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Abstract

The topic of this thesis is the study of the problem of automated synthesis of
controllers and systems against formal specifications. Our two central aims are to
study these control problems for branching-time specifications and to study them
to achieve distributed control.

We start this study by considering the control synthesis problem for simulations
and bisimulations. We show that one can solve this in polynomial time. Moreover,
whenever a controller exists, we show how to automatically synthesize a polynomial-
state controller in polynomial time.

We then study the control synthesis problem for asynchronous simulations and
show the surprising result that it is undecidable. In fact, we show that even the
associated verification problem is undecidable in this setting. The undecidability
results extend even to very simple classes of concurrent systems.

The control and realizability problems for the branching-time temporal logics
CTL and CTL* are studied next. It turns out that one can study the problem in two
settings — one where the environment is static and universal, the other where it is re-
active. The control problem for universal environments reduces to module-checking
and hence is, for CTL and CTL*, EXPTIME-complete and 2-EXPTIME-complete,
respectively [KV96]. We show that the complexities of these problems in reactive
environments become exponentially harder — they are 2-EXPTIME-complete for
CTL and 3-EXPTIME-complete for CTL*.

We also investigate the control-synthesis problem in a distributed setting, where
the processes communicate with each other in a synchronous fashion and also in-
teract with their local environments according to an architecture. This model is
the one studied in [PR90], and from the results therein it follows that for global
specifications, the only decidable architectures are the singly-flanked pipelines. We
study the control problem for local specifications and show that the class of decidable
architectures (mildly) increases. We characterize the exact class of architectures for
which the control problem is decidable for local specifications — this is the class
of architectures where each connected component is a sub-architecture of a doubly-

flanked pipeline.
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Chapter 1

Introduction

“Just the place for a Snark!” the Bellman cried,
As he landed his crew with care;
Supporting each man on the top of the tide

By a finger entwined in his hair.

— The Hunting of the Snark, Lewis Caroll

The last fifty years have seen a tremendous influx of digital systems into our day-
to-day lives — they are used in communications, control of industrial equipment,
avionics, managing safety-critical equipment such as reactors, in security systems
and even in digital gadgets inside cameras and washing machines.

One of the main concerns of the past three decades in computer science has
been the development of correct software. The most popular tool in the software
engineering industry has been testing. Though very useful, it has been found in-
adequate because it can give no guarantee of the correctness of code. The failure
of many systems due to bugs in code, especially in safety-critical software where
such bugs can result in tremendous losses to life and property, has led people to
study the problem of formally verifying software. Mathematicians have over the
years studied this problem and have come up with various methods such as formal

theorem-proving where one gives formal semantics to programs and specifications
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and proves that a program meets its specification by giving a proof very similar to
proofs in mathematics [Hoa69].

The last twenty years have seen a tremendous increase in the complexity of sys-
tems built in the industry. Formally proving such programs correct is too daunting
a task and consequently, has found few takers in the industry. However, there have
been approaches to program verification via theorem-proving with the aid of ma-
chines. These theorem provers are built to find proofs, but, in most cases seek
human guidance (see [Fit96]). They are not fully automated and hence are not very
popular in the industry.

The classical notion of computation has been that of recursive functions or the
mechanism of Turing machines that compute functions: they take an input, process
it, and output a result. However, there are many programs, such as resource sched-
ulers in operating systems, communication protocols, etc., that do not behave this
way. They are usually simple systems that are characterized by an ongoing indefinite
interaction with an environment. A resource scheduler continuously takes requests
and termination signals, and reacts to such input continuously. These systems are
never meant to terminate in some bounded time and hence their behaviours are best
viewed as infinite sequences of events. Such systems are termed reactive systems.

While specifying properties of classical programs is usually done through the
mechanism of first-order logic augmented with program constructs, for a long time
it was not clear what a suitable specification mechanism for reactive systems might
be. However, the specification mechanisms using temporal logics, proposed for such
behaviours in [Pnu77, GPSS80, MP81, HP85|, have over the years emerged the most
popular.

A methodology that has been developed for such finite-state reactive systems
is the automated verification of programs against their specifications by state-space
exploration. These methods are best suited for finite-state systems, or those that
can be abstracted so that they are finite-state, and typically include hardware cir-
cuits, communication protocols, user-interfaces for machinery, etc. The specifica-
tion mechanisms usually handled are temporal logic specifications, for which this
process can indeed be completely automated and requires no human intervention
[LP85, SC85, Pnud5] (see [Eme90] for a survey). Such state-space exploration mech-
anisms are termed “model-checkers” and constitute an important and useful class

of methods for verification. Model-checking, though it had its beginnings in simple
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state-space exploration methods, can be quite sophisticated — rather than thinking
of it as state-space exploration, it is best viewed as any verification problem that is
decidable and can be solved without human intervention.

Of course, digital systems are not the only systems we live with. Many sys-
tems that we deal with are physical machines that have analog components that
evolve continuously with time. Scientists and engineers have worked together to
harness natural phenomena and used them to make machines work. The study
of building such physical systems in order to achieve a desired behaviour is called
“control-theory” — this includes most non-digital systems (e.g.: automobile ma-
chinery, industrial manufacturing equipments, missile launching mechanisms, flight
control, audio and video playback gadgets, etc.)

Since such systems are usually modelled using continuous variables such as dis-
placement, velocity, etc., the main tools to analyse and control them use the math-
ematics of ordinary and partial differential equations. However, with the increased
role of computers and computer-controlled devices, many control-mechanisms have
to deal with systems modelled using discrete variables. For example, control of a
part of a telephony equipment may only involve variables that record the number
of telephone calls active in a region, the set of sectors that are under repair, etc.
and not the exact voltage running across various lines. Another feature that these
applications of control-theory possess is that they are driven by instantaneous events
from the environment — e.g. the press of a keyboard key or a sensor turning on.
Systems that possess these two properties above are called “discrete-event systems”
and have been a topic of recent study (see [RW89, CL99]). Most instances of control
systems that have some interaction with digital computers, such as communication
networks, manufacturing facilities, software-controlled hardware devices, etc., come
under this class.

In most of these applications, the exact times at which events occur are not very
important and there are enough interesting properties one would want to verify
based just on the order in which the events occur.

Discrete event systems (DES) form a small subclass of systems studied in control-
theory. They are dynamic systems (the behaviour of the system depends not only
on the current input to it but also on the history of past inputs), time-invariant
(the behaviour does not depend on the exact times at which events occur), have a

discrete state-space model and are event-driven (they change state only when there
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is an external instantaneous event) [CL99].

While model-checking is a useful tool to both verify finite-state systems in com-
puter science (like hardware circuits, communication protocols, etc.) and analyze
finite-state DES (like a controller for a telephony equipment), a more ambitious
question is to ask whether we can synthesize such systems. What we would like
to do is to fix a prototype of a model that describes exactly how the system and
environment interact, and given a specification of the desired behaviour of the sys-
tem, ask whether one can automatically come up with a system that satisfies the
specification. This problem is also known as the realizability problem.

This question was first posed by Church in 1963 in the context of synthesizing
switching circuits against specifications stated in restricted second-order arithmetic
[Chu63]. Biichi and Landweber in [BL69] showed that this realizability problem is
decidable, even for a more powerful class of specifications (S1S). The realizability
problem can be viewed as a game where the system and the environment play
with each other by choosing event-labels (say alternately) and thereby build an
infinite sequence of events. The event-sequence is winning for the system in case
this sequence is recognized as a desired behaviour according to the specification. If
not, the environment wins the play. The realizability problem then boils down to
deciding whether the system has a winning strategy for this game, i.e. a strategy
such that no matter how the environment plays, the system always wins. If there
is indeed a winning strategy, then finding one that uses only a bounded memory of
the past gives rise to finite-state programs that realize the specification.

The proof in [BL69] (see also [Tho95]) indeed used game-theoretic techniques,
but was very complex and Rabin’s later proof of the same theorem was welcome
[Rab72]. Rabin’s theorem used automata over trees and it is interesting to note that,
though we are verifying only the sequential behaviours of systems, the realizability
problem leads us to work with trees. However, since emptiness of tree-automata can
be seen as a game over finite graphs, the connection is, in retrospect, natural.

The area met a revival in the eighties in the works of [MW80, EC82, MW&4]
where the automated synthesis of finite-state programs against temporal logic spec-
ifications was considered. However, these papers dealt with programs that do not
have an environment to interact with — they are closed systems where everything
that happens to the system can be controlled. In fact, these papers solve the satisfi-

ability problem for temporal logics, show how to come up with a finite-state witness
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for satisfiability, and how to extract a finite-state program from this. But the impor-
tant aspect of reactive systems is that there is an interaction with an environment
which the system has no control over. Hence the interesting problem is to come
up with a program that satisfies the specification no matter how the environment
behaves (as in [BL69, Rab72]). To reiterate the fact that such systems have no
control over the environment, these systems are called open reactive systems and are
the main objects of study in this thesis.

The study of synthesis for open reactive systems was taken up later in [ALW89,
PR&89al; the emphasis of [PR89a] was on the complexity of synthesizing systems
against the linear-time temporal logic LTL using automata-theoretic techniques.
Meanwhile, due to the interest in simplifying Rabin’s theorem [Rab69], considerable
work simplifying the study of infinite games on infinite graphs had been developed
[Tho95, Zie98]. An offshoot of this, which is simpler, is the study of infinite games
played on finite graphs [McN93], which turns out to be directly connected with syn-
thesis. In fact, this is probably the best setting to understand the synthesis and
control results implied in [PR89a].

A problem related to synthesis studied in the area of control-theory is that of
control-synthesis. The general scenario is that there is a system, called a plant in
this context, which interacts with an environment. The goal is to design a controller
which will interact with the system, observing and controlling it using its own inputs
to it (thereby exerting dynamic feedback control), in order to make the system behave
in a desired way. For example, the control-mechanism for a car might involve the
system getting inputs from sensors of the accelerator and brakes and the controller
must ensure that the car behaves in the desired manner by issuing commands to the
parts in the machinery that control the engine power and brake mechanisms. Such
control is in many cases a continuous one, where the controller’s inputs may also be
continuous.

