of the form Defs → 𝜑 where Defs are
provably terminating recursive definitions, and 𝜑 is a universally quantified formula. Verification
conditions for correctness of many functional programs can be formulated using FLUID formulas;
in fact, systems like LH and Leon generate VCs that are in this logical fragment.

2. Completeness of Unfolding followed by Quantifier-Free Reasoning (UQFR) (§ 5). UQFR is
a technique for proving validity by modeling recursive functions as uninterpreted functions,
unfolding recursive definitions Defs systematically on a class of ground terms, and reasoning with
the resulting quantifier-free formulae using decision procedures. Our second contribution is a
foundational result that shows that UQFR is a complete semi-decision procedure for the validity
of FLUID formulas over the combined first-order theory of ADTs and background sorts. Namely,
UQFR guarantees to prove all theorems that are valid in the combined FO theory. Consequently,
when a theorem that is valid over the standard model is not proven using this technique, we are
guaranteed that there is a rogue nonstandard model (satisfying the ADT and background theories)
where the theorem does not hold. The proof of completeness is nontrivial for two reasons. First,
the unfoldings of recursive definitions that UQFR uses (and tools such as LH and Leon use) are
thrifty; they instantiate definitions of functions only on terms on which they are called, and do not
expand instantiations to terms that arise from the underlying axiomatizations of theories. Second,
every time a theorem that is valid on the standard model is not proven, it is nontrivial to construct
a rogue nonstandard model falsifying the theorem. The model construction in the proof of this
theorem crucially exploits the fact that FLUID definitions are provably terminating.

3. Completeness in Practice (§ 6). Thus, far from being a whimsical heuristic that happens to
work in practice, UQFR is rather a robust procedure whose completeness may explain why this
heuristic performs so predictably well. In particular, it does not miss proving theorems that can be
proved using pure FO reasoning of the underlying axioms of the theories. Our third contribution
shows how this bears out in practice. We explain how LH performs FLUID verification using UQFR.
Crucially, when theorems are not proved valid, we show it is because rogue nonstandard models
exist, and that the lemmas and induction hints provided by the user then serve to eliminate such
models, all while reasoning within the FLUID fragment. Next, we show how we can use a slightly
different FLUID formula to mimic Leon’s more sophisticated reasoning which additionally assumes
pre/post contracts for functions at each unfolding. Hence, our completeness result also applies to
explain the effectiveness of Leon (§ 7).

4. Limits of FLUID (§ 8). Our final contribution is a set of results that show why our results on
FLUID are unlikely to extend to more expressive logics. We show though the validity problem for
FLUID admits complete procedures, it is undecidable, hence distinguishing it from several decidable
fragments identified in the literature (e.g., [Suter et al. 2010]). We also show that attempts to
generalize FLUID, e.g. by allowing functions whose definitions are required to be terminating (but
not provably terminating using FO proofs) makes UQFR not complete. This result also implies that
replacing definitions with arbitrary universally quantified formulas makes UQFR an incomplete
procedure.

3LH and Leon also support higher-order functions, but such definitions are beyond the scope of this paper. We provide
further discussion on higher-order functions in Section 10.
4In consultation with the developers of LH, we believe that FLUID captures all VCs generated by LH for extrinsic style
proofs using refinement reflection!

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

Complete First-Order Reasoning for Properties of Functional Programs 259:5

2 OVERVIEW

In this section we provide an overview of our work, which defines FLUID, a fragment of First-
Order Logic (FOL) that expresses the quantified verification conditions that arise when verifying
correctness properties of functional programs (see Section 4), and show how these VCs can be
proved valid by a thrifty unfolding of definitions followed by quantifier-free reasoning. Additionally,
we show in § 6 and § 7 that verification in systems like LH and Leon reduces to checking validity
of FLUID fragment formulas. We illustrate these ideas via example programs over the datatype of
lists over integers:

data List = Nil | Cons Int List

2.1 Insertion and Sortedness

Consider the following program that inserts an element into a (sorted) list. We define both insert-
ion and sorted-ness via recursive functions

sorted :: List → Bool

sorted Nil = True

sorted (Cons h Nil) = True

sorted (Cons h1 (Cons h2 tl)) = h1 ≤ h2 && sorted (Cons h2 tl)

insert :: List → Int → List

insert Nil k = Cons k Nil

insert (Cons x xs) k | x >= k = Cons k (Cons x xs)

| otherwise = Cons x (insert xs k)

Definitions. We can encode the above Haskell programs in FOL where each function’s definition
introduces no new variables, instead using destructors (head, tail) and recognizers (isNil, isCons) to
simulate pattern matching. To ensure that destructors are applied sensibly, we guard the use of
terms of the form head (𝑡) and tail(𝑡) with the recognizer isCons(𝑡).
∀𝑥 .List. sorted (𝑥) = ite(isNil(𝑥), True,

ite(isNil(tail(𝑥)), True, head (𝑥) ≤ head (tail(𝑥)) ∧ sorted (tail(𝑥))))
∀𝑥 : List, 𝑘 : Int. insert (𝑥, 𝑘) = ite(isNil(𝑥),Cons(𝑘,Nil),

ite(head (𝑥) ≥ 𝑘,Cons(𝑘, 𝑥),Cons(head (𝑥), insert (tail(𝑥), 𝑘))))
where we treat sorted and insert as uninterpreted functions in the signature. We refer to these
formulae as the definitions of sorted and insert and denote them by defsorted and definsert respectively.
Verification Conditions. Let us consider the example of verifying that inserting an element 𝑘 into
the empty list yields a sorted list. We state this formally as the following verification condition (VC):

(defsorted ∧ definsert) → sorted (insert (Nil, 𝑘))
Note that this VC is of the form DEF → 𝜑 , where DEF is a set of definitions (when it appears in

a formula we are referring to the conjunction of the formulas in the set) and 𝜑 is quantifier-free,
i.e., all variables are implicitly universally quantified. Informally, the VC says that the property 𝜑
should hold assuming the set of definitions DEF . The FLUID fragment we define (see Section 4)
consists of such formulas.
Unfolding. We prove the above VC valid by unfolding the definitions. For a term 𝑡 , let defsorted [𝑡]
denote the quantifier-free formula obtained by instantiating the quantified variable 𝑥 in defsorted

with 𝑡 . We refer to this as unfolding the definition of sorted on 𝑡 . Similarly we can define the
unfolding insert [𝑡]. To prove the VC valid we simply unfold definitions on arguments that occur in
𝜑 , i.e., we attempt to prove

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

259:6 Adithya Murali, Lucas Peña, Ranjit Jhala, and P. Madhusudan

(definsert [(Nil, 𝑘)] ∧ defsorted [insert (Nil, 𝑘)]) → sorted (insert (Nil, 𝑘))
This formula can be dispatched using SMT solvers [Barrett et al. 2011a; De Moura and Bjørner 2008]
that use a combination of decision procedures for ADTs and Integers. It is in fact valid because
unfolding definsert on (Nil, 𝑘) shows that insert (Nil, 𝑘) evaluates to Cons(𝑘,Nil), and unfolding
defsorted on Cons(𝑘,Nil) shows that sorted (insert (Nil, 𝑘)) evaluates to True.
We generalize this technique of Unfolding definitions followed by Quantifier-Free Reasoning

into an algorithm UQFR (Section 5), and argue that tools like Liqid Haskell (Section 6) and Leon
(Section 7) perform similar reasoning on such formulas.

2.2 Insertion Preserves Sortedness

Next, let us turn to a more interesting theorem, namely that insertion preserves sortedness. Formally,
we wish to prove the following contract for insertion: ∀𝑥, 𝑘.sorted (𝑥) → sorted (insert (𝑥, 𝑘)). Here
the VC is VCsimple ≡ (defsorted ∧ definsert) → (sorted (𝑥) → sorted (𝑖𝑛𝑠𝑒𝑟𝑡 (𝑥, 𝑘)))
Unlike the example in Section 2.1, it turns out that there is no set of terms such that unfolding

the definitions on these terms can prove the VC valid. Consequently, LH fails to prove the theorem.
Using Contracts. Tools like Leon not only unfold definitions but also use contracts for terms
generated during unfolding. For example, note that unfolding definsert on (𝑥, 𝑘) yields the term
insert (tail(𝑥), 𝑘). Then, the VC that Leon attempts to prove is not VCsimple but rather

VCLeon ≡ (defsorted ∧ definsert) →
(
(𝑥 ≠ Nil → (sorted (tail(𝑥)) → sorted (insert (tail(𝑥), 𝑘))))

→ (sorted (𝑥) → sorted (insert (𝑥, 𝑘)))
)

which additionally assumes the contract for insert (tail(𝑥), 𝑘) (when 𝑥 ≠ Nil). Observe that this VC
is also of the form DEF → 𝜑 and is therefore in the FLUID fragment. We show in Section 7 that
VCLeon can be obtained automatically from the original VC, i.e., VCsimple .
We attempt to prove VCLeon using the same technique of unfolding recursive definitions on

arguments appearing in the formula (UQFR). This succeeds, and one can verify that unfolding insert
on {(𝑥, 𝑘), (tail(𝑥), 𝑘)} and unfolding sorted on {𝑥, tail(𝑥), insert (𝑥, 𝑘), insert (tail(𝑥), 𝑘)} proves
VCLeon valid5. Observe that the unfolding strategy used in the examples we have seen is thrifty in
the sense that definitions are unfolded exactly on terms that occur as arguments to the corresponding
functions. We discuss the utility of this strategy in Section 10.
It is clear that using contracts is a more powerful approach. In general, there are theorems

whose proofs require even more instantiations of contracts on terms obtained during further
unfoldings. We show in Section 7 using a reduction that the use of multiple repeated instantiations
of definitions as well as contracts can also be viewed as proving FLUID fragment formulas using
UQFR. Consequently, our results apply not only to LH but also to tools like Leon.

2.3 Membership in a Sorted List

One prominent aspect of program verification in LH or Leon is proof by induction. However,
induction is not part of UQFR. In this section we discuss the example of checking membership in a
sorted list where all the above approaches fail, and explain the role of induction (in the form of
explicit user help) in these tools. We first define a function elems to capture the set of elements
stored in a list and a function mem that checks the membership of an element in a sorted list.
∀𝑥 : List. elems(𝑥) = ite(isNil(𝑥), ∅, {head (𝑥)} ∪ elems(tail(𝑥)))
∀𝑥 : List, 𝑘 : Int.mem(𝑥, 𝑘) = ite(isNil(𝑥), False, ite(𝑘 = head (𝑥), True,

ite(𝑘 < head (𝑥), False, mem(tail(𝑥), 𝑘))))
5The reader may note here that we only argue the validity of VCLeon and not the original goal VC

simple
. We discuss why

validity of the former implies validity of the latter in Section 7.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

Complete First-Order Reasoning for Properties of Functional Programs 259:7

Wewant to verify thatmem precisely captures membership for sorted lists. Formally, the contract
is: sorted (𝑥) → (mem(𝑥, 𝑘) ↔ 𝑘 ∈ elems(𝑥))
However, the approaches discussed above do not work for this example. They do not succeed

even if the definitions are unfolded infinitely and contracts is assumed for all of the infinitely many
terms/tuples that occur in the unfoldings.

To see why this is the case, consider what happens when we replace the usual standard model of
ADTs and Integers we have in our minds with complete axiomatizations for each of the sorts, along
with congruence axioms for the function symbols elems andmem. In this setting, the standard model
is only one of the possible models and in general a model of the axiomatized universes may not be
identical to the standard model. Validity in the axiomatized setting is an under-approximation to
validity in the standardmodel, and as we show in Section 3.3 it is in fact a strict under-approximation.
There are theorems that are true on the standard model that do not hold under axiomatization.
This is because of the presence of rogue nonstandard models where the property we want to prove
is not true. A rogue nonstandard model is a model that obeys the axioms but is not identical to the
standard model, and further, falsifies the desired theorem. Nonstandard models always exist in the
axiomatized setting, but they may satisfy all the same first-order properties as the standard model
using a first-order formula. However, rogue nonstandard models, when they exist, can disagree
with the standard model on a desired first-order theorem.

Our soundness and completeness results in Section 5 show that the proving power of unfolding
definitions and using contracts is precisely that of validity over the axiomatized universe. Therefore,
if there is a rogue nonstandard model that falsifies a property, then unfolding based reasoning
cannot prove it. Indeed, both LH and Leon fail on the above example without extra help.
Rogue Nonstandard Model. Let us look at the rogue nonstandard model where our theorem does
not hold. The universe𝑈 is:

{𝑠 | 𝑠 is a finite sequence of integers}
∪ {(𝑠, 𝑖) | 𝑠 is an infinite sequence of integers, 𝑖 is an integer}

The finite sequences correspond to ADT lists of integers as we think of them but the infinite
sequences are nonstandard elements

6. Nil is interpreted to be the empty sequence and Cons behaves
as expected on standard elements (prepending an element to a finite sequence). On the nonstandard
elements Cons is defined by Cons(𝑗, (𝑠, 𝑖)) = (𝑗 :: 𝑠, 𝑖 + 1) where 𝑗 :: 𝑠 denotes prepending 𝑗 to the
sequence 𝑠 . head and tail behave as inverses to Cons in the usual sense. One can check easily that
this model satisfies the usual axioms of ADTs [Bjorner 1999; Hodges 1997].