In discrete-event systems, the control mechanism is also discrete. The automatic
generation of a controller to meet a specification for such systems was initiated by
Ramadge and Wonham [RW89]. For example, consider a lift mechanism — it has
two levels of control. One is the continuous physical controller that controls the
lifting of shafts, the power of motors, etc. in order to raise or lower the lift. On
the other hand, there is also a high-level controller, which interacts with the user-

panel, observes various sensor mechanisms and controls the behaviour of the lift.
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This high-level control mechanism works on an abstracted system which is a DES,
and simply issues commands such as ordering the closing of a door, movement to a
particular floor, etc. The underlying continuous low-level control makes sure that
the lift actually performs these tasks.

The high-level control (also called supervisory control) is hence discrete in nature
and is amenable to automated synthesis. The control-synthesis problem then is to
synthesize a controller for a given plant modeled as a DES. In [RW89], this problem
was studied in an automata-theoretic framework and was shown to have reasonable
sub-classes where the problem is decidable.

The supervisory control of DES has been fairly well studied in the recent past.
The problems studied in this community usually focus on issues like partial ob-
servability (where the controller has only a limited power of observing the plant),
supremal controllers (controllers that pose the least restriction on the system), de-
centralized control (where there are many controllers, each having access and control
of one part of the system), etc. [KG95, KGM91, KS95, KS97, WW96].

The literature on supervisory control, however, seldom deals with specifications
that are given externally. The specification is usually stated in terms of the plant
itself — for example, as certain states that must be reached or must be avoided
when the plant is modelled as a transition system. The control-problem in these
cases reduces to searching for certain structures in the state-space, and are usually
easy to handle, give rise to minimally restrictive controllers and are solvable in
polynomial time. The control-problem where specifications are given independent
of the plant are certainly harder to handle and is the main focus in the computer-
science literature.

Another difference in approach is that the control-theory community has fo-
cussed on various classes of simple problems where one can obtain tractable control-
synthesis schemes, while in computer science, people have asked more general ques-
tions and proved many undecidability and lower bound complexity-theoretic results.
For example, while distributed control has been shown, in a general setting, to be
undecidable [PR90], a notion of “co-observability” has been defined which is a suf-
ficient condition under which one can achieve decentralized control [CL99].

The control-synthesis and the realizability problems are technically very similar.
While in the former one is given a plant which has to be controlled to meet a speci-

fication, the latter is to come up with a program (which can be seen as controlling a
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plant which allows all possible behaviours) that meets the specification. The theme
of this thesis is the synthesis and control of open reactive systems (which could be

discrete-event systems) for various models and specifications.

Contributions of the thesis

We study the control and synthesis problems for finite-state reactive systems
modeled as discrete transition systems. We do not consider partial-observation —
the controllers in all cases will have complete information of the system (or the
part of the system) that they control. The two main sub-themes are to study these
problems for branching-time specifications and to study distributed control.

The most common kind of specification is one where the set of desired behaviours
is described as the set of desired sequences of the plant. An alternative way of look-
ing at the behaviour of a plant is to consider the tree representing the set of all
sequential behaviours it can exhibit. The behaviour of a program/plant is then a
single tree, the branches of which give its sequential (i.e. linear-time) behaviours.
However, a specification of this tree can be more expressive than one that describes
just the sequential behaviours. A typical example that such a branching-time speci-
fication can state, which cannot be stated in the linear-time framework, is one which
demands that no matter how the plant evolves, it must always be possible to ex-
tend this behaviour to one that does a particular action. In fact, in [RW89], the
supervisory control problem is framed by using a set of marked states (that repre-
sent completion of tasks) and the specification demands that the controlled plant
must, after any sequence of moves, be in a state such that a marked state is reach-
able (this is called the “nonblocking property”). This property is also inherently a
branching-time property.

A simple mechanism to study branching-time properties is through the notion
of simulations. We start our study by considering the problem of control where
the specifications are also given as transition systems, and we want to control the
plant such that the specification can simulate the controlled plant. We show that
this problem is decidable in time polynomial in the sizes of the finite plants and
specifications. Simulations allow us to capture simple safety properties and the
results regarding this form the first half of Chapter 2.

An important aspect of the control-synthesis problem that we consider is that

the controller can use an unbounded amount of information of past interactions with
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the environment in order to control moves. The class of controllers amongst which
we search is hence an infinite collection, and hence the decidability problem is not
trivial.

We also study the control problem for bisimulations in Chapter 2, which is a
stronger notion than that of simulations: two systems are bisimilar if they can sim-
ulate each other in a tight fashion. We study the problem of control-synthesis where
we are given a plant and a specification, both modelled as finite-state transition
systems and are asked whether there is a controller for the plant such that the
controlled plant is bisimilar to the specification. Again, we show that the control
problem is decidable in polynomial time. In both settings we show that when a
controller exists, we can synthesize a controller of polynomial size as well.

In Chapter 3, we consider a concurrent variant of the control problem for sim-
ulations. We use asynchronous transition systems, which are transition systems
augmented with concurrency information, and consider a natural notion of simu-
lation between them. Given a plant and a specification, both modelled as finite
asynchronous transition systems, the problem is to come up with a controller for
the plant such that there is an asynchronous simulation from the controlled plant
to the specification. Surprisingly, it turns out that the control-synthesis problem
in this simple setting is undecidable. In fact, we show that even the corresponding
model-checking problem — given two asynchronous transition systems, the prob-
lem of verifying if there is an asynchronous simulation from one to the other —
is undecidable. We show that these results hold for even very restricted classes of
asynchronous transition systems. These results show how complex any notion of
distributed control can become.

In Chapter 4, we introduce the various temporal logics we will need in later
chapters (namely LTL, CTL and CTL*), and also the notions of trees, and nonde-
terministic and alternating automata working on them. While it is true that the
controller-synthesis and realizability problems in a non-distributed setting is perhaps
best understood in terms of infinite games on finite graphs [McN93, Tho95, Zie98|,
automata over trees allow combining strategies by suitable operations on automata
that describe them. Alternating automata has been a very important tool in con-
trol and synthesis [KV96, KV97a, KV99a, KV00, KV01] and is the main tool in our
technical arsenal.

In Chapter 5 we turn to the design of programs and controllers for systems against
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the branching-time temporal logics CTL and CTL*. In this branching-time setting,
it turns out that one can study the problems in two scenarios — one where the
environment is static and universal and offers all possible moves at every point (this
does not mean that the system is not open) and the other where the environment can
offer different subsets of moves at different stages. The environments of the former
scenario are called universal or non-reactive environments while those of the latter
are termed reactive environments. Since branching-time specifications can specify
possibility requirements (like “it must always be possible that action 'a’ occurs”), a
program which satisfies a requirement when interacting with a universal environment
need not satisfy it in the context of a reactive environment. In fact, we show that
the problem under reactive environments is a harder one to solve.

It turns out that the control and realizability problems of systems in universal
environments technically reduces to the module-checking problem studied by Kupfer-
man and Vardi in [KV96, KV97a|. From the results on module-checking, it follows
that these problems for CTL and CTL* are EXPTIME-complete and 2-EXPTIME-
complete respectively. (In [KV00], the authors extend this to the p-calculus as
well.)

Our main result is that the control and realizability problems in the context of
reactive environments is solvable for CTL and CTL*, and are 2-EXPTIME-complete
and 3-EXPTIME-complete, respectively. We show that when controllers exist, one
can synthesize controllers whose sizes match the above time-bounds. The upper
bounds are proved using automata-theoretic techniques and interestingly, use the
fact that the class of languages accepted by tree automata are closed under com-
plement. Our lower bound results justify this costly step of complementation and
perhaps suggest that this is where the study of control-synthesis in terms of games
on finite-graphs breaks down.

We then turn to the problems of distributed control synthesis and distributed
realizability for linear-time specifications in Chapter 6. The most relevant paper
that addresses this problem is [PR90], where the authors study the distributed
realizability problem in a setting where processes communicate with each other,
work synchronously and have possible local environments that they interact with.
Pnueli and Rosner show that the realizability problem is undecidable for almost
all architectures and from their results it follows that the only architectures for

which the control problem is decidable are the singly-flanked pipelines. Singly-
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flanked pipeline are architectures where the processes are connected along a line
with internal channels, and the first process in the line is the only one that interacts
with the environment.

The main departure of our work from that of [PR90] is that we consider local
specifications instead of global ones. We show that local specifications do increase
the class of architectures for which the control-problem is decidable, but that this is
only mild. We characterize the exact class of decidable architectures — the control
problem for an architecture is decidable iff each connected component of it is a
sub-architecture of a doubly-flanked pipeline (a doubly flanked pipeline is like the
singly-flanked pipeline as described above with the only difference being that the
processes at both ends of the pipeline can interact with the environment).

The research that this thesis is based on was done mainly in cooperation with
P.S. Thiagarajan and partly in cooperation with Orna Kupferman and Moshe Vardi.
The work on simulations and the undecidability results for asynchronous simulations
were first published in CONCUR’98 [MT98a]. The journal version of the above
will appear in Theoretical Computer Science [MTO0la] and includes the results on
bisimulations. Results on the control and realizability problems against reactive
environments for branching-time logics appeared in CONCUR’00 [KMTV00a]. The
results on distributed control for local specifications were published in ICALP’01
[MTO01b]. Technical reports written on these works are [MT98b] and [KMTV00b].



Chapter 2

Control-synthesis for simulations

and bisimulations

They sought it with thimbles, they sought it with care;
They pursued it with forks and hope;
They threatened its life with a railway-share;

They charmed it with smiles and soap.

— The Hunting of the Snark, Lewis Caroll

2.1 Introduction

In this chapter, we study the problem of synthesizing controllers for discrete event
systems by considering the branching-time specification mechanisms of simulations
and bisimulations.

First, let us recall the general problem of control synthesis. In informal terms, one
is given an open discrete event system called a plant which consists of a system and
its environment. One then specifies the desired patterns of interaction between the

system and its environment. The problem is to find a controller which will restrict

11
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the behaviour of the plant in such a way that the controlled behaviour meets the
specification. A characteristic feature of the controller is that it is allowed to restrict
only the actions of the system (and not those of the environment). Typical questions

that arise are:

e Given finite descriptions of the plant and the specification is it decidable that

there exists a controller 7
e In case there is a controller is it always the case that there is a finite controller?

e How big need the controller be — in case it exists — relative to the sizes of

the plant and the specification?

A substantial amount of knowledge is available about this problem in the linear
time framework, i.e. when the specification describes properties of the sequences
generated by the plant. In this chapter, the key point of departure is that we study
the controller synthesis problem in a branching time setting. We uniformly de-
scribe both plants and specifications as certain kinds of labelled transition systems.
We then advocate the use of simulations and bisimulations to capture the require-
ment that the plant-controller combination meets its specification. As a result,
behavioural properties that can only be stated in a branching time setting become
available as specifications (see [LV95]). Though simulations are a weak way of spec-
ifying the required behaviours of a system, it is a good starting point for the study
of branching-time specifications and allows us to state simple safety properties.