The meaning of sorted on this model is as expected: we define only elements with non-decreasing
sequences to be sorted. The definition of elems(𝑥) is as follows

elems(𝑥) =
{
{𝑣 | 𝑣 is an element of 𝑥} for a standard element 𝑥
{𝑣 | 𝑣 is an element of 𝑥} ∪ {−1} for a nonstandard element (𝑥, 𝑖)

Lastlymem(𝑥, 𝑘) holds if and only if 𝑘 occurs in the longest non-decreasing prefix of the sequence
corresponding to 𝑥 . Note that if 𝑥 is sorted, the longest non-decreasing prefix of 𝑥 is 𝑥 itself.
The above interpretations are consistent with the definitions. Consider the function for elems,

for example. On standard elements it is consistent with the definition because it has the expected
value. It is also consistent on nonstandard elements. Observe that for a nonstandard element 𝑥 ,

6The standard model of ADTs consists exactly of all terms. Nonstandard elements are elements in a nonstandard model that
do not correspond to any term. In particular, one cannot destruct them a finite number of times to reach Nil. Nonstandard
models always have such elements with “infinite tails”.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

259:8 Adithya Murali, Lucas Peña, Ranjit Jhala, and P. Madhusudan

tail(𝑥) is also a nonstandard element. Therefore, the inclusion of an extraneous element −1 in the
elems of both 𝑥 and tail(𝑥) is consistent with the recursion elems(𝑥) = {head (𝑥)} ∪ elems(tail(𝑥)).

Finally, we see this is a rogue nonstandard model as it does not satisfy the property sorted (𝑥) →
(mem(𝑥, 𝑘) ↔ 𝑘 ∈ elems(𝑥)). Consider the nonstandard element 𝑥 = ([0, 0, 0 . . .], 0). Note that 𝑥
is sorted since it is a non-decreasing sequence, and elems(𝑥) = {0,−1} by the above construction.
Hence −1 ∈ elems(𝑥). However mem(𝑥,−1) = False since −1 does not occur in 𝑥 .
Role of User Help. To prove the above example in LH, one must provide additional hints or
inductive lemmas (whose proof of the induction step is itself performed using unfolding/UQFR)7.
We show in Section 6 that these lemmas eliminate rogue nonstandard models like the one shown
above, and therefore enable the VC to be proven using unfolding techniques. There is also work in
recent literature [Murali et al. 2022; Reynolds and Kuncak 2015; Sivaraman et al. 2022; Yang et al.
2019] on automatically synthesizing lemmas.
Rogue Nonstandard Models of Integers. It is tempting to think that the above difficulties
can be avoided by stating a constraint that lists are finite, i.e., there must exist a non-negative
integer corresponding to the length. However, this does not work. This is because there exist rogue
nonstandard models of the integers containing elements considered ‘non-negative’ by the model’s
interpretation but do not correspond to an integer (i.e., decrements do not reach 0). The lengths of
infinite lists would be interpreted to such nonstandard numbers, and we would still need user help.

3 PRELIMINARIES

In this section we define the general setting of multi-sorted first-order logic over algebraic datatypes
(ADTs) and other base types with recursively defined functions. We define FLUID, our logic of
study, as a fragment of this logic in Section 4.

3.1 Syntax and Semantics

The logic we work with is defined over a finite set of disjoint nonempty sorts S. We distinguish
certain sorts among these as foreground sorts. The foreground sorts support a signature of Algebraic
Datatypes (ADTs) which we describe below. The other sorts are referred to as background sorts
(background sorts could also consist of ADTs).

An ADT signature for a sort 𝜎 consists of a finite set of function symbols ctor𝑖 , 1 ≤ 𝑖 ≤ 𝑚 called
constructors. Each constructor has an arity 𝑟𝑖 ≥ 0 and a signature 𝜎1 × 𝜎2 × . . . × 𝜎𝑟𝑖 → 𝜎 , where
𝜎 𝑗 , 𝜎 ∈ S. Corresponding to each constructor with the above signature, we also have 𝑟𝑖 many
destructors dtor𝑖 𝑗 with signature 𝜎 → 𝜎 𝑗 for 1 ≤ 𝑗 ≤ 𝑟𝑖 , and recognizers is_ctor𝑖 with signature
𝜎 → Bool.

For example, the algebraic datatype of lists over natural numbers ListNat is defined by the
nullary constructor nil : ListNat and the binary constructor Cons : Nat × ListNat → ListNat whose
corresponding destructors are head : ListNat → Nat and tail : ListNat → ListNat. The recognizer
is_cons identifies elements that correspond to non-nil lists. Note that standard pattern matching
idioms for ADTs used in functional programs can be expressed using this vocabulary.
We can also define hierarchical datatypes (e.g., lists of lists of integers), mutually recursive

datatypes (e.g., terms corresponding to a context-free grammar), as well as sum (unions) and
product types (tuples). We cannot define co-inductive datatypes such as infinite lists in our logic.
However, we do not lose generality with respect to the various tools studied in this paper; in fact,
LH’s termination checker precludes the creation of values like infinite lists.

7Leon is able to verify mem, but it does so using a heuristic for structural induction rather than its primary algorithm of
instantiating definitions and contracts. There are other examples involving list reversal where Leon also requires lemmas to
deal with rogue nonstandard models that fail the theorem (see Section 7).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

Complete First-Order Reasoning for Properties of Functional Programs 259:9

Our logics have signatures of the form Σ = (S, F ,D), where:
• S is a finite non-empty set of sorts as defined above with a partitioning of sorts into a set of
foreground ADT sorts and a set of background sorts. We require that there is at least one
foreground sort.

• F is a set of constant, function, and relation symbols over the sorts S. These will be used to
model symbols over the sorts that models give interpretations to. These include functions
like integer addition or set union, and constructors, destructors, and recognizers over ADT
sorts.

• D is a set of function symbols distinct from F that will be used to model functions that have
definitions.

The syntax is standard multi-sorted first-order logic over sorts S and over symbols F ∪ D. We
make two modifications. First, we require that every occurrence of a destructor term dtor𝑖 𝑗 (𝑡) is
guarded by the corresponding recognizer 𝑖𝑠_ctor𝑖 (𝑡) to ensure that destructor terms are well-defined.
We do not lose generality as any formula with well-defined destructor terms can be rewritten to
an equivalent one with the appropriate guards. In practice, tools check that 𝑖𝑠_ctor𝑖 (𝑡) holds by
generating a separate Verification Condition. Second, we allow ite (if − then−else) expressions
over terms and formulas. The semantics of our formulas is the standard one for FOL. We refer the
reader to a standard reference text [Enderton 1972] for the notion of first-order logic, first-order
models, syntax, and semantics. Semantics is defined in terms of models (aka structures) that give
interpretation to all symbols, including those in D. We use the notation𝑀 |= 𝜑 to denote that a
sentence 𝜑 evaluates to true in a model𝑀 , and 𝜑 |= 𝜓 to denote semantic entailment (all models
satisfying 𝜑 also satisfy𝜓).
Inductive Definitions. Intuitively, a definition of 𝐷 (for 𝐷 ∈ D) gives a particular interpretation
for 𝐷 . The definition of a function 𝐷 ∈ D of arity 𝑟 is a quantified formula def𝐷 of the form

∀𝑥1, 𝑥2, . . . , 𝑥𝑟 . 𝐷 (𝑥1, 𝑥2, . . . , 𝑥𝑟) = 𝜌 (𝑥1, 𝑥2, . . . , 𝑥𝑟)
where 𝜌 is a quantifier-free formula over 𝑥1 through 𝑥𝑟 called the body of the definition. Of course,
the body may use other inductively defined symbols𝐺 ∈ D. We require that every function in D
has exactly one definition.
In order to obtain well-defined definitions, we demand a notion of termination. We define this

notion using the standard model of our logic, which we introduce in the next section.

3.2 The Standard Model

The intended standard interpretation of an ADT signature is the initial term algebra where the
universe consists of terms that respect the sorts and the interpretation of constructors is that of
term application, i.e., Jctor𝑖K(𝑒1, . . . , 𝑒𝑟𝑖) = ctor𝑖 (𝑒1, . . . , 𝑒𝑟𝑖).
The destructors are interpreted as Jdtor𝑖 𝑗 K(ctor𝑖 (𝑒1, . . . , 𝑒𝑟𝑖)) = 𝑒 𝑗 and is otherwise interpreted

to be identity on other elements 8. Finally, recognizers are only true on terms constructed with the
corresponding constructor: Jis_ctor𝑖K(ctor𝑖 (𝑒1, 𝑒2, . . . 𝑒𝑟𝑖)) = True, and is False for other elements.
More generally, our logic is parameterized by a standard model MS,F of the foreground and

background sorts. This is typically true of sorts employed in program verification: ADTs, integers,
sets, etc. Note that this model does not give interpretations to functions in D.
We require that inductive definitions are terminating on the standard model using a standard

eager semantics [Winskel 1993]. Informally, we evaluate a definition on concrete elements over
the standard model as follows: (i) we evaluate recursively defined function terms by evaluating
the definition on the arguments; (ii) for ite expressions, we evaluate the conditions first and then
8Since we consider only formulas that are guarded to check elements to be of the right sort before applying destructors, the
semantics of the formula on other elements is irrelevant.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

259:10 Adithya Murali, Lucas Peña, Ranjit Jhala, and P. Madhusudan

only evaluate the appropriate branch; (iii) for all other expressions, we first evaluate all recursively
defined function terms (with subterms evaluated before their superterms) and then evaluate the
expression. A terminating definition is one for which this procedure terminates on all inputs.

The following proposition states that over MS,F , there exists a unique valuation for the defined
functions D that is consistent with their definition.

Proposition 3.1. Given (S, F ,D) let DEF = {def𝐷 | 𝐷 ∈ D} be a set of definitions. There

exists a unique model MS,F,D such that the interpretation of symbols in F coincides with MS,F and

interpretations of symbols in D satisfy their definitions, i.e., MS,F,D |= def𝐷 for every 𝐷 ∈ D.

Functional programs can be modeled using the definitions (we only consider terminating pro-
grams, of course). Universal FO properties 𝜑 of functional programs can be modeled as validity of
formulas of the form DEF → 𝜑 , where we use DEF to mean the conjunction of formulas in the set
of definitions DEF = {def𝐷 | 𝑑 ∈ D}.
However, as discussed in Section 1 it is easy to show that the problem of validity of even

quantifier-free formulas on𝑀S,F,D is not recursively enumerable.

Proposition 3.2 (Incompleteness Theorem for the Standard Model). There exists a sort 𝜎
with an ADT signature F and defined functionsD such that checkingM{𝜎 },F,D |= 𝜑 is not recursively

enumerable for quantifier-free 𝜑 .

Note that validity over ADTs without background sorts and definitions is decidable [Mal’tsev
1962] since it has a complete axiomatization [Hodges 1997]. The introduction of definitions (pro-
grams) is what leads to incompleteness.

3.3 Combinations of Theories, Nonstandard models, and Rogue Nonstandard Models

A primary observation we make in this paper is that techniques for reasoning based on function
unfolding and quantifier-free reasoning (as in Liqid Haskell and Leon) do not reason with the
standard model but rather with a certain combination of first-order theories. We will show this in
Section 5.2. In this section we formalize the notation for combined theories.

A theory T for a signature is an entailment closed set of first-order sentences. AmodelM satisfies
a theory T , denotedM |= T , if every sentence in the theory holds in the model. A sentence𝜓 is
valid in T , denoted T |= 𝜓 if𝜓 belongs to T .

A theory tuple for (S, F ,D) is:
• The first-order theory of ADTs T𝜎 for each foreground sort 𝜎 . This is the precisely the theory
of the standard ADT model for 𝜎 , which may involve functions over other sorts using which
the elements of 𝜎 are to be constructed. These other sorts are themselves constrained by
theories like Presburger Arithmetic, or an ADT theory.

• A theoryTbg for the combined signature of the background sorts that is recursively enumerable.
We require the background sorts in the standard model to satisfy this theory. In practice, this
theory is the union of several axiomatized theories, say for arrays, integers, bitvectors, etc.

• Theory of uninterpreted functions with equality for symbols in D (i.e., the empty theory).
The combined theory Tcomb of a theory tuple is the entailment closure of the union of the

theories in the tuple. A model satisfies a theory tuple (and consequently the combined theory) if
the projection of the model to each subset of sorts satisfies the theories constraining those sorts.
The combined theory Tcomb is the set of all FO sentences that hold in all these models. For example,
consider the ADT ListNat of lists over natural numbers introduced earlier. A theory tuple for this
signature could be one that has (a) the theory of ADT lists for the foreground sort, and (b) the
theory of Presburger Arithmetic (natural numbers with addition) for the background sort. The
combined theory is the entailment closure of the union of the two theories.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

Complete First-Order Reasoning for Properties of Functional Programs 259:11

Note that the first order theory of ADTs is complete. Therefore, the above setting is agnostic to
the choice of any complete axiomatization for the ADT sorts! [Hodges 1997; Kovács et al. 2017].
Consequently, our results are also quite general and agnostic to the choice of axiomatization.
The standard models for each sort satisfy their respective theories. The other models of the

individual theories are called nonstandard models. The combined standardMS,F,D is a model of
Tcomb, and similarly the other models of Tcomb are nonstandard models for the combined theory.
Since the standard model is a model of Tcomb, it is clearly the case that Tcomb is a subset of the

theory of the standard modelMS,F,D , which we denote by Tstd . However, the reverse is not true
in general, and in fact the combined theory can be strictly smaller than the theory of the standard
model. For example, consider the above example of ListNat where we extend the logic with the
predicate symbol 𝑅 with the following recursive definition:

𝑅(𝑥) = ite(is_nil(𝑥), False,
ite(is_nil(tail(𝑥)), head (𝑥) = 1,

head (𝑥) = head (tail(𝑥)) ∧ 𝑅(tail(𝑥))))

One would expect that 𝑅(𝑥) holds only for nonempty lists 𝑥 whose elements are all 1. Indeed, the
statement 𝑅(𝑥) → head (𝑥) = 1 is valid on the standard model. However, this sentence is not valid
in the combined theory as there is a rogue nonstandard model that falsifies it. In this work, we define
a rogue nonstandard model as a nonstandard model that falsifies a theorem of interest which is
valid on the standard model.

An example of a rogue nonstandard model falsifying 𝑅(𝑥) → head (𝑥) = 1 is as follows. It has
an element 𝑢 in the ADT universe that does not correspond to any standard (i.e., finite) ADT term
such that 𝑅(𝑢) is true and head (𝑢) = 2. Destructing 𝑢 consecutively would proceed forever without
reaching nil and and all these elements will satisfy 𝑅 and have their head element to be 2, hence
satisfying the recursive equation for 𝑅. We had discussed other such examples of rogue nonstandard
models in Section 2.