In this chapter, we show that the problem of checking for the existence of a
controller, for specifications formulated using simulations and bisimulations, can be
solved in polynomial time. Moreover, if a controller exists, we show that a controller
of polynomial size can be synthesized in polynomial time.

In the next section we formulate the model for the plant using transition systems
with two layers of labelling on the transitions. This turns out to be a convenient
way of capturing the usual two-person game associated with the plant as well as
the plant-controller interaction. We use the same class of transition systems to
capture specifications. We then define simulations, which are behaviour preserving
homomorphisms, in the natural way. A controller is then required to restrict the
system’s actions so that the restricted behaviour of the plant can be related to the

specification via a simulation.
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An important lesson derived from existing literature is that a richer class of
controllers can be obtained by allowing the controller to make use of memory of the
past to achieve its goal. The controllers we consider are also transition systems and
work in tandem with the plant, restricting its moves in various ways. The controller
can have arbitrarily large state-spaces. Hence it can prescribe different moves at the
same state of the plant if the history of moves executed so far are different. Clearly
the set of controllers for a plant is an infinite collection even when both the plant
and specification are finite objects. Consequently the task of deciding the existence
of a controller is not trivial.

In Sections 2.3 and 2.4 we show that the problem of deciding if a pair of finite
systems (a plant and a specification) admits a controller is decidable in time which
is polynomial in the sizes of the plant and specification. We also show that the
size of the controller, whenever one exists, can be bounded from above by a similar
polynomial. A point worth noting here is our transition systems are deterministic
with respect to an alphabet of events. But the events will have an additional layer
of action labels and the simulations are required to preserve only action labels.
Consequently the domain of a simulation relative to the action labels will be, in all
non-trivial instances, non-deterministic.

In Section 2.5 we extend the techniques of the previous two sections to tackle the
case of bisimulations. To our knowledge, bisimulations have never been considered
as a specification mechanism in the supervisory control problem, though it has
been used as a technique to solve the classical controller synthesis problem [BLI7].
Surprisingly, the time complexity and the size of the controller (when one exists)
still have polynomial upper bounds. It turns out that a crucial computational step
in the decision procedure can be efficiently reduced to a maximal matching problem
which is known to be solvable in polynomial time [EK70, CLR92].

The proofs of results regarding simulations, though they are simple, are presented
in good detail in order to give a gentle introduction to the problem. As we go on, for
example when dealing with bisimulations, we give proofs in fair detail but obvious

details have been left out so that the flow of the arguments is not affected.
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2.2 The model

It will be convenient to work with deterministic transition systems that have an
additional layer of labelling. Through the rest of this chapter we fix a finite set of

actions (or labels) ¥ and let a, b range over .

Definition 2.1 A ¥-labelled deterministic transition system is a structure 7S =
(Q7 Ea Ta Gin, QD) where:

e (Q is a (possibly infinite) set of states.

FE is a finite set of events.

e T C @ x F x @ is a deterministic transition relation. In other words, if

(g,e,q') € T and (q,e,q") € T then ¢’ = ¢".

Qin € @ is the initial state.

¢ : E — ¥ is a labelling function. |

Let t = (g,e,q') € T. We often write ¢ — ¢’ instead of (¢, e, ¢') € T. Sometimes
we write ¢ — ¢’ to indicate further that ¢(e) = a. In all such cases the concerned
transition system will be clear from the context.

Henceforth in this chapter, we refer to X-labelled deterministic transition systems
as just transition systems.

Let TS = (@, E, T, ¢in, ¢) be a transition system. When viewed as the model of
a system—environment combination, F will represent the environment actions and
the actions of the system. The occurrence of the transition ¢ —Z) ¢' is to be viewed
as the system offering to perform an a-action and the environment choosing the
specific (a-labelled) event e as its matching response. There could be more than
one a-labelled event enabled at ¢ for the environment to choose from. We note also
that it could be the case that q—Z> ¢’ and ¢ %’) ¢'. Thus the environment could
choose the same response — in terms of the change produced in the global state —
to two different actions a and b of the system. This way of describing the system-
environment interaction is taken from [AMP95]. In the present setting this will be
easier to work with than the usual one in which the system moves and environment

moves explicitly alternate [Tho95].
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Example 2.1

restart

In the example above, the transition system depicts a vending machine modelled
in our framework. In the diagrams, events are written in bold while labels of events
are written in stalics. The events are {by, bs, tea, coffee, r,restart}. The actions
are ¥ = {ask, tea, coffee, r, restart}. The labelling function maps the events by and
bs to ask and is the identity map on the other events. In its initial state, the
machine reads which button (b1 or b2) is pressed — it then decides to serve either
tea or coffee. At the initial state, or whenever it reaches that state, the plant can
offer to read an input by enabling the action ask. However, it has no control over
whether b1l or b2 will be executed — the environment makes this choice.

We model both plants and specifications as transition systems. The controlled

behaviour of a plant will be related to its specification by a simulation.

Definition 2.2 Let TS, = (Q, Ep, Tp, ¢4, ¢p) and TS, = (Qs, Es, Ty, g5, s) be
a pair of transition systems. Then a simulation f from TS, to T'S; — denoted
f:TSy, — TSy —isamap f: Q,UT, — Q,UT, with f(Q,) C Qs and
f(T,) C T such that the following conditions are satisfied:

(1) flah) = @G-

(ii) Suppose t = (gp,¢,q,) € T, and f(t) = (gs,€¢',q;). Then f(g,) = ¢, and
fla,) = ¢; and @p(e) = py(€). O

Thus a simulation is just a structure preserving homomorphism. Given two

transition systems TS| and T'S; we say that T7'S; and TS, are isomorphic in case
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Figure 2.2: A transition system and its unfolding

there is a simulation f : TS; — TS, such that f : Q:UT, — @Q2UT, is a bijection
with @; (T;) being the set of states (transitions) of TS; for i = 1,2.

The notion of the controlled behaviour of a plant meeting its specification via a
simulation will be defined at the level of unfoldings. As we point out later this will

permit a larger class of controllers.

Definition 2.3 Let T'S = (Q, E, T, gin, ©) be a transition system. Then Uf(TS),
the unfolding of TS, is the structure TS = (@, E, T\, Gin, @) where @ C Q x E*,
E C E and T C @ x E x @ are the least sets satisfying:

(i) (gin,5) € Q.
(ii) Suppose (¢,0) € @ and (¢,e,q') € T. Then (¢',0e) € @, e € E and

((g,0),¢, (¢, 0€)) € T.

Further, @i, = (¢in,€) and @ is ¢ restricted to E. a

It is easy to check that TS is a deterministic Y-labelled transition system. We
could have defined @ in terms of E* alone but the present formulation will be easier
to work with. Figure 2.2 illustrates a transition system and its unfolding.

Finally, the controlled behaviour of a plant will be obtained by taking the (syn-

chronized) product of the plant and a controller.
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Definition 2.4 Let TS; = (Qi, B, T;, ¢, ©:i), © = 1,2 be a pair of transition sys-
tems such that Ye € E; N Ey, ¢1(e) = ¢o(e). Then the product of T'S; and TS,
— denoted T'S1||TSy — is the structure TS = (Q, E, T, ¢in, ) where Q C Q1 X Qo
and EC F1UE;, T C@Q x E x (@ are the least sets that satisfy:

¢ (¢, 0,) €Q

e Suppose (¢1,42) € Q and (q1,¢,q]) € Ty with e & F5. Then e € E, (¢},9) € Q
and ((QIaQQ),ea (Qi: q2)) € T

e Suppose (¢1,¢2) € Q and (¢o,€,q3) € Tp withe ¢ E;. Thene € E, (¢1,¢,) € @
and ((QIv q2)7 e, (QI: qé)) € T.

e Suppose (¢1,42) € Q, e € E1 N Ey, (q1,e,q)) € Ty and (go,€,¢5) € T. Then
e€E, (¢1,¢) € Q and ((¢1,¢2). ¢, (01, 6)) €T

Further, ¢;, = (¢;,,42,) and ¢ : By U Ey — Y is given by: p(e) = ¢1(e) if e € E)
and p(e) = po(e) if e € By \ Ej. O

Again it is easy to check that TS,|| TS, is also a deterministic Y-labelled tran-
sition system. We are now ready to define controllers. As it will turn out, the
plant-controller interaction will be a much tighter version of the product operation.

For a transition system 7S = (Q, E, T, ¢in, ) we will say ¢ € @ is reachable from
Qin if ¢ = ¢ or there exists a non-null sequence of states qoq ...q, with ¢o = ¢;n
and g, = g and for 0 <4 < n, de € E : (g;,e,¢41) € T. Note that for any pair of
transition systems 7'S; and TS, all states of T'S1|| TSy are reachable.

Definition 2.5 Let 7S, = (Qu, Ey, T4, 47, ¢z), © € {p,c,s} be three transition
systems. Then T'S. is a controller for the pair (7'S,, T'S;) iff the following conditions
are satisfied: Let T'S,||TS. = (Q, E, T, ¢in, ¢)-

(CT1) E.=E, and ¢, = ¢,.

(CT2) (non-restricting) Suppose (gp, q) is in T'Sp|| TS and ((gp, ¢c), €, (45, 9c)) €T
and (gp, €1,¢,) € T, with ¢,(e) = @,(e1). Then there exists g; € Q. such that
((p, gc), €1, (a5, q7)) € T (and hence (qc, e1,q)) € Tc).

(CT3) (non-blocking) Suppose (gp,qc) is in TS,||TS. and (gp,e,q,) € T,. Then
there exists e, € E,, ¢, € @, and ¢, € Q. such that ((¢,,4c),e1,(q,9:)) €T
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(CT4) There is a simulation from Uf(TS,||TS.) to Uf(TSs). O

The condition (CT1) demands that the plant and the controller be tightly cou-
pled. There are no “autonomous” transitions either for the plant or for the controller.
Since the plant is deterministic on events, the controller observes everything that
the plant does and can determine the state of the plant by observing the sequence of
events it has executed. The condition (CT2) says that T'S. should restrict only the
system moves. If at a reachable state it permits one a-move then it should permit all
a-moves. The condition (CT3) requires that the controller should be non-blocking.
Stated differently, the controller should not introduce any new deadlocks in the
constrained plant behaviour. This condition also ensures that the problem does not
degenerate, as otherwise there is always a controller which restricts all system moves
and satisfies the specification.

The role of (CT4) should be clear. It says that the specification must be able
to simulate the controlled plant. This basically means that we can cater for simple
safety properties where the specification describes the tree of system moves allowed.
We could have defined the simulation direction the other way, i.e. demand that the
controlled plant must be able to simulate the specification. This will be a natural
way to capture liveness properties. However, in the controller synthesis problem
for such specifications, the notion becomes very weak because the controller will
have no useful role to play. It is easy to see that if the plant does not satisfy the
specification then no pruning of its behaviour (by a controller) will satisfy it.

Note that the controller need could have infinitely many states, even though the
plant and specification are finite-state.

In formulating (CT4), we could have used TS instead of Uf(TS,). The choice

of the latter is for the sake of uniformity.

Proposition 2.1 Let TS| and TS, be two transition systems. If there is a simula-
tion from TSy to Uf(TSs), then there is a simulation from TSy to TSs.

Proof Let TS; = (Qi, E;, T, ., 0:), where i = 1,2. Let f : TSy — Uf(TSs)
be a simulation. Then define g : Q1 UTy — Qo U Ty as follows: Let ¢ € (1
and f(q1) = (go,0') (where ¢’ € E3). Then g(¢1) = ¢o. Also, for a transition
t=(q1,e,q)) in Ty, let f(t) = ((g2,0), €, (gh,0€’)). Then g(t) = (go, €', qh). It is easy
to verify that g is a simulation from 7'S; to TS,. O
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Also,

Proposition 2.2 Let TS| and TS, be two transition systems. If there is a simula-
tion from TS to TSs, then there is a simulation from Uf(TS1) to Uf(TSs).

Proof Let TS; = (Q;, E;, T}, ¢, p;), where i = 1,2. Let f : TS; — TS, be a
simulation. Let TS! = Uf(TS;) = (Q, B!, T!,q¢.. ), where i = 1,2. We now
define g : Q) UT] — Q) UT,. Formally, we define, by induction on |o| (where
o € (E})*), the values of ¢g((¢,0)) and g((q,0"), e, (g1,0'e)) where o’e = 0. We also
inductively maintain the property that if g((¢,0)) = (¢’,0'), then f(q) = ¢'. Let
9((gin€)) = (gin,€) (note that f(gj,) = ¢7,). Now, let o € (E})* and (¢,0) € Q.
Inductively assume that g has been defined on (¢, ) and let g((¢q,0)) = (¢’,0"). Let
t=((g,0),¢, (q1,0€)) € T and f((g,e,q1)) = (¢", €', q1). But then f(q) = ¢". Since
inductively, g((¢,0)) = (¢',0), f(g) = ¢'. So, ¢’ = ¢" and f((g,;e,q1)) = (¢, ¢, q1)-
Set g(t) = ((¢,0"), €, (q},0'¢')) and g((q1,0€)) = (¢}, 0'¢’). It is now straightforward
to verify that ¢ is a simulation from Uf(T'S;) to Uf(TSs). O

Lemma 2.3 Let TS, and T'Sy be two transition systems. Then there is a simulation
from Uf(TS1) to TSo iff there is a simulation from Uf(TSy) to Uf(TSs).

Proof Follows directly from the Proposition 2.1 and Proposition 2.2 above and the
fact that Uf(US(TS1)) and USf(T'S;) are isomorphic. O

Lemma 2.3 shows that we could have as well used TS, instead of Uf(TS;) in
(CT4). However, in (CT4), we cannot instead demand that there is a simulation
from TS,||TS. to TS, or to Uf(TSs) — doing so would admit a smaller class of
controllers as we illustrate below. But it will be convenient to identify this smaller

class of controllers as well:

Definition 2.6 Let TS, = (Qu, Ey, Ty, 4%, 02), * € {p,c, s} be three transition
systems. Then TS, is a simple controller for the pair (T'S,, T'S;) if it satisfies
conditions (CT1), (CT2) and (CT3) of Definition 2.5 as well as:

(CT4') There is a simulation from TS,||TS. to TS;. O

A simple controller, however, is a controller as well:
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Proposition 2.4 Let TS, be a simple controller for (TS, TSs). Then TS, is a
controller for (TS,, TS).

Proof Follows directly from Proposition 2.2. O

We have defined the goal of the controller to be able to restrict the plant such
that there is a simulation function from the unfolding of the plant-controller com-
bination to the unfolding of the specification. We could have instead required that
there be simulation relation between the plant-controller pair (not its unfolding)
and the specification. Though this would have been the more conventional route to
take, we have chosen to take the present route because we feel that it is more trans-
parent. Moreover, our notion extends naturally to the concurrent setting considered
in the next chapter. In this extended setting the existence of a simulation function
between the unfoldings of two transition systems does not imply the existence of a
corresponding simulation relation between the two transition systems.

Let us now look at some examples:

Example 2.3

e —0 —0
ela ela
O C
£\ f'1b flb
O O
TS, TS} TS

It is easy to see that TS} is a controller (as well as a simple controller) for the pair
(TS,, TS,) — in fact, TS, || TS, is isomorphic to T'S;. Note that the event names in
the specification play no role — we will henceforth not show them in the diagrams
of specifications. We will also not denote the labels of events in the controller as it

will be the same as the labelling in the plant.
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Example 2.4

e e
&)
TS? TS? TS?

Again it is easy to see that T'S? is a “trivial” controller for the pair (T57, T'5?)
(trivial in the sense that TS>||TS? is isomorphic to 7S5). But note that that it is
not a simple controller. In fact, it is easy to see that this plant-specification pair
does not admit a simple controller. Thus demanding a simulation map at the level

of unfoldings admits a larger class of controllers in general.

Example 2.5

() a €1
b
c c f f
f
O b €2
753 Ts? TS?

In this example, note again that TS} is a controller for (TS}, T'S7). However
the controller is not a zero-memory controller in the sense that it does not simply
prescribe a particular move from a state of the plant but prescribes moves depending
on the history of interaction (it alternately schedules e; and ey from the same state
of the plant). In other words, the plant-controller product has more states than the

plant. It is easy to see that there is no zero-memory controller for (TS;’,, TS?).
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Example 2.6

(31 (SD)

f2 C f2 C fl b f1 b ¢ b fz fl
TS, TS: TS:

This example illustrates the fact that the controller needs to observe the events
(and not just the labels of the events) the plant executes. The controller in this
case schedules the events f; and fa depending on whether e; or es occurred (note
that e; and ep have the same label). It is easy to see that there is no controller for
(TS;L,, TS%) which can schedule events depending only on the sequence of labels of
actions that have been executed (i.e. there is no controller which is deterministic on
labels).

The following example will illustrate the branching nature of the specification.
The plant TS? is a vending machine which first asks the user to press a button b,
or by. Then it can serve either tea or coffee, and reset (the event r) and restart.
The events by and by are thus labelled with ask — the other events are pure plant
moves and they are labelled using the identity function. In the specification 757,
we show only the labels on the events — in this example, the specification demands
that the button which is pressed must determine whether coffee or tea is served. It
must not be the case that after a button is pressed, there is a possibility of both
coffee and tea being served. However, it cannot demand that the user can get tea if
he/she wants tea. We can demand such a specification in the bisimulation setting,

which we will discuss in Section 2.5.
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Example 2.7

restart

TS> TS;

A valid controller has to just disable either coffee or tea after by and by. Note
that it cannot disable both tea and coffee nor can it leave both enabled. But a
controller which serves coffee on both button-presses is also a valid one. It is easy
to see that there is no minimally restrictive controller, in the sense of one which
allows the maximum number of event sequences. This in fact also shows that such
specifications cannot be stated in the Ramadge-Wonham framework [RW89], as in
their setting minimally restrictive controllers always exist.

We conclude this section by stating one of the main results of this chapter. In
doing so and elsewhere we will say that a transition system TS is finite in case @) is
finite. In case TS is finite, its size — denoted |T'S| — is defined to be |Q| + | F|.

Theorem 2.1 Let (T'S,, TSs) be a pair of finite transition systems and m =
max(|7'S,|, | TSs|).  Then the question whether there exists a controller for
(TS,, TS) can be decided in time polynomial in m. Moreover, if a controller ezists,
we can construct one whose size is bounded by a polynomial in m. This construction

also takes time bounded by a polynomial in m. a

2.3 A good subgraph characterization

Our goal here is to characterize controllers in terms of objects called good sub-
graphs, which is a subgraph that satisfies some closure properties. This will lead to

a proof of Theorem 2.1. Given a pair of finite transition systems (T'S,, T'S;) we form
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an edge-labelled directed graph G, which is a restricted product of 7'S, and TS;.
We then show that (7'S,, T'Ss) admits a controller iff G5 contains a good subgraph.

Through the rest of the section we fix a pair of finite transition systems ( 7'S,, T'S;)
with TS, = (Qq, By, Ty @2, 02), © € {p, s}. Then the edge-labelled directed graph
Gps = (X, —) is given by:

o X =@ xQs
e - C X x (B, x Ey) x X is defined as:

(9p, ¢s) (e (9, q5) iff gp BN g, in TS, and g, N g, in TS, and @, (e) = @s(€').
We say that G = (Y, =) is a subgraph of G, iff Y C X and = C — N (Y x (E, X
E) xY).

Definition 2.7 Let G = (Y, =) be a subgraph of G,; = (X, —). Then G is said to

be good iff it satisfies the following conditions.

(G1) (Gin, Gin) €Y

(G2) Suppose (gp, gs) (e:(3’>) (¢, q5) and g, N q; in TS, with ¢,(e) = ¢,(e1). Then

(er,e}) :
Jel € E,qt € Qs : (gp,q5) = (g}, q}) in G.

(G3) Suppose (g,,qs) € Y and there exists g, — ¢, in TS,. Then there exists
q € Qp, q; € Qs, 1 € Ey, € € E such that (gp, q5) (engy) (¢, ;) in G. O

Proposition 2.5 Let TS, be a controller for (T'S,, TSs). Then Uf(TS.) is a simple
controller for (TS,, TS;).