Standard and nonstandard models satisfy the same FO properties for ADTs, but the addition of
recursively defined functions destroys this. Although the combination of ADTs and recursively
defined functions is the primary technical hurdle, we develop completeness results for a theory
that also includes background sorts. This is crucial to verify functional programs as they invariably
involve background theories.
Formally, in this paper we work with a notion of validity under the combination of theories

Tcomb. We will also henceforth use the extended signature (S, F ,D,Tcomb).

3.4 Validity under Defined Functions

Let DEF be a set of definitions def𝐷 for each 𝐷 ∈ D. We define the validity of a first-order formula
𝜑 under definitions DEF by considering pairs of the form (DEF , 𝜑).

Definition 3.3 (Validity of FOL Formulae with Defined Functions). Given (S, F ,D) with definitions
DEF of functions in D, we say that a formula 𝜑 is T -valid under the definitions iff DEF → 𝜑 is T -
valid, i.e., is in T . Note that we are using DEF in the formula to mean the conjunction of definitions
in that set. We denote this by T |= (DEF , 𝜑). □

We can utilize the above notion in the case of the theory of the standard model or the combined
theories, writing Tstd |= (DEF, 𝜑) or Tcomb |= (DEF , 𝜑) respectively. As before, if Tcomb |= (DEF , 𝜑)
then Tstd |= (DEF , 𝜑).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

259:12 Adithya Murali, Lucas Peña, Ranjit Jhala, and P. Madhusudan

4 A FLUID LOGIC

In this section we define our first main contribution: the FLUID (First-Order Logic of Universal
properties under Inductive Definitions) fragment that captures VCs generated by tools like LH and
Leon. The heart of the FLUID fragment is a class of inductive definitions called provably acyclic

definitions.
Recall that we require definitions to terminate on the standard model. We demand in the

FLUID fragment that definitions also satisfy a provable acyclicity condition, which is a notion
similar to termination. Intuitively, acyclicity means that when definitions are unrolled, there is no
cyclic dependency between the recursive calls. Note terminating functions must be acyclic, but
acyclic definitions can be non-terminating. For example, the function forever on Lists defined by
forever (𝑥) = forever (Cons(0, 𝑥)) does not terminate, but it is acyclic because the recursive calls do
not repeat. We demand in the FLUID fragment that the acyclicity property expressed as a first-order
formula is provable for the recursive definitions9. We formulate provable acyclicity below using
ranking functions and path conditions, which we first define formally.
An ordered sort 𝑆 ∈ S is one with a binary predicate < such that < forms a strict partial order.

Formally, < must satisfy the FO axioms expressing irreflexivity and transitivity under Tcomb. Note
that < need not be well-founded because we only require acyclicity, not termination10. Every ADT
sort is an ordered sort with respect to the (strict) subterm relationship.
For a recursively defined function 𝐷 ∈ D, a ranking function for 𝐷 is a recursively defined

function Rank𝐷 ∈ D from the domain of 𝐷 to an ordered sort. We require D is stratified. The
stratum of a function 𝐷 ∈ D is a natural number denoted by strat (𝐷). Note that multiple functions
can have the same strata. We require that every 𝐷 ∈ D with strat (𝐷) > 0 has a ranking function
Rank𝐷 whose stratum is strictly lower than 𝐷 . When strat (𝐷) = 0, we require that 𝐷 is unary
over an ordered sort, and its ranking function is the identity function. Finally, we require that the
definition of a function at stratum 𝑖 can only call functions of strata lower than or equal to 𝑖 .

We now define path conditions.

Definition 4.1 (Path Condition). Given a formula 𝜌11, we denote by Path𝜌 (𝜓, 𝐸) that the sub-
expression (subterm or subformula) 𝐸 occurs in 𝜌 with path condition 𝜓 . It is the least relation
satisfying the following recurrence:

Path𝜌 (True, 𝜌) holds
If Path𝜌 (𝜓, ite(cond, 𝐸1, 𝐸2)) then Path𝜌 (𝜓, cond)
If Path𝜌 (𝜓, ite(cond, 𝐸1, 𝐸2)) then Path𝜌 (𝜓 ∧ cond, 𝐸1)
If Path𝜌 (𝜓, ite(cond, 𝐸1, 𝐸2)) then Path𝜌 (𝜓 ∧ ¬cond, 𝐸2)

If Path𝜌 (𝜓, 𝐷 (𝐸1 . . . , 𝐸𝑛)) for 𝐷 ∈ D then Path𝜌 (𝜓, 𝐸 𝑗), 1 ≤ 𝑗 ≤ 𝑛
If Path𝜌 (𝜓, ⊕(𝐸1 . . . , 𝐸𝑛)) for ⊕ ≠ ite, ⊕ ∉ D then Path𝜌 (𝜓, 𝐸 𝑗), 1 ≤ 𝑗 ≤ 𝑛

Informally, the path condition is the conjunction of all the conditions of ite expressions that
must be satisfied in order to “reach” the given sub-expression.
We are now ready to define provable acyclicity:

Definition 4.2 (Provably Acyclic Definitions). Given a signature with combined theory Tcomb and
stratified definitions DEF , a definition def𝐷 ≡ ∀𝑥 . 𝐷 (𝑥) = 𝜌 (𝑥) is provably acyclic if for every 𝐺 (𝑡)
9A subtle point here is that even though terminating functions are acyclic, they need not be provably acyclic (see the full
version of the paper for an example). Therefore, termination and provable acyclicity are incomparable.
10Well-foundedness is not expressible in FOL anyway.
11𝜌 is usually the body of a recursively defined function

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

Complete First-Order Reasoning for Properties of Functional Programs 259:13

(𝐺 ∈ D) occurring in 𝜌 with strat (𝐺) = strat (𝐷), Rank𝐺 and Rank𝐷 have the same range sort, and
furthermore, for every𝜓 such that Path𝜌 (𝜓,𝐺 (𝑡))):

Tcomb |=
(∧
strat (𝐻)<strat (𝐷)

def𝐻

)
→

(
𝜓 → Rank𝐺 (𝑡) < Rank𝐷 (𝑥)

)
where the overloaded symbol < represents an order predicate in the corresponding sort. □

Informally, the above definition says that the arguments to recursive calls must be provably (w.r.t
Tcomb) smaller than the input arguments as measured using ranking functions. Although we say
‘provable’, note that the definition uses semantic entailment (|=). However, these two notions are
the same since FOL is complete. Provable acyclicity ensures that when a definition is unrolled,
there is no cyclic dependency between recursive calls as the arguments will always decrease. We
can use the definitions of functions in lower strata and the path condition to the recursive call to
establish this property. We give an example below.

Example 4.3 (Sorted List Merge). Consider the usual function merge(𝑥,𝑦) for merging sorted lists.
Let its stratum be 1, with its ranking function being the sum of lengths of 𝑥 and 𝑦. The stratum of
the length function length is 0.
Consider the recursive call merge(tail(𝑥), 𝑦). The path condition in this case is 𝑥 ≠ Nil ∧ 𝑦 ≠

Nil ∧ head (𝑥) < head (𝑦). We can show that this call has smaller rank, i.e., (length(tail(𝑥)) +
length(𝑦)) < (length(𝑥) + length(𝑦)) using the definition of length and the path condition (𝑥 ≠ Nil

ensures that the term tail(𝑥) is well-defined). We can also show similarly that the other recursive
call has smaller arguments, and therefore merge is provably acyclic.
We can also show that length is provably acyclic. Since its stratum is 0, its ranking function

must be identity, therefore we have to show that the arguments to recursive calls must themselves
decrease. This is evidently true since length(𝑥) recurses on tail(𝑥), which is smaller according to
the ADT subterm ordering. □

Aside. We note here some subtleties in the definition of provable acyclicity. First, the relation < is a
mathematical one, and does not need to be part of the signature or logically defined. Consequently,
Definition 4.2 can be established by a user/system in any way. For example, if < denotes the subterm
ordering on ADT Lists, then a system can trivially deduce that tail(𝑥) < 𝑥 . In particular, a definition
that recurses on destructions of the called arguments is immediately provably acyclic. Second,
ADTs are an ordered sort regardless of the choice of axiomatization because the subterm relation is
an order in any model that satisfies a complete axiomatization of ADTs, including nonstandard
models (even rogue ones). Therefore, we do not need ADT signatures/axiomatizations with an
explicit subterm predicate [Kovács et al. 2017]. Third, observe that ranks need not be well-founded
as we only require acyclicity, not termination. Contrary to the usual ranking functions in literature,
ranks need not be lower-bounded. For example, the function forever defined above is provably
acyclic because we can say Rank(Cons(0, 𝑥)) < Rank(𝑥) with the rank being negative of the length,
which has no lower bound.

Our fragment is very general and includes most definitions we know that tools use. In practice,
provable acyclicity is satisfied when functional programs are proved terminating. This is because,
to the best of our knowledge, every tool that proves functional programs terminating uses ranking
functions that map arguments to a well-founded order (typically tuples of natural numbers, often
associated with the size of ADTs), and shows that (1) the ranking function decreases (according
to some order relation <) on recursive calls, and (2) the order < on which the ranking function
decreases is well-founded. Condition (1) is precisely the property in Definition 4.2!

Intuitively, provable acyclicity generalizes the idea of proving termination. Termination makes
sense on a standard model, but in a nonstandard model ADT elements can have “infinite tails” and

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

259:14 Adithya Murali, Lucas Peña, Ranjit Jhala, and P. Madhusudan

therefore a function that terminates on the standard model can be nonterminating on a nonstandard
model12. In contrast, provable acyclicity makes sense on all models, standard and nonstandard. We
show that in any Tcomb model, provably acyclic definitions are always satisfiable (though they may
not have a unique interpretation). Formally (see the full version of the paper13 for a proof):

Theorem 4.4. Given a signature (S, F ,D,Tcomb), a set of stratified definitions DEF that are

provably acyclic, and a modelM of Tcomb, there exists a modelM′
of Tcomb such that the interpretation

of symbols in F coincides withM and interpretations of symbols in D satisfy their definitions.

FLUID. We now define the FLUID fragment.

Definition 4.5 (FLUID Fragment). Given a signature (S, F ,D,Tcomb) and a set of stratified defini-
tions DEF for the symbols in D, the pair (DEF , 𝜑) is in the FLUID fragment if (1) every definition
in DEF is provably acyclic, and (2) 𝜑 is purely universally quantified.

5 COMPLETENESS OF RECURSIVE FUNCTION UNFOLDING AND QUANTIFIER-FREE

REASONING

In this section we describe the algorithm UQFR, based on Unfolding definitions followed by
Quantifier-Free Reasoning, for checking validity of universal properties. We show that the algo-
rithm intrinsically only proves theorems in the combined theory Tcomb. We then prove the main
technical contribution of this paper, that the algorithm is complete for Tcomb. Let us fix a signature
(S, F ,D,Tcomb) through this section. Recall that Tcomb represents the combined theory for the
foreground and background sorts, with D being uninterpreted. Fix also the theory of the standard
model Tstd .
We require for our algorithm that Tcomb-validity is decidable for quantifier-free formulas, and

that the quantifier-free fragments of Tcomb and Tstd are identical. We are agnostic to the choice
or presence of an axiomatization for the theories and have no other constraints on Tcomb. This
assumption is satisfied for several combined theories, including those that admit Nelson-Oppen
combination [Nelson and Oppen 1979; Tinelli and Zarba 2004] e.g. ADTs, linear arithmetic, reals, etc.
In fact, such theories also admit efficient decision procedures as evidenced by SMT solvers [Barrett
et al. 2011a; De Moura and Bjørner 2008]. Checking validity is achieved by negating and checking
for unsatisfiability. Note that the quantified theories Tstd and Tcomb are however typically different;
see Section 3.3.

5.1 UQFR Algorithm

The high-level picture of the algorithm is as follows: presented with a set of definitions DEF
and a quantifier-free formula 𝜑 , UQFR systematically unfolds the definitions on terms on which
functions are applied and dispatches the resulting quantifier-free formulas to a decision procedure
for satisfiability. We first provide some definitions that are useful in describing the algorithm.

Definition 5.1 (D-Application). A D-application is a pair (𝐷, 𝑡) for 𝐷 ∈ D and a tuple of terms
𝑡 = (𝑡1, 𝑡2 . . . , 𝑡𝑟) such that 𝐷 (𝑡) is well-formed, i.e., 𝐷 has signature 𝜎1 × 𝜎2 . . . × 𝜎𝑟 → 𝜎 and 𝑡𝑖 is
of type 𝜎𝑖 for 1 ≤ 𝑖 ≤ 𝑟 . A D-application (𝐷, 𝑡) occurs in a formula𝜓 if 𝐷 (𝑡) occurs in𝜓 . □

Definition 5.2 (Definition Unfolding). Let 𝜑 ≡ ∀𝑥1 .∀𝑥2∀𝑥𝑛 .𝜓 be a universally quantified
formula such that𝜓 is quantifier free. The instantiation of 𝜑 with a tuple of terms 𝑡 ≡ (𝑢1, 𝑢2, . . . 𝑢𝑛),
written 𝜑 [𝑡], is the quantifier-free formula𝜓 [𝑢1/𝑥1, . . . 𝑢𝑛/𝑥𝑛]. □

12Here we mean nonterminating in the sense that the evaluation procedure described in Section 3.2 does not terminate for
all inputs drawn from the nonstandard model.
13The full version of the paper can be found here: https://madhu.cs.illinois.edu/FLUID_OOPSLA2023.pdf

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

https://madhu.cs.illinois.edu/FLUID_OOPSLA2023.pdf

Complete First-Order Reasoning for Properties of Functional Programs 259:15

UQFR(S;F ;D;Tstd)
Input: (DEF , 𝜑) such that 𝜑 is universally quantified, with DEF = {def𝐷 | 𝐷 ∈ D}
Output(s): VALID (when it terminates)
Imports: QFreeSAT for deciding Tstd-satisfiability of quantifier-free formulas
(1) formulas := {¬𝜑} // Negate the formula and check for satisfiability
(2) While True
(3) res := QFreeSAT(formulas) // Check sat of ¬𝜑 with current set of unfoldings
(4) If (res = UNSAT) Then
(5) Return VALID // (DEF , 𝜑) is valid
(6) Else
(7) // Compute D-applications occurring in formulas

(8) D_applications := {(𝐷, 𝑡) | 𝐷 (𝑡) occurs in𝜓 for𝜓 ∈ formulas}
(9) // Unfold the definitions and add them to formulas
(10) formulas := formulas ∪ DEF [D_applications]

Fig. 1. Algorithm for Unfolding Definitions followed byQuantifier-Free Reasoning

Given a set of 𝐶 of D-applications and a set DEF = {def𝐷 | 𝐷 ∈ D} of definitions we denote
DEF [𝐶] = {def𝐷 [𝑡] | (𝐷, 𝑡) ∈ 𝐶}. Informally, DEF [𝐶] is the set of quantifier-free formulas that
contains all the unfoldings of definitions for functions 𝐷 on arguments 𝑡 given by 𝐶 .
Algorithm Description. Figure 1 shows the pseudocode for the algorithm UQFR, parameterized
by the signature (S, F ,D,Tstd) with the theory of the standard model. It takes as input a set
of definitions DEF = {def𝐷 | 𝐷 ∈ D} and a formula 𝜑 such that 𝜑 is universally quantified.
UQFR attempts to prove validity by establishing unsatisfiability of the negation DEF ∧ ¬𝜑 (see
Definition 3.3 to see that these are equivalent). Finally, UQFR also assumes access to an external
procedure QFreeSAT that checks the satisfiability of quantifier-free formulas with respect to
the theory of the standard model Tstd . It takes as input a set of formulas and outputs SAT if the
conjunction of the formulas is Tstd-satisfiable and UNSAT otherwise.

The algorithm maintains a set formulas of quantifier-free formulas consisting of ¬𝜑 along with
finitely many unfoldings of the definitions. If this set is unsatisfiable then the formula ∧DEF ∧ ¬𝜑
is unsatisfiable as well, i.e., 𝜑 is valid under DEF . Initially the set contains only ¬𝜑 . Since 𝜑 is purely
universal, we treat ¬𝜑 as a quantifier-free formula by adding the existentially quantified variables
as new ground terms (constants) in our signature.

At a general point in the algorithm (line 2), we check the Tstd-satisfiability of formulas using the
external procedure QFreeSAT (line 3). Note that although there is a unique valuation for every
𝐷 ∈ D on the standard model consistent with DEF , the set formulas only enforces this consistency
for finitely many unfoldings of DEF and otherwise treats the symbols in D as uninterpreted, which
is an over-approximation. If formulas is unsatisfiable we exit and return VALID. Otherwise, we
refine our approximation by unfolding the definitions on more terms. We compute the set of
D-application terms occurring in formulas (line 8), add the corresponding unfoldings of definitions
to formulas (line 10), and go back to the beginning of the loop. Observe that if the algorithm is not
able to prove the unsatisfiability of ¬𝜑 using any amount of unfoldings then it does not terminate.

5.2 Soundness and Completeness of UQFR under Combined Theories

In this section we prove the primary contribution of this work, namely that UQFR is complete for
Tcomb-validity of FLUID formulas. We first show the soundness of UQFR.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

259:16 Adithya Murali, Lucas Peña, Ranjit Jhala, and P. Madhusudan

Theorem 5.3 (Soundness of UQFR w.r.t Tcomb). If UQFR(S;F ;D;Tstd) terminates on (DEF , 𝜑)
then Tcomb |= (DEF , 𝜑).

Proof. In each round of the algorithm the set formulas is of the form DEF [𝐶] ∪ {¬𝜑}, where
DEF [𝐶] contains unfoldings (i.e., instantiations) of DEF on a set 𝐶 of D-applications. Therefore, if
UQFR terminates then DEF [𝐶] ∧ ¬𝜑 is unsatisfiable with respect to Tstd (line 3).

Now,QFreeSAT can also be seen as a satisfiability procedure for the combined theory Tcomb since
the input formulas are quantifier-free. We hence have that DEF [𝐶] ∧¬𝜑 is unsatisfiable with respect
to Tcomb, which yields DEF ∧ ¬𝜑 is unsatisfiable with respect to Tcomb, i.e., Tcomb |= (DEF , 𝜑). □

We showed in Section 3.3 that typically Tstd is strictly larger than Tcomb. The above result shows
that the proving power of UQFR is in fact bounded by Tcomb. Therefore, not only are there valid
theorems in Tstd that are not valid in Tcomb, but it is also the case that UQFR (and hence systems
such as LH and Leon) will never be able to prove those theorems.
We now show that UQFR is complete.

Theorem 5.4 (Completeness of UQFR w.r.t Tcomb for FLUID). If (DEF, 𝜑) belongs to the FLUID
fragment (Definition 4.5) and Tcomb |= (DEF , 𝜑), then UQFR(S;F ;D;Tstd) terminates on (DEF , 𝜑)
and reports it valid.

We dedicate the rest of this section to the proof of the completeness theorem.

Prologue: Theorem Simplification and Reduction to Model Construction

We make some simplifications for ease of presentation. First, we assume that DEF has only one
stratum.We provide a generalization of the argument made here to multiple strata in the full version
of the paper. Second, we assume without loss of generality that the signature (S, F ,D,Tcomb) is
such that if a formula Γ is satisfiable in a Tcomb model, then it is satisfiable in a Herbrand model
consisting of the terms occurring in Γ and closed under the applications of functions in F ∪ D.
This can always be done by Skolemizing Tcomb and expanding F with new function symbols.

We first rewrite the statement of the theorem to an equivalent one. Consider the value of the
sets formulas and D_applications through the algorithm:

formulas0 = {¬𝜑} (initial value)

D_applications𝑖 = {(𝐷, 𝑡) | 𝐷 (𝑡) occurs in𝜓 ∈ formulas𝑖−1} (𝑖 > 0)
formulas𝑖 = formulas𝑖−1 ∪ DEF [D_applications𝑖] (𝑖 > 0)

where the subscript 𝑖 denotes their values in the 𝑖𝑡ℎ round of the outermost loop on line 2. Ob-
serve that formulas𝑖 ⊆ formulas 𝑗 and D_applications𝑖 ⊆ D_applications 𝑗 for every 𝑗 > 𝑖 . The
completeness result can then be stated as follows:

Theorem 5.5 (Completeness of UQFR w.r.t Tcomb). If Tcomb |= (DEF , 𝜑) then formulas𝑖 is

Tcomb-unsatisfiable for some 𝑖 ≥ 0.

Note that the above theorem implies that UQFR is complete for Tcomb-validity because if for
some 𝑖 we have that formulas𝑖 is Tcomb-unsatisfiable, then it is also Tstd-unsatisfiable, therefore
the algorithm will terminate in round 𝑖 . By the soundness theorem (Theorem 5.2), (DEF , 𝜑) is
Tcomb-valid.
We show the contrapositive of the above statement. Let us assume that formulas𝑖 is Tcomb-

satisfiable for every 𝑖 ∈ N. We show that DEF ∧ ¬𝜑 is Tcomb-satisfiable. Specifically, we construct a
Tcomb model N such that N |= DEF ∧ ¬𝜑 .
Proof Plan. We construct N in two stages:

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

Complete First-Order Reasoning for Properties of Functional Programs 259:17

Stage 1: We first use the assumption that formulas𝑖 is Tcomb-satisfiable for every 𝑖 ∈ N to construct
a modelM (using compactness) that satisfies

⋃
𝑖≥1

DEF [D_applications𝑖] and ¬𝜑 . Note that
this model need not satisfy DEF everywhere (as we have only instantiated definitions for a
subset of terms).

Stage 2: In this stage we take the modelM and consider a finite set 𝐾 of pairs of the form (𝐷, 𝑡)
such that the interpretation of 𝐷 in M does not satisfy the definition of 𝐷 on 𝑡 . We show
that we can ‘repair’ the model so that definition of 𝐷 now holds on 𝑡 for every (𝐷, 𝑡) ∈ 𝐾 .
We then show that definitions can be repaired everywhere using a compactness argument.
This results in the model N we seek.

Stage 1: Model of Infinite Instantiations

We recall the compactness theorem for FOL under combinations of theories.

Proposition 5.6 (FOL Compactness with Theories). Given a signature (S, F ,D,Tcomb), a set
of formulas Γ (finite or infinite) is Tcomb-satisfiable if and only if every finite subset of Γ is Tcomb-

satisfiable. □

From our assumption we know that formulas𝑖 is Tcomb-satisfiable for every 𝑖 . Using compactness
and the fact that formulas𝑖 form an increasing sequence w.r.t ⊆, it follows that the infinite set
Inf =

⋃
𝑖∈N

formulas𝑖 is Tcomb-satisfiable. We rewrite this as Inf = {¬𝜑} ∪ ⋃
𝑖≥1

DEF [D_applications𝑖].

Let M be a Tcomb-model that satisfies Inf . From our simplifying assumptions, we can assume that
M is a Herbrand model. It satisfies ¬𝜑 and satisfies the definitions only on certain tuples, namely
for (𝐷, 𝑡) ∈ ⋃

𝑖≥1
D_applications𝑖 .

Note here that if the model M happened to be the standard model the repair we wish to do
would be trivial as def𝐷 is uniquely defined (see Proposition 3.1) for each 𝐷 ∈ D and we can simply
‘complete’ the model with the correct valuations. However,M can be a nonstandard model, and
this results in the nontrivial aspects of our construction below.

Stage 2: Computational Closure and Model Repair

The reason we can repair M is because the set
⋃
𝑖≥1

D_applications𝑖 has a special property: it is

computationally closed. We define this property below.

Definition 5.7 (Computationally Closed Set). Let Γ be a set of quantifier-free formulas. A set 𝐶 of
D-applications is said to be computationally closed with respect to Γ if: (1) if 𝐷 (𝑡) occurs in some
formula in Γ then (𝐷, 𝑡) ∈ 𝐶 , and (2) if (𝐷, 𝑡1) ∈ 𝐶 and a D-application (𝐺, 𝑡2) occurs in def𝐷 [𝑡1]
then (𝐺, 𝑡2) ∈ 𝐶 .

Intuitively, for a recursively defined function𝐷 , the computational closure of a term𝐷 (𝑡) contains
all the recursive calls (at any level) made by a call to 𝐷 on 𝑡 , where we represent a recursive call to a
function𝐺 on a term 𝑟 by theD-application (𝐺, 𝑟). The set is called a computational closure because
it is the set of calls that occur when ‘computing’ the value of𝐷 on 𝑡 symbolically. The computational
closure of a formula is then the union of the computational closures of all terms of the form 𝐷 (𝑡)
occurring in the formula. For example, consider the length function length on Lists. The computa-
tional closure of length(Cons(1,Nil)) is the set {(length,Cons(1,Nil)), (length,Nil)}. Similarly, the
computational closure of length(𝑥) is {(length, 𝑥), (length, tail(𝑥)), (length, tail(tail(𝑥))), . . .}.

Using the above definition we can see that
⋃
𝑖≥1

D_applications𝑖 is computationally closed for ¬𝜑 .
We now show that we can repair definitions everywhere on a Herbrand model if the definitions are

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

259:18 Adithya Murali, Lucas Peña, Ranjit Jhala, and P. Madhusudan

already satisfied on a computationally closed sub-universe. Using this result, we can repairM so
that definitions are satisfied everywhere, which is what we want.

Lemma 5.8 (Finite Repair outside Computational Closure). Let M be a Herbrand model, Γ a

set of quantifier-free formulae,𝐶 a computationally closed set for Γ, and𝐾 a finite set ofD-applications

not in𝐶 . LetM satisfy DEF [𝐶] ∪Γ. Then there exists a modelM′
that satisfies DEF [𝐾] ∪DEF [𝐶] ∪Γ.

Proof. Observe that if 𝐾 is singleton, say {(𝐷, 𝑡)}, we can constructM′ by simply ‘updating’
the interpretation of 𝐷 on 𝑡 according to the definition. Formally, the model M[𝐷 (𝑡) := J𝜌 (𝑡)KM]
satisfies DEF [{(𝐷, 𝑡)}] ∧ DEF [𝐶] ∧ Γ. HereM[(𝐷, 𝑡) := 𝑣] denotes an updated model whose inter-
pretation of 𝐷 (𝑡) is 𝑣 but is otherwise identical toM. We also use J·KM to denote the interpretation
of M. The correctness of this construction follows from the fact that the definitions over 𝐶 are
satisfied despite the update since 𝐶 is computationally closed. Consequently the satisfaction of Γ is
also unaffected because if 𝐺 (𝑟) occurs in Γ then (𝐺, 𝑟) belongs to 𝐶 .
To show that DEF [𝐾] is satisfiable for an arbitrary finite subset 𝐾 , we takeM and apply updates

as above on each pair in 𝐾 . However, we have to do this carefully so that each repair does not
break any previous repairs. Fix a set 𝐾 ′ and a model M′ such that 𝐾 ′ ⊆ 𝐾 and M′ is M with
updated with the fixes for the elements in 𝐾 ′. Initially 𝐾 ′ = 𝐾 and M′ = M. We describe below a
mechanism Minimal(𝐾,𝐾 ′,M′) to choose a ‘minimal’ element in 𝐾 that has not been fixed yet,
and repair it as described above.
Minimal(𝐾,𝐾 ′,M′) is as follows:
(1) Pick an arbitrary element (𝐷, 𝑡) ∈ (𝐾 \ 𝐾 ′). Let the body of def𝐷 be 𝜌 .
(2) We evaluate 𝜌 (𝑡) onM′ in the following way: subterms must be evaluated before superterms,

and for conditionals we evaluate the condition first and then only evaluate the appropriate
branch.