Proof We first show a simulation from 7'S,|Uf(TS.) to Uf(TSs). Let f :
UF(TS,||TS.) — Uf(TS;) be a simulation. Define g : (TS, || Uf(TS.)) —
Uf(TS;) as follows: Let (gp,(q.,0)) be a state in TS, || Uf(TS.). It is easy
to see that then ((gp,q.),0) is a state of Uf(TS,||TS.). Define g((gp, (¢, 0))) =
f((gp,4c),0). Also, for a transition ¢ = ((gp, (¢, 7)), €, (¢, (q;, 0€))) in TS, || UF(TS.),
the transition t' = (((¢p,4c), ), €, ((¢5, ), o€)) is in Uf(TS,||TS.). Define g(t) =
f(t"). It is easy to verify that g is a simulation. By Proposition 2.1 it follows that
there is a simulation from TS, ||Uf(TS.) to TS,. O
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Lemma 2.6 Suppose TS is a simple controller for (TS,, TSs). Then Gps contains
a good subgraph.

Proof Let TS, = (Qc, E¢, T¢, ¢, ¢c) and TS = TS, || TS. = (Q, E, T, gin, ¢). Let f
be a simulation from TS to T'S;. We now define the subgraph (Y, =) of G5 induced
by f as follows.

o (gp,qs) € Y iff there exists (¢p,¢.) € @ such that f((gp,q.)) = ¢s for some
gc € Qc.

(e,€)

o (¢p,qs) = (g5, q;) iff there exists t = ((gp, ¢c), €, (4, q;)) € T such that f(t) =
(gs, €, QQ) for some ¢., g, € Q..

We claim that (Y, =) is a good subgraph of G,,. The property (G1) follows from
f((¢f, 45n)) = 45, Which in turn implies (g;,, g;,) € Y.

To verify (G2), assume that (g,,¢;) (ee) (¢,,4;) and that g, N gy in TS,
with ¢,(e) = ¢p(er). From the definition of =, it follows that there exists ¢t =
((9p,4c)- e, (a5, 4.)) € T with f(t) = (gs, €', q,), for some g.,q, € Q.. Since TS, is a
controller, by property (CT2), it follows that ¢, = ((gp, ¢c), €1, (q;, ql)) is a transition
in TS for some ¢! in Q.. Let f(t;) = (gs,€},q.). Then by the definition of = we
are assured that (gp, ¢s) () (¢p, q;)- This establishes (G2).

Let us now prove (G3). Let (gp,q) € Y and g, — @,. Then 3Jg. €
Qc : f((g,q)) = gs- By (CT3), there exists e; € E, and q; € (), such that
(gp-e)- €1, (ah, 01)) € T Let £(2) = (g, ¢}, a})- Then (gp,0,) =¥ (g}, ).

O

Lemma 2.7 Suppose TS, is a controller for (TS,, TS;s). Then Gps contains a good
subgraph.

Proof If TS, is a controller for (TS,, TS,), then by Proposition 2.5, Uf(TS,) is
a simple controller for (7'S,, T'S;). From Lemma 2.6 it follows that G, has a good
subgraph. O

As a first step towards proving the converse of Lemma 2.7 we first show that if
G,s contains a good subgraph then in fact it contains a good subgraph of a restricted
kind.
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Lemma 2.8 Suppose G, contains a good subgraph. Then it contains a good sub-

graph (Y, =) which satisfies the following condition.

(e.€) (e.€))

Suppose (qp,qs) =% (45, qs) and (gp,qs) = (q,,4;). Then e’ = e
qy = qs.

" and hence

Proof Let (Y1,=1) be a good subgraph of G,;. Then we set ¥ = Y; and fix a

linear order < over E,. Define now = to be the least subset of =; which satisfies:

Suppose  ((¢p, ¢s), (e,€'),(qy,q5)) € =1 and there does not exist

((p,45), (e €"), (g5, 45)) € =1 with " < €. Then ((¢p,¢)), (e, €), (g5, 43)) €
=.

Hence, at any state, for an event e € E,, we keep only one representative edge of
the kind (e, €’) outgoing from the state. It is now easy to check that (Y,=) is a
good subgraph of G, having the desired property. O

We will say that a good subgraph of G,s is s-deterministic (“simulation-
deterministic”) in case it satisfies the condition specified in the statement of
Lemma 2.8.

Let G = (Y, =) be an s-deterministic good subgraph of G,;. We now define the
structure TSS = (Qe, B¢, Te, ¢5,, ) induced by G as follows. It will turn out that
TS¢ is a controller for (TS,, TS,).

e Q=Y and E, = E, and ¢, = @p.
o T.={((4p: ¢5): € (a0, 4) | 3¢ € Es 2 (g, 45) = (2,9}
® Qi = (Gins Gin)-
Lemma 2.9 TS¢ is a deterministic X-labelled transition system.

Proof Suppose ((¢p,9s),¢, (4, 4;)) € Te and ((gp, ¢s), €, (g}, ¢4)) € Te. Then there
. (e,€!) (e€) .

exist (gp,qs) = (q,,¢;) and (gp,95) = (qp,4:) in G = (Y,=). Clearly ¢, = ¢,

because TS, is a deterministic X-labelled transition system. On the other hand,

e/ = ¢€" because G is s-deterministic and hence ¢, = ¢ since TS is deterministic.

|
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Proposition 2.10 Let (gp, (q,,4s)) be a state of TS,|| TSE with 4, Gy € Qp and
gs € Qs. Then g, = g, O

Hence any state of TS,|| TS is of the form (g, (gp, g5))-

Lemma 2.11 TS? is a controller for (TSy, TSs). Hence, if Gps contains a good
subgraph then there is a controller for (TS,, TS;).

Proof We will in fact show that TSCG is a simple controller (and hence by Propo-
sition 2.4, a controller) for (TS,, TS,). Let TS = TS,||TS¢. (CT1) holds by
definition of T'S€.

Let us now show (CT2). Suppose (qp, (g, ¢5)) is astate of TS and (g, (gp, ¢5)) —
(¢p; (g, q5)) in TS. Suppose further that g, A qll, in TS, with ¢,(e) = ¢p(e1). So
(0, ¢5) — (g}, q}) is in TS which means that there is an e € E, such that

(@p, qs) (e:e>) (¢, ¢5) in G, the good subgraph we started with. Since g, N q; is in

TS, from property (G2) it follows that e} € E; such that (g, gs) () (¢p,4;) isin
G. This implies that (g, ¢;) — (gp,4;) isin TS¢ and (g, (g5, ¢5)) — ()
isin TS.

To show (CT3), let (gp, (¢p,qs)) be a state in TS and g, — q; in TS,. Then
(gp,qs) € Y and by property (G3), we know that there is an edge of the form

(e1,€) 1

(ap,9s) =" (,,4.) in G. Hence (gp, q;) i (q,,q;) is in TSE and (gp, (¢p, gs)) —
(a0, (a5, 95)) is in TS.

In order to show (CT4'), let us exhibit a simulation from TS to TS,. Let f :
TS — TS, be defined as follows. For a state (gp, (¢p, ¢s)), define f((gp, (¢p,¢s))) = gs-
Let t = ((¢p, (9p,95)) € (4, (g5, 9;))) be a transition in 7'S. Then there is an e’ € E,
such that (gp, ¢s) (e:e;) (¢,,¢) in G (since G is s-deterministic, this e’ is unique).
Define f(t) = (¢s,€’,4¢.). It now easily follows that f is a simulation from 7S to
TS,.

Hence T'S¢ is a simple controller for (7S, T'Ss). By Proposition 2.2, it is a
controller for (T'S,, T'S;) as well. O

Theorem 2.2 There is a controller for (TS,, TS;) iff Gps has a good subgraph. O
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2.4 The synthesis procedure

We develop here a proof of Theorem 2.1. We know from Theorem 2.2 that
deciding whether the pair (7'S,, T'S;) admits a controller boils down to deciding
whether or not the graph G, contains a good subgraph. We establish in two steps
that good subgraphs can be efficiently found.

Theorem 2.3 There is a uniform decision procedure which takes as its input a pair
of finite transition systems (TS,, TS;) and decides whether or not the edge-labelled

directed graph Gps (as defined in the previous section) contains a good subgraph.

Proof We set Gy = G,s and construct a sequence of graphs Go, G, ...Gy up to
a stage where G,, = G,11. For every i € {0,...n}, G;;1 will be a subgraph of G;.
This pruning procedure will remove edges or vertices which evidence violations of
properties (G2) or (G1) of a good subgraph. Then testing G,, for a simple prop-
erty (whether (¢%,,¢5,) € G,), we will decide whether or not G,s contains a good
subgraph.

Assume that Gy,...,G;, @ > 0 have been constructed. Let TS, =
(Qu, By Ty, 43, 1), © € {p, s}

Now, G;41 is obtained from G; by applying one of the following pruning steps
to G;. If neither of these two steps can be applied to G; then we set G;;; = G; and
stop.

(i) Let G; = (Xi, —). Suppose (q1,¢2) € Xi, (q1,€1,4]) is in T, but there is no
(€},¢e5) € E, x Eg such that (g1, ¢2) (el—’e§) (q1,¢5) in G;. Then remove (g1, go)
from X; and all edges coming into (g1, ¢2). Let the resulting graph be G;41.

(e1,e2)

(ii) Suppose (q1,¢92) — (¢, ¢5) is an edge of G; and (qi,€,q}) is in T, such
that ¢,(e1) = @p(e}). Further, suppose that there is no edge of the form
(e1,€5) .
(q1,02) — (q!,¢y) in G;. Then remove the edge ((q1,42), (e1,e2), (¢}, q5))
from G; and let the resulting graph be G, ;.

Clearly G;;1 = G; (in which case we stop) or G, is strictly smaller than G;.
Since G is finite this pruning procedure must stop after a finite number of steps.
Let n be the least integer such that G,, = G,41 and let G,, = (X,,, —).

Claim: G, contains a good subgraph iff (¢}, ¢,) € X,.
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To see that the claim holds, suppose G contains a good subgraph G. Then,
by induction on n, is is easy to prove that G, must also contain G as its subgraph.
Thus (g5, 4;n) € Xn-

Next suppose that (¢f,¢;,) € X,. From the fact that no pruning rule is appli-
cable on G, it follows at once that G, is a good subgraph of G,s. This establishes

the claim and the theorem. O

Corollary 2.12 Let TS, = (Qp, Ep, Ty, a5y, p) and TS = (Qs, Es, Ts, 45, vs) be a
pair of finite transition systems. Let |Qp| = n1, |Qs| = no, |E,| = k1 and |Es| = ko.
Let m = max{ny, ng, k1, ka}. Then in time polynomial in m, one can decide whether
or not (1'S,, TSs) has a controller.