(3) If the evaluation as described above does not encounter any element in 𝐾 \ 𝐾 ′, then return
(𝐷, 𝑡).

(4) If the evaluation of 𝜌 (𝑡) encounters a term 𝐺 (𝑟) such that (𝐺, 𝑟) ∈ (𝐾 \ 𝐾 ′), we recurse,
going back to Step (2) and evaluating 𝜏 (𝑟) where 𝜏 is the body of def𝐺 .

Informally, this mechanism has the flavor of an eager evaluation, in that we evaluate 𝜌 (𝑡) eagerly,
following the evaluation procedure down (recursively) to a minimal unfixed D-application in 𝐾 .

Finally, when the procedure returns an element (𝐻,𝑢), we add it to 𝐾 ′ and update M′ with the
repair for (𝐻,𝑢). We then repeat this process of picking a minimal element and repairing the model
on it until all elements in 𝐾 are fixed. This completes our construction, and the modelM′ obtained
at the end of all the fixes is the model we desire.

A subtle point in the construction is the termination of Repair (𝐾,𝐾 ′,M′) as the choice of minimal
element is not well-defined otherwise. If the mechanism does not terminate, it must be because the
evaluation of some 𝐷 (𝑡) encounters itself. However, this is impossible as definitions are provably
acyclic (Definition 4.2). Formally, we have the following proposition:

Proposition 5.9. Let (𝐷, 𝑡) be a D-application in 𝐾 , 𝜌 be the body of the definition of 𝐷 , and M
be a model of Tcomb. Let (𝐺, 𝑟) be a D-application such that 𝐺 (𝑟) is a sub-expression of 𝜌 (𝑡) and the
evaluation of 𝜌 (𝑡) in M as performed in the Repair mechanism above encounters 𝐺 (𝑟). Further, let𝜓
be the path condition of the sub-expression 𝐺 (𝑟) that is reached (see Definition 4.1). Then, we have

thatM |= 𝜓 .

We skip the proof of this proposition as it trivial from the description of Repair and Definition 4.1.
Now, from the definition of provable acyclicity (Definition 4.2), we know:

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

Complete First-Order Reasoning for Properties of Functional Programs 259:19

Tcomb |=
(∧
strat (𝐻)<strat (𝐷)

def𝐻

)
→ 𝜓 → Rank𝐺 (𝑟) < Rank𝐷 (𝑡)

Per our assumption we have only one stratum, so the set {𝐻 }𝐻 ∈D,strat (𝐻)<strat (𝐷) is empty. Since
M is a Tcomb model that satisfies𝜓 , we obtain M |= Rank𝐺 (𝑟) < Rank𝐷 (𝑡). Therefore, if updating
𝐷 (𝑡) requires updating 𝐺 (𝑟), then the rank of 𝐺 (𝑟) is smaller. Therefore, each recursive call of
Repair is made on a smaller element of 𝐾 , and therefore the evaluation of 𝐷 (𝑡) cannot depend on
itself. The mechanism for picking a minimal element is indeed well-defined and we can produce at
the end of the procedure a model M′ that satisfies DEF [𝐾] ∪ DEF [𝐶] ∪ Γ.

End of proof of Lemma 5.8 □

Repair for All Tuples. We now show that we can repair definitions everywhere, i.e., on arbitrarily
large sets of D-applications. Recall that we have a Tcomb model M from Stage 1 such that M |=
DEF [𝐶] ∪Γ for a computationally closed set𝐶 . Consider the set DApp of all possibleD-applications.
Note that 𝐶 ⊆ DApp.

Formally, we show thatDEF [DApp]∪Γ isTcomb-satisfiable. First, rewrite the formulas asDEF [𝐶]∪
DEF [𝐶] ∪ Γ, where 𝐶 = DApp \𝐶 is the complement of 𝐶 . Since DEF [𝐶] ∪ Γ is already satisfiable,
it is sufficient to show that DEF [𝐶] ∪ Γ ∪ 𝐵 is satisfiable for an arbitrary finite subset 𝐵 of DEF [𝐶]
and apply the compactness theorem. Observe that a finite subset of DEF [𝐶] is of the form DEF [𝐾]
for a finite set 𝐾 ∈ DApp. We are now done, since we know that DEF [𝐶] ∪ Γ ∪DEF [𝐾] is satisfiable
from Lemma 5.8.
Consider a model N such that N |= DEF [𝐷𝐴𝑝𝑝] ∪ Γ. Since the formulae are all universally

quantified, we can assume that N is a Herbrand model, therefore the universe of N (across the
sorts) is in fact the set of all possible terms. Therefore, we can simply replace DEF [DApp] by DEF

and conclude that N |= DEF ∪ Γ, as desired.
This concludes the proof of the completeness theorem (Theorem 5.4). □

6 FLUID REASONING IN LIQUID HASKELL

Next, let us see how the Liqid Haskell verifier (LH) employs a particular instance of FLUID
reasoning referred to by the tool as reflection and proof by logical evaluation (PLE). We show how a
user might use LH to develop a small library of theorems about Peano numbers to illustrate why
it can be viewed as FLUID reasoning, why its FLUID-style instantiation heuristics are effective in
practice, and, perhaps more importantly, why extra information is really required from the user
when instantiation fails.
Peano Addition. Consider the definition of Peano numbers

data Peano = Z | S Peano

As described in Section 3.1, Liqid Haskell uses the above definition to generate an ADT Peano

with (1) two constructors Z and S, (2) two recognizers isZ and isS, and (3) a single destructor pred.
Next, suppose the user writes the following function that recursively defines Peano addition as

plus :: Peano → Peano → Peano

plus Z m = m

plus (S n) m = S (plus n m)

LH generates a definition for plus which is an “axiom” constraining the interpretation of plus
[Vazou et al. 2018]

defplus ≡ ∀𝑛,𝑚. plus(𝑛,𝑚) = ite(isZ (𝑛), 𝑚, S(plus(pred (𝑛),𝑚)) (1)

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

259:20 Adithya Murali, Lucas Peña, Ranjit Jhala, and P. Madhusudan

6.1 Proof by Instantiation

Propositions as Types. Suppose we wish to verify that the addition of Z is an identity function, i.e.
the proposition ∀𝑛 : Peano. plus(Z, 𝑛) = 𝑛. In LH, a user uses the recipe of “Propositions as Types”
to specify the property as a type, and verify it via a function zeroL that inhabits the type:

zeroL :: n:Peano → { plus Z n == n }

zeroL n = ()

In the above type signature, the input parameter has the effect of quantifying over all 𝑛, and the
output post-condition stipulates the particular property that must hold for each 𝑛 [Wadler 2015].
Programs as Proofs. To check this proof, LH generates a VC defplus → ∀𝑛.plus(Z, 𝑛) = 𝑛. Next, it
uses logical evaluation (PLE) [Vazou et al. 2018] to instantiate the definition of plus (1) at (Z, 𝑛) to
get the instantiated VC ∀𝑛. defplus [Z, 𝑛] → plus(Z, 𝑛) = 𝑛 using the instantiation

defplus [Z, 𝑛] ≡ (plus(Z, 𝑛) = ite(isZ (Z), 𝑛, S(plus(pred (Z), 𝑛))
The SMT solver proves the above instantiated VC is valid even when plus is uninterpreted, thereby
verifying that plus Z is an identity function.

6.2 Proof by Induction

LH makes no attempt to automate inductive proofs. Instead, the programmer must explicate
induction via recursion, by writing programs where the induction hypothesis is made explicit in the
VC via the asserted post-conditions of recursive calls to smaller inputs. As an example, suppose that
we wish to verify that the definition of plus is commutative. As before, the programmer would start
by specifying the above proposition as the type shown at the top of Figure 2, and might attempt a
direct proof comm n m = ()14 that would yield the FLUID VC

defplus → (∀𝑛,𝑚. plus(𝑛,𝑚) = plus(𝑚,𝑛)) (2)

Sadly, PLE does not find any suitable instantiations, and so the SMT solver cannot prove the above
is valid when plus is uninterpreted and hence rejects the code on the left.
Rogue Nonstandard Model. Did LH simply give up too early — maybe some carefully chosen
instantiations would produce a valid instantiated VC? Surprisingly, this is not the case. In fact,
verification fails because (2) is refuted by a rogue nonstandard model (see the full version of the
paper for a description) where the interpretation for the constructors and destructors respects
the ADT axioms for Peano and plus satisfies its definition, but there exists an element 𝑖′ such that
plus(𝑖′, Z) ≠ plus(Z, 𝑖′) in the model. Let us banish such rogue models by proving that adding Z on
the right is also an identity,

∀𝑛 : Peano. plus(𝑛, Z) = 𝑛 (3)
A direct proof of 3 is doomed: it yields the VC below which is refuted by a rogue nonstandard
model (see the full version of the paper for a description of the model):

defplus → ∀𝑛. plus(𝑛, Z) = 𝑛
An Inductive Proof. The programmer must spell out an inductive proof as a (recursive) piece of
code that yields a VC which excludes rogue nonstandard models by explicitly stating the induction
hypothesis as an antecedent in the VC. This is achieved via the proof zeroR shown on the left in
Figure 2. First, we split cases (via a pattern match) on the first argument, treating separately the
cases where the argument is Z or S n. Second, the recursive call to zeroR n puts the post-condition
of zeroR for the smaller input n as a hypothesis for the new VC

defplus → (∀𝑛. plus(Z, Z) = Z ∧ plus(𝑛, Z) = 𝑛 → plus(S(𝑛), Z) = S(𝑛))
14 () is a “unit proof” with no extra hints from the user. LH attempts to prove the VC directly given a unit proof.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

Complete First-Order Reasoning for Properties of Functional Programs 259:21

-- Succeeds

zeroR :: n:_ →
{plus n Z == n}

zeroR Z = ()

zeroR (S n) = zeroR n

-- Fails

comm :: n:_ → m:_ →
{plus n m == plus m n}

comm Z m = zeroR m

comm (S n) m = comm n m

-- Succeeds

comm :: n:_ → m:_ →
{plus n m == plus m n}

comm Z m = zeroR m

comm (S n) m = comm n m

&& succR m n

Fig. 2. Proof of the commutativity of Peano addition: The explicit case-splitting, recursion and “lemma
application” are needed to eliminate rogue nonstandard models.

PLE instantiates the definition defplus (1) at (Z, Z) and (S(𝑛), Z) to get the instantiated VC
defplus [Z, Z] → defplus [S(𝑛), Z] → (plus(Z, Z) = Z ∧ plus(𝑛, Z) = 𝑛 → plus(S(𝑛), Z) = S(𝑛))

The instantiated VC is valid even when plus is uninterpreted, thus proving (3). In essence, the
(well-founded) recursive call to zeroR establishes the induction hypothesis for the smaller n, thereby
eliminating the rogue nonstandard models, letting us verify the proposition for any Peano n.

6.3 Proof by Lemmas

Next, let us see how to use auxiliary lemmas like zeroR to eliminate rogue nonstandard models
that thwarted the direct proof of the commutativity of plus. First, the programmer might attempt
an inductive proof (like the zeroR) as shown in the middle in Figure 2: split cases on whether
the first parameter is Z or S n. In the base case, they would call zeroR m to eliminate the rogue
nonstandard model where plus(𝑖′, 0) ≠ plus(0, 𝑖′). In the inductive case, they would recursively
invoke the induction hypothesis via recursively calling comm n m. This time, LH generates the VC

defplus → (∀𝑛,𝑚. (plus(𝑚, Z) =𝑚 → plus(Z,𝑚) = plus(𝑚, Z))
∧ (plus(𝑛,𝑚) = plus(𝑚,𝑛) → plus(S(𝑛),𝑚) = plus(𝑚, S(𝑛)))) (4)

Thanks to the equality asserted by the use of the “lemma” zeroR m, the first conjunct can proved
valid via the instantiation plus[(𝑚, Z)]. However, the second conjunct is invalid despite the recursive
(inductive) call to comm n m because of a different rogue nonstandard model for plus that falsifies the
second conjunct! Again, we write a lemma succR to eliminate the new rogue nonstandard model.
Together, these lemmas yield a VC with the strengthened antecedents that preclude the above
rogue nonstandard models, allowing PLE’s FLUID instantiation to prove the VC as shown by the
“Succeeds” proof on the right in Figure 2. See the full version of the paper for descriptions of the
rogue nonstandard model(s), the succR lemma, and the VCs.

6.4 Rogue Nonstandard Models in Proofs about Data Structures

We use the simple Peano datatype to illustrate how LH implements FLUID reasoning, and how direct
proofs can fail due to rogue nonstandard models which can be eliminated via explicit induction
(recursion) and lemmas (function calls). Similar phenomena occur when verifying more complicated
properties. Consider the datatype of finite maps from keys (k) to values (v)

data Map k v = Leaf | Node k v (Map k v) (Map k v)

Figure 3 shows the code for two functions that respectively get the value of a key from a tree,
and set the value of a key to some new val leaving the values of all other keys unchanged. The
following proposition is one of McCarthy’s two laws that characterize finite maps

∀𝑚,𝑘, 𝑣 . get (set (𝑚,𝑘, 𝑣), 𝑘) = Just (𝑣)

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

259:22 Adithya Murali, Lucas Peña, Ranjit Jhala, and P. Madhusudan

get :: Map k v → k → Maybe v

get (Node k v l r) key

| key == k = Just v

| key < k = get l key

| otherwise = get r key

get Leaf _ = Nothing

set :: Map k v → k → v → Map k v

set (Node k v l r) key val

| key == k = Node key val l r

| key < k = Node k v (set l key val) r

| otherwise = Node k v l (set r key val)

set Leaf k v = Node k v Leaf Leaf

Fig. 3. Implementations of get and set functions for Binary Search Tree.

Similar to the example in Section 6.2, the above property needs an induction proof, which we
describe in the full version. We describe here the intuitive rogue nonstandard model that falsifies
the theorem.
Rogue Nonstandard Model for Search Trees. Let the universe U be the set of finite trees and
infinite non-regular trees

15 over (𝑘, 𝑣) pairs. The interpretation for get (𝑚,𝑘) on a tree𝑚 follows
the usual path in a binary search tree to find 𝑘 , even on infinite trees. If the 𝑘 is found, get returns
the corresponding value, and if the path ends or continues forever, then get returns Nothing. The
interpretation for set is similar, except that on an infinite computation it returns the input tree.
To see why this model refutes the VC, consider the infinite binary tree𝑚 that is infinite on all

paths, and every node of which has key 0 and value 0. Let us call set, to set key 1 to the value 1 and
try to get the value of key 1 after that, i.e. consider get (set (𝑚, 1, 1), 1) By the above interpretation
set (𝑚, 1, 1) =𝑚, as all paths in𝑚 are infinite, and further get (𝑚, 1) = Nothing thereby refuting the
proposition despite being a model of the ADT theory and the definitions of get and set. Intuitively,
set loses the update entirely, and hence get returns Nothing.

7 FLUID REASONING AND REASONING IN LEON

The Leon system and its successor Stainless [Hamza et al. 2019] reason with functional pro-
grams [Blanc et al. 2013; Suter et al. 2010, 2011] using techniques broadly similar to LH and UQFR.
Leon reasons about Scala programs with quantifier-free pre/post conditions, and the recursively
defined functions occurring in annotations are written in Scala as terminating functions. It also
automates certain induction proofs, including induction by “stack-height” (akin to Hoare-style
reasoning), as well as structural induction on ADTs. Leon caters to other aspects of development
as well, including techniques similar to bounded model-checking for finding errors. We do not
discuss these aspects here as they are not relevant to our work.
The first observation is that verification conditions for Leon programs can also be modeled as

(DEF , 𝜑) in the FLUID fragment. Specifically, the property 𝜑 is quantifier-free (implicitly universally
quantified) and definitions are proven terminating.

While reasoning in Leon also involves unfolding definitions followed by SMT solving, there are
important differences in comparison to LH or UQFR. First, whereas LH typically unfolds definitions
only once, Leon continually unfolds definitions over multiple rounds similar to UQFR. Second,
Leon asserts the contract of a function along with its definition on the given input arguments
during the unfolding. In theory, it does so for every unfolding, ad infinitum. Observe that when
expressing a problem as (DEF , 𝜑), contracts cannot be assumed for all subsequent function calls, as
that would require universally quantified assumptions. Assuming contracts for subsequent function
calls is also strictly more powerful than simply unfolding definitions, as we illustrated in Section 2.2.

15A non-regular tree is one that is not isomorphic to any of its proper subtrees. This is a technical condition we require to
ensure that the ADTs are acyclic, i.e., it is not possible to reach a term by destructing itself.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

Complete First-Order Reasoning for Properties of Functional Programs 259:23

Reduction to UQFR and Completeness for Leon. We show that the reasoning mechanism in
Leon can in fact be captured in the FLUID framework and proven using UQFR. More formally, given
a pair (DEF, 𝜑) in the FLUID fragment with contracts {(pre𝐷 , post𝐷)}𝐷∈D for the functions, we
construct an effectively computable instance (DEF ′, 𝜑 ′) in the FLUID fragment such that running
UQFR on (DEF ′, 𝜑 ′) mimics assuming the contracts in addition to unfolding definitions. We detail
this construction in the full version of the paper. The key idea is to construct, for every 𝐷 ∈ D, an
additional recursively defined predicate Contract𝐷 with the same input signature that returns a
Boolean value indicating whether the pre/post condition holds for the input parameters as well
as all recursive calls 𝐷 makes in the computation on these parameters. We then check validity
of verification conditions that further assume that the immediate calls to other functions 𝐷 have
Contract𝐷 evaluate to true. UQFR applied on this formula mimics the procedure that Leon does
and Theorem 5.4 argues the completeness with respect to the underlying combined theory.

As far as we know the above result is new. Prior literature on Leon [Blanc et al. 2013; Suter et al.
2010, 2011] shows soundness of the procedure. Restricted fragments [Suter et al. 2010] involving
certain kinds of “measures” (functions from ADTs to background sorts) have been shown to admit
complete unfolding based reasoning with respect to the standard model, with a decidable validity
problem. In contrast, we show completeness (i.e., recursively enumerable procedures) for validity
with respect to the combined theory for a more general class of functions. Further, our logic is
undecidable (see Section 8), which shows that it is fundamentally different from decidable subclasses
reported in prior art [Suter et al. 2010] (see also Section 9).
Our results also show that when theorems are not provable in Leon, there ought to be rogue

nonstandard models. We considered a few such examples and were indeed able to construct rogue
nonstandard models. For example, Leon fails to prove rev(rev(𝑥)) = 𝑥 automatically, where rev
reverses a list. It has a rogue nonstandard model that is eliminated by an inductive lemma provided
by the user.

8 FURTHER RESULTS

We show some technical results pertaining to the FLUID fragment. We discuss the results themselves
here and provide proofs in the full version of the paper.
Undecidability of the FLUID Fragment. We show undecidability of the FLUID fragment even
when the combined theory admits decision procedures for quantifier-free reasoning. In other
words, the validity problem for the FLUID fragment, for which we proved UQFR is a semi-decision
procedure in Section 5.2, does not admit any decision procedures.

Theorem 8.1. The validity problem for FLUID formulas is undecidable.

The proof is subtle, reducing the complement of the validity problem, i.e., satisfiability, to the
non-halting problem. The subtlety is that validity is with respect to the combined theory, not the
standard model. Therefore, simple reductions that encode executions of a Turing machine using
ADTs (say, as lists of configurations) and define halting executions as a recursive predicate are
made impossible because of nonstandard models.
Incompleteness with Terminating Definitions. It is natural to ask whether UQFR is complete
for all terminating functions, not just provably acyclic ones. We show that this is not the case.

Theorem 8.2. There exists a signature (S, F ,D,Tcomb), a set DEF of well-defined definitions for

D that are not provably acyclic, and a universally quantified formula 𝜑 such that Tcomb |= (DEF , 𝜑)
but UQFR does not terminate.

Note that the above result implies that generalizing definitions to arbitrary universally quantified
formulas also leads to incompleteness.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

259:24 Adithya Murali, Lucas Peña, Ranjit Jhala, and P. Madhusudan

9 RELATEDWORK

We discussed the relationship of our work to Liqid Haskell [Rondon et al. 2008; Vazou et al.
2018] and Leon [Blanc et al. 2013; Suter et al. 2011] extensively in Sections 6 and 7. The mechanism
for verifying specifications in the functional programming sub-language of Dafny [dafny-lang
community 2022; Leino 2010] is also similar. There is much prior work on techniques based on
unfolding recursive definitions [Amin et al. 2014; Chamarthi et al. 2011; De Angelis et al. 2018; Leino
and Polikarpova 2013], going back to ACL2 [Kaufmann et al. 2000] and the NQTHM prover [Boyer
and Moore 1988]. The work on Set-Of-Support resolution [Haifani et al. 2021; Wos et al. 1965] is
also similar, but it does not consider background theories.
The work in [Suter et al. 2010] shows that Leon-like reasoning (and UQFR in this paper) is

actually a decision procedure for certain restrictive logics. More precisely, it exhibits a logic over
restricted classes of user-defined abstractions of ADTs to collections/measures in a decidable sort
using catamorphisms, and shows that unfolding function definitions just once followed by quantifier-
free reasoning is a decision procedure. The classes of such abstractions (infinitely surjective and

sufficiently surjective abstractions) however are extremely semantically restrictive compared to
FLUID. In particular, as we show in Section 8, validity of FLUID is undecidable, which argues this
difference. The work in [Vazou et al. 2018] shows that the PLE heuristic implemented in LH is
complete if an ‘equational proof’ exists, but this result is much weaker than ours, and in fact PLE
fails to prove simple theorems that UQFR can prove.

The Why3 system [Bobot et al. 2011, 2015; Filliâtre and Paskevich 2013] also verifies functional
programs against contracts, but reduces verification conditions to first-order logic, integrating
with several first order logic reasoning engines like Vampire [Kovács and Voronkov 2013]. FO
provers such as Vampire [Hajdú et al. 2021] and Zipperposition [Cruanes 2017] support reasoning
about ADTs, even providing some automation for inductive reasoning. While it is also possible
in our setting to use FO theorem provers to prove formulas of the form Defs → 𝜑 , the practical
effectiveness of such a reduction has not been evaluated and seems to need overcoming some
challenges, especially background theory reasoning; see [Reger et al. 2017].
SMT solvers [Barrett et al. 2011a; Bjorner 1999; De Moura and Bjørner 2008; Reynolds and

Blanchette 2017] provide powerful automation for logic reasoning, especially for quantifier-free
fragments of decidable combinations of theories [Bradley and Manna 2007; Nelson and Oppen 1979;
Tinelli and Harandi 1996]. There is work that develops decidable fragments by building over SMT
solvers [Pham and Whalen 2013; Suter et al. 2010] as well as specialized decision procedures [Hojjat
and Rümmer 2017; Kapur et al. 2006; Manna et al. 2007; Zhang et al. 2006]. Extensions of the ADT
theory have also been studied [Kovács et al. 2017; Rybina and Voronkov 2001].

Prior work on combining theories include Nelson-Oppen decidable combinations of theories [Nel-
son 1980; Nelson and Oppen 1979; Tinelli and Harandi 1996] and following work [Baader and
Ghilardi 2005; Fontaine 2007; Ghilardi 2004; Krstic et al. 2007; Tinelli and Zarba 2005; Wies et al.
2009] extending this result. Local theory extensions [Ihlemann et al. 2008; Sofronie-Stokkermans
2009] have also been employed for constructing decidable logics. Our work can be seen as reasoning
with a particular fragment of quantified first-order logic (FLUID) over combined theories using
particular procedures (especially SMT solvers) that work well in practice in certain domains.
Techniques based on quantifier instantiation have been popular in automatic reasoning of

quantified logics, including works on quantifier instantiation for SMT solvers [Barrett et al. 2011b;
De Moura and Bjørner 2008; Reynolds 2017]. There are many methods to guide instantiation, such
as triggers/E-matching [Amin et al. 2014; Detlefs et al. 2005; Moskal 2009; Rümmer 2012], MBQI [Ge
and de Moura 2009], etc. In general, systematic quantifier instantiation in the style of UQFR is not
applicable to SMT solvers as the set of terms blows up exponentially.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

Complete First-Order Reasoning for Properties of Functional Programs 259:25

The work reported in [Löding et al. 2018] that shows completeness of a heuristic in practice
called natural proofs [Pek et al. 2014; Qiu et al. 2013] is closest to our work, They show that natural
proofs can be viewed as reasoning in FOL by instantiating quantifiers using terms over a foreground
uninterpreted universe followed by quantifier-free reasoning. They prove that this technique is
complete for a safe fragment of first-order logic. There are, however, fundamental differences in
our work. First, the foreground sorts in our setting are ADT sorts and not uninterpreted. Second,
the safe fragment identified in [Löding et al. 2018] is very restrictive as it disallows uninterpreted
functions to involve background sorts, which in our setting would mean programs cannot have
input parameters of the background sort, like integers. Finally, the quantifier instantiation strategy
studied in [Löding et al. 2018] is much more liberal than in our work (and what tools like Liqid
Haskell and Leon do). For example, if 𝑡 is a set of terms that occur in a theorem, the instantiation
in [Löding et al. 2018] will always instantiate the definition of 𝑓 on 𝑡 it, while we will do so only
when 𝑓 (𝑡) occurs in the theorem. Consequently, the proof of our main theorem is quite complex
and fundamentally different from the proof of completeness in [Löding et al. 2018].

Triggers are heuristic ways to control quantifier instantiation in SMT solvers, and SMT solvers
as well as tools such as Boogie [Leino 2008] and Dafny [Leino 2010] provide mechanisms for
specifying triggers, both automatically [Leino and Pit-Claudel 2016] and manually [dafny-lang
community 2022]. However, triggers are not simple quantifier instantiations [Leino and Pit-Claudel
2016; Moskal 2009]. Further, trigger-based quantifier instantiation is typically unpredictable and
flaky, and to the best of our knowledge, these techniques are also incomplete.
Automating induction has been explored in prior work [Claessen et al. 2013; Cruanes 2017;

Hajdú et al. 2020; Ireland and Bundy 1996; Johansson et al. 2010; Passmore et al. 2020] for various
specialized fragments [Unno et al. 2017]. In many cases, user help in the form of lemmas is still
needed, though there is work on synthesizing inductive lemmas automatically [Murali et al. 2022;
Reynolds and Kuncak 2015; Sivaraman et al. 2022; Yang et al. 2019].

10 DISCUSSION

We discuss some salient aspects of our results, their ramifications, and future directions.

On the Completeness Theorem. When proving a theorem of the form DEF → 𝜑 using FOL, it
is easy to see that completeness can be achieved if we instantiate DEF on all possible terms (all
possible ADTS formed from all possible terms over the various sorts, such as all possible integers
for the integer sort, etc.). However, instantiation performed by tools such as Liqid Haskell and
Leon is thrifty, only instantiating function definitions on terms where their applications occur in
the current formula. Our completeness theorem proves that even this thrifty instantiation is, in fact,
complete. This result has practical consequences: thrifty instantiation is computationally cheap,
tool designers can comfortably employ it without worrying about missing proofs.
Although we presented our FLUID fragment and the completeness of UQFR for it upfront, we

spent more than a year on identifying this fragment! The fact that FLUID only allows definitions is
technically crucial. Although DEF are universally quantified formulas, definitions do not constrain
the space of models of DEF → 𝜑 in significant ways (on the standard model, they are well-
defined, and on nonstandard models, they are always satisfiable; see Theorem 4.4). Relaxing this
fragment to arbitrary universal quantification destroys completeness (follows from Theorem 8.2 in
Section 8). It is remarkable that our completeness result holds even when function definitions are
universally quantified over background sorts (such as integers), as analogous results of completeness
for uninterpreted foreground sorts do not allow such quantification [Löding et al. 2018].