Proof Due to Theorem 2.2, it suffices to prove that in time polynomial in m one
can check whether or not G, contains a good subgraph. Now consider the decision
procedure developed in the proof of Theorem 2.3 for achieving this.

Gy = Gps has at most n; - ng vertices and n?-n3-ky - ky edges. One can compute
Giy1 from G; in time which is linear in the size of G;. Each G, is smaller than G;.

Hence the decision procedure will terminate in at most n? - n3 - k; - ko steps. O

Corollary 2.13 Let TS, = (Qp, Ep, Tp, &b, p) and TSs = (Qs, Es, Ts, ¢, ¢s) be a

pair of finite transition systems. Let m be defined as in the previous corollary.

(i) If (TS,, TSs) has a controller, then it has a finite controller of size at most

n%n%kle

(i) Such a controller, if it exists, can be computed in time which is polynomial in

m.

Proof Again referring to the proof of Theorem 2.3, let n be the least integer such
that G,, = Gp41. Assume that G,, = (X, —,) and that (¢%,,¢5,) € X,,. We know
from the previous corollary that G, is of size at most n? - n3 - k; - ko and that G,
can be computed in time which is polynomial in m.

Now suppose G,, = (X, =) has the property (¢5,,¢;,) € X,. Then following
the proof of Lemma 2.11 one can extract a controller TSS for (TS, TS;) (see page

26) in time which is linear in the size of G,,. 0
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2.5 The bisimulation setting

We show in this section that Theorem 2.1 goes through even if we replace sim-
ulations by the stronger notion of bisimulations. Let us first define bisimulations
[Mil80).

Definition 2.8 Let TS; = (Q;, Ei, T}, 4%, i), i = 1,2, be a pair of (deterministic
Y-labelled) transition systems. A bisimulation between 7'S; and TS, is a relation
R C Q1 x Q)2 which satisfies:

e (¢, 49,) €R.

e Suppose (q1,¢2) € R and ¢; = ¢j is in T'S;. Then there exists a transition
¢ —2 gy in TSy such that (q},¢5) € R.

e Suppose (q1,¢2) € R and g == ¢ is in T'S;. Then there exists a transition
q1 3+ ¢y in TSy such that (g, ¢5) € R. O

We say that T7'S; and TS are bisimilar in case there is a bisimulation between

them. Clearly, bisimilarity is an equivalence relation. In fact, we have:

Proposition 2.14 Let TS; = (Qs, E;, T}, q.,,, ©;), where i = 1,2,3 be three transi-
tion systems. If Ry is a bistmulation between TS| and TSy and Ry is a bisimulation
from TSy and TS5, then Ry - Ry is a bisimulation between TS, and TS3. O

In the above proposition, R; - R, stands for the composition of the relations
R; and Ry, i.e. (q1,q3) € Ry - Ry iff there is some g, such that (qi,¢2) € R; and
(g2, 43) € Ro.

It is also clear that every transition system is bisimilar to its unfolding. Hence we
can work with bisimulations between transition systems rather than between their

unfoldings.

Definition 2.9 Let 7'S;, © € {p,s,c} be three transition systems. Then TS, is
a strong controller for the pair (75, T'Ss) iff TS, satisfies the conditions (CT1),
(CT2) of being a controller (Definition 2.5) and T'S,|| TS, is bisimilar to T'S,. O

Note that we have dropped the non-blocking property (CT3). In the setting of

simulations, we were capturing safety properties only and thus required that the
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controller should not introduce any deadlocks. However, in the bisimulation setting,
we can capture liveness properties as well. In particular, the specification could
demand that the plant should halt at some specified states.

Consider Example 2.7 (page 22) and view this as a new example where the spec-
ification intended as a bisimulation specification. The specification now demands
that after a button is pressed, the possibility of serving both tea and coffee does not
exist, as in the simulation setting. Further, it demands that there must be a way the
user can get tea and a way in which he can get coffee. A controller which serves only
coffee on pressing either button will satisfy the specification in the simulation setting
but not in the bisimulation setting. A controller in this setting must enable coffee
(only) on one input and tea (only) in the other. It is easy to see that a minimally
restricting controller does not exist in this setting as well.

The synthesis problem now is the following: Given a pair of finite transition
systems (7'S,, TSS;), is there a strong controller for this pair? It will be convenient

to solve this problem while assuming that 7T'S is reduced with respect to bisimilarity:

Definition 2.10 Let 7S = (Q, E, T, gin, ©) be a transition system. Then TS is

said to be reduced (w.r.t bisimilarity) iff the following conditions are satisfied:
(i) {R| R C @ x @ is a bisimulation} = {idg} where idg = {(¢q,q) | ¢ € @}
(ii) Suppose ¢ == ¢’ and ¢ =% ¢'. Then e; = e;. O

The next observation shows why it is convenient to work with reduced transition

systems:

Proposition 2.15 Let TS; = (Qi, E;, Ti, gk, i), © = 1,2, be a pair of transition
systems such that TSs is reduced. If =~ is a bisimulation between TS, and TS,

then it must satisfy the following properties:
(i) If 4 = g2 and q1 = ¢, then gu = ¢5.

(%) If ¢ = ¢ and ¢ = ¢y, then there exists a unique e; € E; : ga =2 g5 and
!

Y
Proof Consider ~'= (~! . =), the composition of the inverse relation of =
with ~. Le., (g2, ¢)) € &' iff there is a ¢; € @, such that (¢1,¢2), (¢1,93) €~. The

it is clear that ' is a bisimulation from TS, to itself. If ¢ ~ ¢, and ¢; ~ ¢,
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then go &' ¢, which implies that ¢o = ¢4 (since TS is reduced). Now let ¢; =~ ¢o,
0% ¢, a2 -2 gh, 22 ¢ and ¢ ~ g, ¢, ~ ¢ By (i) we know that ¢) = g}.

By definition of reduced transition systems, it follows that e; = e5. a

Through the rest of this section, we fix a pair of finite transition systems (7'S,, T'S;)
with TS, = (Qu, Bz, Ty, ¢, 02), * € {p,s}. We recall the definition of the edge-
labelled directed graph G and the associated terminology developed in Section 2.3.

Definition 2.11 Let G, = (X, —) and G = (Y, =) be a subgraph of G;. Then G

is a strong subgraph of G, iff the following conditions are satisfied:
(BSO) (¢n: @in) €Y

(BS1) Suppose (gp,gs) (e (¢ ;) is in G and g, =2 q, is in TS, with ¢p(e;) =
©p(ez). Then there exists (gp, gs) (e (¢y,9%) in G (for some e} € Ej, g} €
Qs)-

(BS2) Suppose (g,,¢s) € Y and g, T ¢, isin T'S,. Then there exists (g, ¢s) (gﬁ)
(¢, ¢;) in G (for some e; € Ey, and g, € Q).
(e.€) .
(BS3) Let (¢5,q5) € Y and Ey, 4, = {(e, €) [ 3(gq;, q5) : (9, 95) = (g, ;) is in G}
Then there exists I' C F,_ , satisfying:
(i) If (e1,€}) € E,, 4., then there exists e; € E, such that (ey,e]) € T
(ii) If (e1,€}) € By, 4., then there exists €}, € E; such that (e;,e5) € I.
(iii) If (e, ¢€}), (e1,€5) € T, then €] = €. O
Our aim now is to show that (7'S,, T'S;) admits a strong controller iff G, con-

tains a strong subgraph.

Lemma 2.16 If there is a strong controller for the pair of finite transition systems
(TS,, TS), where TS is reduced, then G,s has a strong subgraph.

Proof Let TS, = (Q., E., T¢,q.,, ¢.) be a strong controller for (TS,, T'S;). Let
TS| TS, =TS = (Q, E, T, gin, p). Let & C Q x Qs be a bisimulation. Now, define
G = (Y,=), a subgraph of G, as follows:

b (qpaQS) eY iff EIQC € Qc : (QpaQC) ~ Qs
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(e1,€})

* (4p,9) = (q,9) lff e, ¢, € Qe : (@p, @) = G5, (ap,ac) — (¢, ) € T,
ealer) = pu(el), s — ¢, and (4, 40) = g,

Claim G is a strong subgraph of G,.
Since (@ins @in) = Gin> (@i Gin) €Y -

Now suppose that (g,, ¢s) (g) (gp;q5) is in G and g, N qg is in TS,, with
pple1) = pples). Then e, € Qc ¢ (G, ) = s, (Gpr ¢e) — (qp,qc) is in T8,
(2, 9z) ~ ¢; and g, —> ¢, is in TS,. Since TS, is a controller, (g,,g.) —> (qp,qc)

is in 7'S (by (CT2)). Since = is a bisimulation, 3e}, : ¢, 4, q), ps(eh) = @plea)

(e2,¢5)

and (q,,q;) ~ q;. Hence (gp,q;) =" (q,,¢;) is in G. This establishes (BS1).

Now suppose (qp,qs) €Y and ¢, — ¢\ is in T'S,. Then 3q. € Q. : (¢p, %) ~ Gs.

(e1,e)
Hence 3e; : (g5, ¢) — (¢),¢.), (4}, ¢%) ~ ¢, and p,(e1) = @s(€}). So (gp, qs) ==

(gy,q) is in G. This shows (BS2).

To show (BS3), let (gp,¢5) € Y and let E, 4 be as defined in the condition.
Fix some ¢. € Q. with (¢,,¢.) =~ - Then define I' = {(e1,€}) | ppler) =
os(e), (2, qc) — (¢,q.) in TS, q; A, ¢, in TS, and (g,,q.) ~ ¢,}. Clearly
F g EQP}QS'

If (e1,€}) € Eqp,qs, then g, —» ¢’ is in TS, (for some ¢, € Q,). Since (g, ) ~
s, 3ez 1 (ap, qc) — (@), @L), Pple2) = @s(€h), (¢),q.) ~ .. Hence (ez,€}) € . This
shows BS3(i).

Let (e1,€1) € Ey,q,- Then 34, ¢ - (qpazlvc) ~ Qs (Qpaqc) (qp7qC) in T,
gs - ¢, in TS, and (¢, q,) =~ ¢, Since (¢p,qc) = g5, Jez : (ap, qc) — (q),qY) in
TS such that @,(e2) = @,(e]) = py(e1) and (g,,q;) ~ ¢;- Since TS, is a controller,
dp = q;, and @p(e1) = gple2), 3¢ : (gp,q) — 5 (qp’qc) Then Je; : gs = ds
pple1) = ps(ey), (g5,9:) ~ q;. Then (e, e5) € I'. This proves BS3(ii).