Natural Proofs. The completeness result presented in this paper and the completeness result
for natural proofs for verification of imperative programs manipulating the heap [Löding et al.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

259:26 Adithya Murali, Lucas Peña, Ranjit Jhala, and P. Madhusudan

2018] are two results that show completeness of first-order reasoning of programs based on thrifty
instantiations employed in practice. In light of this, we in fact think of UQFR for FLUID as natural
proofs for reasoning with first-order logic for recursive programs.

The two completeness results however have many differences. In natural proofs for imperative
programs [Löding et al. 2018], we have an uninterpreted foreground sort (useful for modeling
arbitrary pointer-based heaps), have universally quantified formulas that quantify only over the
foreground sort, and certain restrictions on the logic. In particular, completeness of formula-based
quantifier instantiation is guaranteed when functions that involve a background sort in their domain
do not map to the foreground sort. The work presented in this paper assumes the foreground sort
is an ADT sort (FO-axiomatized), allows quantification only for defining functions (which must
be provably acyclic), but allows universal quantification in these definitions to span over both the
foreground ADT sort as well as the background sorts (i.e., parameters to functions can be of the
background sort). One open problem is whether there exists a more general result that extends
both these results. For instance, it would be nice to have a result that allows for (user-written)
universally quantified lemmas to be incorporated in a completeness result that defines a thrify
instantiation scheme for such lemmas (current tools like Liqid Haskell ask for users to provide
the lemmas as well as instantiations of them, which of course fits into the fragment defined in
this paper). The work on natural proofs for imperative programs [Löding et al. 2018], however,
allows already for incorporation of lemmas, as long as quantification is only over the foreground
sort, in its completeness result. On the other hand, the results in this paper allow for definitions
to allow quantification over background sorts which is disallowed in the completeness results
for natural proofs of imperative programs [Löding et al. 2018]. Allowing for definitions involving
quantification over background sorts in a completeness result for imperative programs would be
interesting.

Future Work. We believe our completeness result not only gives a theoretical foundation for
heuristics used by practical verification tools, but also suggests a fundamentally new design
paradigm for verification languages. The design of programming languages with specification
languages guaranteed to be verifiable using complete techniques can lead to practical automation.
Enriching our logic to datatypes beyond ADTs (e.g., abstract data types such as sets, maps, and
queues) while supporting complete verification is also an interesting future direction.

Apart from the future directions mentioned above, a particularly interesting extension concerns
Higher-Order Functions (HOFs). LH and Stainless do support defining HOFs, but such definitions
are beyond the scope of the theory developed in this work. Tools like LH reason with HOFs by
defunctionalization [Reynolds 1972], i.e., converting them to FOL definitions by modeling function
symbols as constants in a new sort and introducing an uninterpreted function apply(𝑓 , args)
to model the application of a (higher-order) function 𝑓 on arguments args. However, simply
defunctionalizing higher-order definitions and applying UQFR does not yield a completeness result
for the appropriate higher-order logic. We conjecture that an analogous completeness theorem
does in fact exist for ADTs and background theories with higher-order functions.
That fact that rogue nonstandard models exist when inductive lemmas are needed (since our

procedure is FO complete) provides an interesting direction to guide both users and tools towards
new lemmas. In particular, one may be able to synthesize finite descriptions of rogue nonstandard
models (similar to Section 6.4) using program synthesis, template-based synthesis using DSLs, or
even finite model finders [Blanchette and Claessen 2010]. Such models can be presented to users as
evidence of proof failure and lemmas suggested by users can be checked against them to evaluate
whether they are useful.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

Complete First-Order Reasoning for Properties of Functional Programs 259:27

Exploiting these models to search automatically for inductive lemmas is also an interesting
direction, especially in light of recent work that uses FO models to guide inductive lemma syn-
thesis [Murali et al. 2022] for verifying heap manipulating programs. The Type-1 and Type-3
counterexamples in the work witness the falsehood of the goal and the non-inductiveness of candi-
date lemmas respectively. Rogue nonstandard models correspond precisely to Type-1 models (since
they falsify the goal), and correspond to a variant of Type-3 models (helpful lemmas must not be
inductive on rogue nonstandard models). We therefore believe that similar counterexample-guided
synthesis techniques using rogue nonstandard models can lead to effective lemma discovery for
verifying functional programs.

ACKNOWLEDGMENTS

This work is supported in part by a research grant from Amazon and a Discovery Partners Institute
(DPI) science team seed grant.

REFERENCES

Nada Amin, K. Rustan M. Leino, and Tiark Rompf. 2014. Computing with an SMT Solver. In Tests and Proofs, Martina Seidl
and Nikolai Tillmann (Eds.). Springer International Publishing, Cham, 20–35.

Franz Baader and Silvio Ghilardi. 2005. Connecting Many-Sorted Theories. In Automated Deduction – CADE-20, Robert
Nieuwenhuis (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 278–294.

Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim King, Andrew Reynolds, and
Cesare Tinelli. 2011a. CVC4. In Computer Aided Verification, Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 171–177.

Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim King, Andrew Reynolds, and
Cesare Tinelli. 2011b. CVC4. In Proceedings of the 23rd International Conference on Computer Aided Verification (Snowbird,
UT) (CAV’11). Springer-Verlag, Berlin, Heidelberg, 171–177.

Jon Barwise. 1977. Handbook of Mathematical Logic. North-Holland Publishing Company, Amsterdam.
Nikolaj Skallerud Bjorner. 1999. Integrating Decision Procedures for Temporal Verification. Ph. D. Dissertation. Stanford

University, Stanford, CA, USA. Advisor(s) Manna, Zohar. AAI9924398.
Régis Blanc, Viktor Kuncak, Etienne Kneuss, and Philippe Suter. 2013. An Overview of the Leon Verification System:

Verification by Translation to Recursive Functions. In Proceedings of the 4th Workshop on Scala (Montpellier, France)
(SCALA ’13). Association for Computing Machinery, New York, NY, USA, Article 1, 10 pages. https://doi.org/10.1145/
2489837.2489838

Jasmin Christian Blanchette and Koen Claessen. 2010. Generating Counterexamples for Structural Inductions by Exploiting
Nonstandard Models. In Logic for Programming, Artificial Intelligence, and Reasoning, Christian G. Fermüller and Andrei
Voronkov (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 127–141.

François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paskevich. 2011. Why3: Shepherd Your Herd of
Provers. In Boogie 2011: First International Workshop on Intermediate Verification Languages. HAL-Inria, Wroclaw, Poland,
53–64. https://hal.inria.fr/hal-00790310

François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paskevich. 2015. Let’s Verify This with Why3.
International Journal on Software Tools for Technology Transfer (STTT) 17, 6 (2015), 709–727. https://doi.org/10.1007/s10009-
014-0314-5 See also http://toccata.lri.fr/gallery/fm2012comp.en.html.

Robert S. Boyer and J. Strother Moore. 1988. A Computational Logic Handbook. Academic Press Professional, Inc., USA.
Aaron R. Bradley and Zohar Manna. 2007. The Calculus of Computation: Decision Procedures with Applications to Verification.

Springer-Verlag, Berlin, Heidelberg.
Harsh Raju Chamarthi, Peter Dillinger, Panagiotis Manolios, and Daron Vroon. 2011. The ACL2 Sedan Theorem Proving Sys-

tem. In Proceedings of the 17th International Conference on Tools and Algorithms for the Construction and Analysis of Systems:

Part of the Joint European Conferences on Theory and Practice of Software (Saarbrücken, Germany) (TACAS’11/ETAPS’11).
Springer-Verlag, Berlin, Heidelberg, 291–295.

Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. 2013. Automating Inductive Proofs Using Theory
Exploration. In Automated Deduction – CADE-24, Maria Paola Bonacina (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 392–406.

Simon Cruanes. 2017. Superposition with Structural Induction. In Frontiers of Combining Systems, Clare Dixon and Marcelo
Finger (Eds.). Springer International Publishing, Cham, 172–188.

The dafny-lang community. 2022. https://dafny-lang.github.io/dafny/DafnyRef/DafnyRef

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

https://doi.org/10.1145/2489837.2489838
https://doi.org/10.1145/2489837.2489838
https://hal.inria.fr/hal-00790310
https://doi.org/10.1007/s10009-014-0314-5
https://doi.org/10.1007/s10009-014-0314-5
http://toccata.lri.fr/gallery/fm2012comp.en.html
https://dafny-lang.github.io/dafny/DafnyRef/DafnyRef

259:28 Adithya Murali, Lucas Peña, Ranjit Jhala, and P. Madhusudan

Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi, and Maurizio Proietti. 2018. Solving Horn Clauses on Inductive
Data Types Without Induction. Theory and Practice of Logic Programming 18, 3-4 (2018), 452–469. https://doi.org/10.
1017/S1471068418000157

Leonardo DeMoura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (Budapest, Hungary) (TACAS’08). Springer-Verlag,
Berlin, Heidelberg, 337–340.

David Detlefs, Greg Nelson, and James B. Saxe. 2005. Simplify: A Theorem Prover for Program Checking. J. ACM 52, 3
(May 2005), 365–473. https://doi.org/10.1145/1066100.1066102

Herbert B. Enderton. 1972. A mathematical introduction to logic. Academic Press, New York.
Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3 — Where Programs Meet Provers. In Programming Languages

and Systems, Matthias Felleisen and Philippa Gardner (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 125–128.
Pascal Fontaine. 2007. Combinations of Theories and the Bernays-Schönfinkel-Ramsey Class. In 4th International Verification

Workshop - VERIFY’07 (CEUR Workshop Proceedings, Vol. 259), Bernhard Beckert (Ed.). HAL-Inria, Bremen, Germany,
37–54. https://hal.inria.fr/inria-00186639 URL : http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-
259/paper06.pdf.

Yeting Ge and Leonardo de Moura. 2009. Complete Instantiation for Quantified Formulas in Satisfiabiliby Modulo Theories.
In Computer Aided Verification, Ahmed Bouajjani and Oded Maler (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
306–320.

Silvio Ghilardi. 2004. Model-Theoretic Methods in Combined Constraint Satisfiability. Journal of Automated Reasoning 33, 3
(01 Oct 2004), 221–249. https://doi.org/10.1007/s10817-004-6241-5

Fajar Haifani, Sophie Tourret, and Christoph Weidenbach. 2021. Generalized Completeness for SOS Resolution and its
Application to a New Notion of Relevance. In Automated Deduction – CADE 28, André Platzer and Geoff Sutcliffe (Eds.).
Springer International Publishing, Cham, 327–343.

Márton Hajdú, Petra Hozzová, Laura Kovács, Johannes Schoisswohl, and Andrei Voronkov. 2020. Induction with Gen-
eralization in Superposition Reasoning. In Intelligent Computer Mathematics: 13th International Conference, CICM

2020, Bertinoro, Italy, July 26–31, 2020, Proceedings (Bertinoro, Italy). Springer-Verlag, Berlin, Heidelberg, 123–137.
https://doi.org/10.1007/978-3-030-53518-6_8

Márton Hajdú, Petra Hozzová, Laura Kovács, and Andrei Voronkov. 2021. Induction with Recursive Definitions in Super-
position. In Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021. TU Wien
Academic Press, Wien, 246–255. https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_34

Jad Hamza, Nicolas Voirol, and Viktor Kunčak. 2019. System FR: Formalized Foundations for the Stainless Verifier. Proc.
ACM Program. Lang. 3, OOPSLA, Article 166 (oct 2019), 30 pages. https://doi.org/10.1145/3360592

Wilfrid Hodges. 1997. A Shorter Model Theory. Cambridge University Press, USA.
Hossein Hojjat and Philipp Rümmer. 2017. Deciding and Interpolating Algebraic Data Types by Reduction. In 19th

International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2017, Timisoara, Romania,

September 21-24, 2017, Tudor Jebelean, Viorel Negru, Dana Petcu, Daniela Zaharie, Tetsuo Ida, and Stephen M. Watt
(Eds.). IEEE Computer Society, Los Alamitos, CA, USA, 145–152. https://doi.org/10.1109/SYNASC.2017.00033

Carsten Ihlemann, Swen Jacobs, and Viorica Sofronie-Stokkermans. 2008. On Local Reasoning in Verification. In Tools and

Algorithms for the Construction and Analysis of Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 265–281.

Andrew Ireland and Alan Bundy. 1996. Productive Use of Failure in Inductive Proof. In Automated Mathematical Induction,
Hantao Zhang (Ed.). Springer Netherlands, Dordrecht, 79–111. https://doi.org/10.1007/978-94-009-1675-3_3

Moa Johansson, Lucas Dixon, and Alan Bundy. 2010. Case-Analysis for Rippling and Inductive Proof. In Proceedings of the

First International Conference on Interactive Theorem Proving (Edinburgh, UK) (ITP’10). Springer-Verlag, Berlin, Heidelberg,
291–306. https://doi.org/10.1007/978-3-642-14052-5_21

Deepak Kapur, Rupak Majumdar, and Calogero G. Zarba. 2006. Interpolation for Data Structures. In Proceedings of the

14th ACM SIGSOFT International Symposium on Foundations of Software Engineering (Portland, Oregon, USA) (SIGSOFT
’06/FSE-14). Association for ComputingMachinery, New York, NY, USA, 105–116. https://doi.org/10.1145/1181775.1181789

Matt Kaufmann, J. Strother Moore, and Panagiotis Manolios. 2000. Computer-Aided Reasoning: An Approach. Kluwer
Academic Publishers, USA.