Now let (e, €)), (el, ey) €T Then there are transitions of the form (g,, q.) —
(¢,qc) in TS, g g 5 ¢ in TS, and gy(er) = u(eh) = @uleb),
(g,,9.) ~ ¢, (q,,9.) = g;. By Proposition 2.15, since TS, is reduced, we know
that e} = el. O

Lemma 2.17 Suppose (T'S,, TS) is such that TS is reduced and G, has a strong
subgraph. Then there exists a strong controller for (T'S,, T'S;).
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Proof Let G = (Y,=) be a strong subgraph of G,s. For each (¢,¢') € Y, let us
fix al,, C E,, satisfying the condition (BS3). Consider the following transition
system: TS, = (Qe, Ec, T¢, ¢5,, ©c) given by:

e ().=Y

L4 Ec:Ep;(Pc:(pp

—

e,e')

e ((qpaq.S’): ¢, (Q;)vqfs)) € TC iff Ele, € ES : (evel) € qu,qs and (CIp:qS) = (Q;)7Qfs) in
G.

o g = (g, 95,)-

Let us now verify that TS, is a strong controller for the pair (7'S,, T'S;).
If (gp,qs) — (q,,9;) and (gp, gs) = (¢y,4%) in TS, then ¢, = q, (since TS, is

(e,€)

deterministic) and there exist ¢’, e” € E; such that (e, €'), (e,€") € T'g, 4., (@p,45) =
(q,,q;) and (gp, gs) (e’:e’;) (q,,4)- Since TS, is deterministic, ¢; = ¢;. Hence TS, is
deterministic. Also, (CT1) is true by definition of T'S..

Let TS = TS,||TS.. First, it is easy to see that every state of T'S,|| TS, is
of the form (g,, (¢p,qs)) where ¢, € @, and ¢; € Q,. Let us verify (CT2). Let

(%, (@, ¢5)) — (45, (g, q:)) in TS. Let g, TN gy in TS, with p,(e) = @,(e1).
(e,e)) (e1,€})

Then (gp,9s) = (g5, ¢;) is in G (for some ¢’ € E,). By (BS1), (¢p,9:) = (q;,44)
is in G (for some €| € Ej, q; € Q,). Hence (e;,€}) € E,, 4. By (BS3)(ii), Je}, € E, :

(e1,€3) € Ty, q4,- Hence (gp, gs) (gé) (5 ¢?) is in G for some ¢? € Q,. By definition
of TSe, (gp, qs) — (q},¢?) is in TS,. Hence (gp, (¢p, 4s)) — (q}, (q), ¢2)) is in TS.

All that remains is to show that TS is bisimilar to T'S,. Let &~ be defined
as follows: for every state (gp, (¢p,¢s)) in TS, let (gp, (¢p,qs)) ~ ¢s. Let us show
that = is a bisimulation by verifying properties listed in Definition 2.8. Clearly,
(0> (00> Gn)) & G-

Let (¢p, (¢p,4s)) =~ ¢s and (gp, (¢, 95)) — (g, (¢), ) be in TS. Then by
(BS3)(ii), de’ € E; : p(e) = p(€'), (e,€e') € I'y, 4, and hence (gp, g5) (ee) (g, q5)- So,
qs N q, is in TS, and (q,, (q,,4.)) ~ q.-

Now let (gp, (¢,9s)) ~ ¢s and g AN q;- By (BS2), Je € E,,q, € Qp :

(esel) (e2,e')

(%, (@, 45)) = (4, q;)- Now by (BS3)(i), Jez € Ey : (e2,€') € T Let (gp,q5) =
(¢), ). Then (g, (¢p,05)) — (¢}, (¢, ¢;)) and (¢, (42, q)) =~ d. O
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We now wish to show that the existence of a strong controller can be decided
in polynomial time. As a first step we will observe that assuming the specification

transition system is reduced involves no loss in generality.

Lemma 2.18 Let TS = (Q,E, T, gin, ) be a finite transition system. Then in
time polynomial in | TS| one can construct a reduced transition system TS' which is
bistmilar to TS.

Proof This observation follows easily from the polynomial time algorithm for check-
ing bisimilarity of two finite transition systems due to [KS83].

To be specific, we set Ry = ( X @Q and construct a sequence of relations
Ry, Ry, ... R, till R, = R, and then stop. Assume inductively that Ry, Ry,... R;
have been constructed. We define R; ; to be the relation obtained by applying one
of the following pruning steps to R;. If neither of the two steps can be applied to
R;, then we set R;,1 = R; and stop.

e Suppose (¢,¢') € R; and ¢ -5 ¢; is in T but there is no ¢ — ¢} in T such
that ¢(e1) = ¢(€}) and (¢1,¢}) € R;. Then R;11 = R; \ {(q,¢)}.

e Suppose (¢,¢") € R; and ¢ T ¢, is in T but there is no ¢ —» ¢, in T such
that ¢(e1) = ¢(e}) and (g1, ¢1) € Ri. Then Ry = R\ {(¢,¢)}-

Since Ry is a finite set and R;;; = R; (in which case we stop) or R; 11 C R;, this
procedure will terminate after at most |@ X Q| steps. Let n be the least integer such
that R, = R,,1. It is easy to check that R, is an equivalence relation. For ¢ € @,
let [g] be the R,-equivalence class containing gq.

It is now easy to see that R,, will be a bisimulation between TS and itself. Also,
if & C Q x (@ is a bisimulation between TS and itself, then ~ C R,,.

Next we fix a strict linear order < on E. We now define TS' = (Q', E',T",q,,, ¥')

via:
¢ Q=Q/R,={lq] | ¢ € Q}
e B=E ¢ =9

e ([g],e,[¢']) € T' iff there exists (¢1,¢€,q;) € T such that ¢; € [¢] and ¢} € [¢]
and furthermore, if (p,€’,p') € T with p € [¢] and p’ € [¢'] and p(e) = ('),

then e =€’ or e < €.
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® i = [Gin]
It is easy to verify that 79" is reduced and that T'S and T'S" are bisimilar with

{(¢,[q]) | ¢ € Q} being a bisimulation. It is also easy to verify that |TS'| < |TS|
and that TS" can be computed in time polynomial in | 7'S|. a

Theorem 2.4 There is a uniform procedure which takes as input a pair of finite
transition systems (TSp,, TS;) and decides whether or not (TS,, TS;) admits a

strong controller.

Proof Due to the previous lemma, it involves no loss of generality to assume that
TS is reduced. It now follows from Lemmas 2.16 and 2.17 that it suffices to decide
whether or not G,; contains a strong subgraph. This can be achieved by constructing
a sequence of graphs Gy, G4,...Gyy1 such that each G; is a subgraph of G, and
each G;y1 a subgraph of G; with Gy = G,s and Gy, = Gp41. Assume inductively
that Gl,...G; have been constructed. We now obtain G;;1 by applying one of the
following pruning steps to G;. If none of the pruning steps can be applied we set
Gi+1 = G and stop.

Let G; = (X;, —).

(PR1) Suppose t = ((¢,¢'), (e1,€}), (q1,4})) € —; and there exists (g, e2,q2) € TS,
with ¢,(e1) = ¢p(e2). Further suppose that there exists no edge in —; of the
form ((q,q"), (e, €5), (¢g2,¢5)). Then remove the edge ¢ from —; and set G4
to be the resulting graph.

(PR2) Suppose (¢,q') € X; and ¢ e ¢i is in T but there is no edge of the form
q,9"), (e1,€)),(q1,4¢;)) in —;. Then remove (q,q¢’) and all its incoming and
(( 1 1 g
outgoing edges from G; and define G;;; to be the resulting graph.

(PR3) Let (¢,q") € X.
Let B} , = {(e1,€})) | g2, 05) : ((¢,4), (e1,€)), (g2, ¢5)) isin —;}. Suppose
every I' C E} , fails to satisfy at least one of the conditions BS3 (i), (ii) and
(iii). Then remove (g, ¢’) and all its incoming and outgoing edges and define

Gi+1 to be the resulting graph.

Since Gy is finite, this procedure will terminate after a finite number of steps.
Let n be the least integer such that G, = G,41. Let G,, = (X, —=,). Now it is easy
to show that G, contains a strong subgraph iff (¢}, ¢¢,) € X,.
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First, if (¢f,, ¢;,) € X, it is clear that G}, is a strong subgraph of G, as the fact
that (PR)(1)-(3) are not applicable means that G, satisfies (BS)(1)-(3).

To prove the converse, let us assume that G, has a strong subgraph G. We can
inductively prove (by induction on 7) that G is a subgraph of G;. It would then
follow that since (q,,¢;,) is in G, it would be in G, also. The induction goes as
follows.

Clearly, G is a subgraph of Gy = G,s. Now assume inductively that G is a
subgraph of G;. If pruning step (PR1) or (PR2) is applied, it is easy to see that G will
be a subgraph of G;;;. If (PR3) is used, let the pruned node be (g, ¢'). To prove G is
a subset of G, 1 it suffices to prove that (¢, ¢') ¢ G. Assume the contrary. Then since
G is a strong subgraph, it satisfies (BS3) for the node (¢,¢') — let I' C E, , be a set
which satisfies (BS3)(i)—-(iii) with E, ¢ = {(e,€') | (g2, ¢5) : ((¢,4"), (e, €'), (g2, ¢5))
isin G} C E .

Now it is clear that T' C E} ,. We will show that I" in fact satisfies (BS3)(i)-(iii)
for the node (g,¢') in G;.

Let (e, e') € E;’q,. Then there must be a transition ¢ N gy in T. Since G is a
strong subgraph, by (BS2), Je; : (q,¢") eney (q1,¢}) is in G. Hence (e, €') € E,q.
By (BS3)(i) for (¢,q') in G, Jes : (e, €') € I'. This shows (BS3)(i) for (¢,¢') in G;.

Let (e,€') € E;,q,. Then, as argued above, Je; : (¢, ¢) L (g1,q)) is in G. Since
wp(e) = py(er), by (BS1), Jej : (q,4") o (q2,¢5) is in G. So, (e, €,) € E,; 4. Since
G is a strong subgraph, by BS3(ii), Je} : (e, e3) € I', which shows BS3(ii) holds for
G;.

Also, since T satisfies BS3(iii) for G, it also satisfies it for G;.

This shows that the conditions for using (PR3) is not met, which contradicts our

assumption. Hence (g¢,¢") ¢ G and hence G is a subgraph of G, ;. a

Corollary 2.19 Let (TS,, TSs) be a pair of finite transition systems with |Q,| =
Ny, |Qs| = ns, |Ey| = kp and |Es| = ks. Let m = max{ny,ns, ky,ks}. Then in
time polynomial in m, one can decide whether or not (TS,, TSs) admits a strong

controller.

Proof By Lemma 2.18, we can construct in time polynomial in m, a reduced
transition system 7S’ such that 7.S; and TS’ are bisimilar. We can now supply

(TS,, TS") as input to the decision procedure presented in the proof of Theorem 2.3.
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This procedure will take time only polynomial in m. To show this, the only nontrivial
part is to show how rule (PR3) can be implemented in time polynomial in m. We
do this by showing a reduction to the mazimal matching problem.

For an undirected bipartite graph G = (S, S2, A) where S; and S, are sets of
vertices and A C S; x Sy, a matching for G is a set X C A such that for any vertex
s € §1US,, there is at most one edge in X that is incident on s. A matching X
of G' is a maximal matching if it is a matching of maximum cardinality — i.e. for
every matching X' of G, |X'| < |X|. The problem of finding a maximal matching
of a given graph is a well-studied problem and can be solved in time polynomial in
the size of the given graph [CLR92].

Let G; = (X, —;) and (¢,¢") € X;. Let E, , be defined as before. Consider the
bipartite (undirected) graph (Si, Sz, A) where

o Si={ei|des: (e1,e2) € Egg}
o Sy ={ey|des:(e1,e2) € Epy}
e A= Eq,q’

We now claim that there is a I' satisfying the conditions (BS3)(i)—(iii) iff there
is a matching for (Si, Sy, A) of size |Sy|. Let I' be a subset of E,, that satisfies
conditions (BS3)(i)—(iii). For each e; € Sy, we know by (BS3)(i) that there is an
edge of the form (e}, €}) in I'. Pick one such edge for each e, € F and call this set
X. |X| = |Ss|. Let (e1,eq),(€],€,) € X. If e; = €}, then by (BS3)(iii) we know
that eo = €. If eo = €}, then from the way X was formed, e; = ¢}. Hence X
is a matching of size |S,| and is clearly a maximal matching. Conversely, assume
X C E,y is a matching of size |Ss|. Clearly, for each e; € Sy, there must be exactly
one edge of the form (e, e5) in X. Let I' O X be formed by expanding X by adding
precisely one edge of the form (ey, e2) of E, , for each e; € S; where there is no edge
of the kind (eq,e) € X. Clearly, I' satisfies (BS3)(i)—(iii).

Since the size of the maximal matching of a given graph can be found in poly-
nomial time, we can implement (PR3) in polynomial time. In fact, we can solve
the maximal matching problem by reducing it to the max-flow problem and use the
Ford-Fulkerson method ([EK70, CLR92]) to get a maximal matching in polynomial
time, from which we can get a witness ['. These witnesses will be useful in con-

structing the controller. O
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Corollary 2.20 Let (TSy, TSs) be a pair of finite transition systems with m defined
as above. Then (TSy, TS;) admits a strong controller iff it admits a strong controller
of size at most a polynomial in m. Moreover, such a controller can be constructed

in time polynomaial in m.

Proof Using the decision procedure presented in the proof of Theorem 2.4, once
can compute a strong subgraph of G, if one exists, in time polynomial in m. We
can synthesize a strong controller from the strong subgraph as shown in the proof

of Lemma 2.17. Clearly, the size of this controller will be at most polynomial in m.
O

2.6 Conclusions

In this chapter we have studied the controller synthesis problem in a branching
time setting. We started with a simple notion of branching time specifications,
namely simulations, which can capture simple safety properties. We then considered
bisimulation specifications, which can express liveness properties as well, and are a
natural extension to simulations. In both instances we have established polynomial
time decision procedures as well as polynomial time synthesis procedures which
produce polynomial sized controllers whenever controllers exist.

A considerable amount of knowledge is available about the control-synthesis
problem in the linear time framework. Here the behaviour of the plant will consist
of Lp, a suitable collection of (finite or infinite) sequences. One then specifies the
desired behaviour by another collection of sequences Lg. The problem then is to
come up with a controller such that Lpe C Lg where Lp¢ is the constrained language
generated by the plant-controller combination.

As for branching-time specifications, the supervisory control synthesis problem
has been studied in a branching time setting using the failure semantics model of
processes [Ove94, Ove97]. A pre-order relates the behaviour of the plant-controller
to the specification. However their setup is very different. In their setting, the
nondeterminism arises due to abstraction and not due to the hiding of the envi-
ronment’s actions. Consequently, their controllers cannot distinguish between the
nondeterministic choices made in the plant. In our setting the nondeterminism (on

the labels of events) is purely due to the hiding of the environment’s responses and
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the controller can discern between the nondeterministic choices made. A nice feature
of [Ove97] is that it deals with partial descriptions via the use of internal events.
Extension of our work to handle partial descriptions is yet to be achieved.

There is a neighbouring body of work (see for instance [JL91], [LX90]) which has
a similar flavour as the controller synthesis problem and uses techniques similar to
those we discuss in this paper. This body of work has to do with equation solving in
a process algebraic domain. The simplest problem setting is one where one is given
a system A and a specification B both presented as terms in a process algebra, say
CCS. The problem is to come up with a CCS term X such that A|X is bisimilar
to B. To consider an extreme example, suppose A is the process nil which does
nothing. Then X = B will be accepted as solution to the equation A|X = B. Thus
the crucial difference between the work reported here and the work on equation
solving in process algebras is that our controllers — unlike the unknown term X in
the process algebra setting — can only restrict the behaviour of the plant; it is not
allowed to contribute any new behavioural possibilities.

Our results can be extended in a number of ways. To mention just a few, one
could consider plants with internal events and also controllers with internal events.
In the case of controllers with internal events one will have to deal with refinement
maps instead of simulations and one will have to deal with weak bisimulations instead
of (strong) bisimulations.

A natural extension of this work is to consider the problem where we can handle
specifications written in branching-time logics such as CTL, V-CTL, CTL*, etc. It
is hard to pin down a nice logic (say as a sub-logic of CTL) which will capture
the notion of simulation/bisimulation we have considered. A related work is [AM95]
where the branching time temporal logic CTL is used for specifications. The notion of
a controller is however quite weak in that controllers are required to be memoryless.

Though the notions of simulations and bisimulations are weak mechanisms of
specification, the attractive feature of these is that model-checking is in polynomial
time due the “local” nature of the definitions of such relations. One finds very few
specification mechanisms in the literature which yield such polynomial time algo-
rithms. Our work shows that this tractability extends to control-synthesis as well.
(The logic CTL also has a polynomial time model-checking algorithm — however as

we point out in Chapter 5, the tractability does not extend to control-synthesis for
CTL.)
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One way to enhance our specification mechanisms is to handle them in a setting
which can express fairness properties. In formulating liveness specifications, it is
important in many cases to say that the fair runs (runs where the scheduler does not
ignore a process forever, runs where a failure of an event doesn’t happen infinitely
often, etc.) satisfy a specification. In particular, the notion of fair simulation
[HKR97, ESWO01], introduced in [HKR97] is a notion of simulation which caters
to fairness and at the same time allows polynomial-time model checking. It would
be interesting to see if the control-synthesis problem for fair simulation, and other
notions of simulations catering to fairness requirements, are also tractable.

Another challenging extension is suggested by the environment model considered
by Kupferman and Vardi in their work on module checking [KV96, KV97a]. The
idea is that in a branching time setting what one should require is: the controller
should prune the system moves in such a way that for every pruning of its moves
by the environment, the resulting computation tree should meet the specification.
We note however that in the presence of simulations and bisimulations, this re-
fined modelling of the environment is immaterial. It is however very relevant when
we start considering branching time temporal logics, such as CTL, as specification
mechanisms. A variety of interesting and computationally hard problems arise in
this new setting and will be the subject of Chapter 5.

Yet another extension is to study the control-synthesis problem in a concurrent
setting for simulations and bisimulations. This is the topic of study in the next

chapter.



Chapter 3

Asynchronous simulations

But the principal failing occurred in the sailing,

And the Bellman, perplexed and distressed,

Said he had hoped, at least, when the wind blew due East,
That the ship would not travel due West!

— The Hunting of the Snark, Lewis Caroll

3.1 Introduction

The transition systems we studied in Chapter 2 are a suitable model to describe
sequential systems and can be augmented with some concurrency information to
model distributed systems. In this chapter we study a well-established variant called
asynchronous transition systems [Bed88, WN95] and a corresponding notion of sim-
ulation (called an asynchronous simulation) between them. We show the surprising
result that even checking whether there is such a simulation between the unfoldings
of two finite asynchronous transition systems is undecidable. It turns out that, con-
sequently, there is no way to effectively solve the control-synthesis problem in this
setting. This is in sharp contrast to the results in Chapter 2 and show how complex

the design of any notion of distributed control can become.

42
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There is a natural notion of bisimulation between asynchronous transition sys-
tems studied in the literature called the hereditary history-preserving bisimulation
(see [WNO5, INW96]). A long-standing open question in this area was whether the
problem of checking if there is a hereditary history-preserving bisimulation between
a pair of finite asynchronous transition systems is decidable.

The result in this chapter hinted that the hereditary history preserving bisimu-
lation problem might be undecidable. Jurdzinski and Nielsen [JNOO] have recently
shown that this problem is indeed undecidable. Their proof makes essential use of
the technique we develop here to encode grids into unfoldings of asynchronous tran-
sition systems. We conjecture that their result can be extended to show that the
controller problem for hereditary history-preserving bisimulation is also undecidable.

Coming back to our work, we model both the system and the specification as
asynchronous transition systems and the notion of a simulation from one asyn-
chronous transition system to another will be defined so that it preserves the in-
dependence of events. Unfoldings of asynchronous transition systems are defined
such that states reached after trace-equivalent behaviours are identified with each
other. We then show that the problems of model-checking and control-synthesis are
undecidable. We also show that our negative result holds even for very restricted

classes of asynchronous transition systems.

3.2 The model

We enrich the transition systems defined in Definition 2.1 of Chapter 2 to reflect

the notion of independence of events.

Definition 3.1 A