Laura Kovács, Simon Robillard, and Andrei Voronkov. 2017. Coming to Terms with Quantified Reasoning. In Proceedings of

the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (Paris, France) (POPL ’17). ACM, New York,
NY, USA, 260–270. https://doi.org/10.1145/3009837.3009887

Laura Kovács and Andrei Voronkov. 2013. First-Order Theorem Proving and Vampire. In Computer Aided Verification,
Natasha Sharygina and Helmut Veith (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–35.

Sava Krstic, Amit Goel, Jim Grundy, and Cesare Tinelli. 2007. Combined Satisfiability modulo Parametric Theories. In
Proceedings of the 13th International Conference on Tools and Algorithms for the Construction and Analysis of Systems

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

https://doi.org/10.1017/S1471068418000157
https://doi.org/10.1017/S1471068418000157
https://doi.org/10.1145/1066100.1066102
https://hal.inria.fr/inria-00186639
https://doi.org/10.1007/s10817-004-6241-5
https://doi.org/10.1007/978-3-030-53518-6_8
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_34
https://doi.org/10.1145/3360592
https://doi.org/10.1109/SYNASC.2017.00033
https://doi.org/10.1007/978-94-009-1675-3_3
https://doi.org/10.1007/978-3-642-14052-5_21
https://doi.org/10.1145/1181775.1181789
https://doi.org/10.1145/3009837.3009887

Complete First-Order Reasoning for Properties of Functional Programs 259:29

(Braga, Portugal) (TACAS’07). Springer-Verlag, Berlin, Heidelberg, 602–617.
K. Rustan M. Leino. 2008. This is Boogie 2. (June 2008). https://www.microsoft.com/en-us/research/publication/this-is-

boogie-2-2/
K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional Correctness. In Proceedings of the 16th

International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (Dakar, Senegal) (LPAR’10).
Springer-Verlag, Berlin, Heidelberg, 348–370. https://doi.org/10.5555/1939141.1939161

K. R. M. Leino and Clément Pit-Claudel. 2016. Trigger Selection Strategies to Stabilize Program Verifiers. In Computer Aided

Verification, Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer International Publishing, Cham, 361–381.
Rustan Leino and Nadia Polikarpova. 2013. Verified Calculations. https://www.microsoft.com/en-us/research/publication/

verified-calculations/
Christof Löding, P. Madhusudan, and Lucas Peña. 2018. Foundations for natural proofs and quantifier instantiation. PACMPL

2, POPL (2018), 10:1–10:30. https://doi.org/10.1145/3158098
A. I. Mal’tsev. 1962. Axiomatizable classes of locally free algebras of certain types. Sibirsk. Mat. Zh. 3 (1962), 729–743. Issue

5.
Zohar Manna, Henny B. Sipma, and Ting Zhang. 2007. Verifying Balanced Trees. In Logical Foundations of Computer Science,

Sergei N. Artemov and Anil Nerode (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 363–378.
Yuri V. Matiyasevich. 1993. Hilbert’s Tenth Problem. MIT Press, Cambridge, MA, USA.
Michał Moskal. 2009. Programming with Triggers. In Proceedings of the 7th International Workshop on Satisfiability

Modulo Theories (Montreal, Canada) (SMT ’09). Association for Computing Machinery, New York, NY, USA, 20–29.
https://doi.org/10.1145/1670412.1670416

Adithya Murali, Lucas Peña, Eion Blanchard, Christof Löding, and P. Madhusudan. 2022. Model-Guided Synthesis of
Inductive Lemmas for FOL with Least Fixpoints. Proc. ACM Program. Lang. 6, OOPSLA2, Article 191 (oct 2022), 30 pages.
https://doi.org/10.1145/3563354

Charles Gregory Nelson. 1980. Techniques for Program Verification. Ph. D. Dissertation. Stanford University, Stanford, CA,
USA. AAI8011683.

Greg Nelson and Derek C. Oppen. 1979. Simplification by Cooperating Decision Procedures. ACM Trans. Program. Lang.

Syst. 1, 2 (oct 1979), 245–257. https://doi.org/10.1145/357073.357079
Grant Passmore, Simon Cruanes, Denis Ignatovich, Dave Aitken, Matt Bray, Elijah Kagan, Kostya Kanishev, Ewen Maclean,

and Nicola Mometto. 2020. The Imandra Automated Reasoning System (System Description). In Automated Reasoning,
Nicolas Peltier and Viorica Sofronie-Stokkermans (Eds.). Springer International Publishing, Cham, 464–471.

Edgar Pek, Xiaokang Qiu, and P. Madhusudan. 2014. Natural Proofs for Data Structure Manipulation in C Using Separation
Logic. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Edinburgh, United Kingdom) (PLDI ’14). ACM, New York, NY, USA, 440–451. https://doi.org/10.1145/2594291.2594325
Tuan-Hung Pham and Michael W.Whalen. 2013. RADA: A Tool for Reasoning about Algebraic Data Types with Abstractions.

In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering (Saint Petersburg, Russia) (ESEC/FSE
2013). Association for Computing Machinery, New York, NY, USA, 611–614. https://doi.org/10.1145/2491411.2494597

Mojżesz Presburger and Dale Jabcquette. 1991. On the completeness of a certain system of arithmetic of whole numbers in
which addition occurs as the only operation. History and Philosophy of Logic 12, 2 (1991), 225–233. https://doi.org/10.
1080/014453409108837187 arXiv:https://doi.org/10.1080/014453409108837187

Xiaokang Qiu, Pranav Garg, Andrei Ştefănescu, and P. Madhusudan. 2013. Natural Proofs for Structure, Data, and Separation.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (Seattle,
Washington, USA) (PLDI ’13). ACM, New York, NY, USA, 231–242. https://doi.org/10.1145/2491956.2462169

Giles Reger, Martin Suda, and Andrei Voronkov. 2017. Instantiation and pretending to be an SMT solver with VAMPIRE.
CEUR Workshop Proceedings 1889 (1 Jan. 2017), 63–75. 15th International Workshop on Satisfiability Modulo Theories,
SMT 2017 ; Conference date: 22-07-2017 Through 23-07-2017.

Andrew Reynolds. 2017. Conflicts, Models and Heuristics for Quantifier Instantiation in SMT. In Vampire 2016. Proceedings

of the 3rd Vampire Workshop (EPiC Series in Computing, Vol. 44), Laura Kovacs and Andrei Voronkov (Eds.). EasyChair,
Portugal, 1–15. https://doi.org/10.29007/jmd3

Andrew Reynolds and Jasmin Christian Blanchette. 2017. A Decision Procedure for (Co)Datatypes in SMT Solvers. J. Autom.

Reason. 58, 3 (mar 2017), 341–362. https://doi.org/10.1007/s10817-016-9372-6
Andrew Reynolds and Viktor Kuncak. 2015. Induction for SMT Solvers. In Verification, Model Checking, and Abstract

Interpretation, Deepak D’Souza, Akash Lal, and Kim Guldstrand Larsen (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 80–98.

John C. Reynolds. 1972. Definitional Interpreters for Higher-Order Programming Languages. In Proceedings of the ACM

Annual Conference - Volume 2 (Boston, Massachusetts, USA) (ACM ’72). Association for Computing Machinery, New
York, NY, USA, 717–740. https://doi.org/10.1145/800194.805852

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://doi.org/10.5555/1939141.1939161
https://www.microsoft.com/en-us/research/publication/verified-calculations/
https://www.microsoft.com/en-us/research/publication/verified-calculations/
https://doi.org/10.1145/3158098
https://doi.org/10.1145/1670412.1670416
https://doi.org/10.1145/3563354
https://doi.org/10.1145/357073.357079
https://doi.org/10.1145/2594291.2594325
https://doi.org/10.1145/2491411.2494597
https://doi.org/10.1080/014453409108837187
https://doi.org/10.1080/014453409108837187
https://arxiv.org/abs/https://doi.org/10.1080/014453409108837187
https://doi.org/10.1145/2491956.2462169
https://doi.org/10.29007/jmd3
https://doi.org/10.1007/s10817-016-9372-6
https://doi.org/10.1145/800194.805852

259:30 Adithya Murali, Lucas Peña, Ranjit Jhala, and P. Madhusudan

Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. 2008. Liquid Types. SIGPLAN Not. 43, 6 (jun 2008), 159–169.
https://doi.org/10.1145/1379022.1375602

Philipp Rümmer. 2012. E-Matching with Free Variables. In Logic for Programming, Artificial Intelligence, and Reasoning,
Nikolaj Bjørner and Andrei Voronkov (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 359–374.

T. Rybina and A. Voronkov. 2001. A Decision Procedure for Term Algebras with Queues. ACM Trans. Comput. Logic 2, 2
(apr 2001), 155–181. https://doi.org/10.1145/371316.371494

Aishwarya Sivaraman, Alex Sanchez-Stern, Bretton Chen, Sorin Lerner, and Todd Millstein. 2022. Data-Driven Lemma
Synthesis for Interactive Proofs. Proc. ACM Program. Lang. 6, OOPSLA2, Article 143 (oct 2022), 27 pages. https:
//doi.org/10.1145/3563306

Thoralf Albert Skolem. 1934. Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich
vieler Aussagen mit ausschliesslich Zahlenvariablen. Fundamenta Mathematicae 23 (1934), 150–161.

Viorica Sofronie-Stokkermans. 2009. Locality Results for Certain Extensions of Theories with Bridging Functions. In
Automated Deduction – CADE-22, Renate A. Schmidt (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 67–83.

Philippe Suter, Mirco Dotta, and Viktor Kunćak. 2010. Decision Procedures for Algebraic Data Types with Abstractions.
In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Madrid,
Spain) (POPL ’10). ACM, New York, NY, USA, 199–210. https://doi.org/10.1145/1706299.1706325

Philippe Suter, Ali Sinan Köksal, and Viktor Kuncak. 2011. Satisfiability Modulo Recursive Programs. In Static Analysis,
Eran Yahav (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 298–315.

Cesare Tinelli and Mehdi Harandi. 1996. A New Correctness Proof of the Nelson-Oppen Combination Procedure. In Frontiers

of Combining Systems: First International Workshop, Munich, March 1996, Frans Baader and Klaus U. Schulz (Eds.). Springer
Netherlands, Dordrecht, 103–119. https://doi.org/10.1007/978-94-009-0349-4_5

Cesare Tinelli and Calogero G. Zarba. 2004. Combining Decision Procedures for Sorted Theories. In Logics in Artificial

Intelligence, Jóse Júlio Alferes and João Leite (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 641–653.
Cesare Tinelli and Calogero G. Zarba. 2005. Combining Nonstably Infinite Theories. Journal of Automated Reasoning 34, 3

(01 Apr 2005), 209–238. https://doi.org/10.1007/s10817-005-5204-9
Hiroshi Unno, Sho Torii, and Hiroki Sakamoto. 2017. Automating Induction for Solving Horn Clauses. In Computer Aided

Verification, Rupak Majumdar and Viktor Kunčak (Eds.). Springer International Publishing, Cham, 571–591.
Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton, Philip Wadler, and Ranjit Jhala.

2018. Refinement reflection: complete verification with SMT. Proc. ACM Program. Lang. 2, POPL (2018), 53:1–53:31.
https://doi.org/10.1145/3158141

Philip Wadler. 2015. Propositions as Types. Commun. ACM 58, 12 (nov 2015), 75–84. https://doi.org/10.1145/2699407
Thomas Wies, Ruzica Piskac, and Viktor Kuncak. 2009. Combining Theories with Shared Set Operations. In Frontiers

of Combining Systems, Silvio Ghilardi and Roberto Sebastiani (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
366–382.

Glynn Winskel. 1993. The Formal Semantics of Programming Languages: An Introduction. MIT Press, Cambridge, MA, USA.
Lawrence Wos, George A. Robinson, and Daniel F. Carson. 1965. Efficiency and Completeness of the Set of Support Strategy

in Theorem Proving. J. ACM 12, 4 (oct 1965), 536–541. https://doi.org/10.1145/321296.321302
Weikun Yang, Grigory Fedyukovich, and Aarti Gupta. 2019. Lemma Synthesis for Automating Induction over Algebraic

Data Types. In Principles and Practice of Constraint Programming, Thomas Schiex and Simon de Givry (Eds.). Springer
International Publishing, Cham, 600–617.

Ting Zhang, Henny B. Sipma, and Zohar Manna. 2006. Decision procedures for term algebras with integer constraints.
Information and Computation 204, 10 (2006), 1526–1574. https://doi.org/10.1016/j.ic.2006.03.004 Combining Logical
Systems.

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 259. Publication date: October 2023.

https://doi.org/10.1145/1379022.1375602
https://doi.org/10.1145/371316.371494
https://doi.org/10.1145/3563306
https://doi.org/10.1145/3563306
https://doi.org/10.1145/1706299.1706325
https://doi.org/10.1007/978-94-009-0349-4_5
https://doi.org/10.1007/s10817-005-5204-9
https://doi.org/10.1145/3158141
https://doi.org/10.1145/2699407
https://doi.org/10.1145/321296.321302
https://doi.org/10.1016/j.ic.2006.03.004

	Abstract
	1 Introduction
	2 Overview
	2.1 Insertion and Sortedness
	2.2 Insertion Preserves Sortedness
	2.3 Membership in a Sorted List

	3 Preliminaries
	3.1 Syntax and Semantics
	3.2 The Standard Model
	3.3 Combinations of Theories, Nonstandard models, and Rogue Nonstandard Models
	3.4 Validity under Defined Functions

	4 A FLUID Logic
	5 Completeness of Recursive Function Unfolding and Quantifier-free Reasoning
	5.1 UQFR Algorithm
	5.2 Soundness and Completeness of UQFR under Combined Theories

	6 FLUID reasoning in Liquid Haskell
	6.1 Proof by Instantiation
	6.2 Proof by Induction
	6.3 Proof by Lemmas
	6.4 Rogue Nonstandard Models in Proofs about Data Structures

	7 FLUID Reasoning and Reasoning in Leon
	8 Further Results
	9 Related Work
	10 Discussion
	Acknowledgments
	References

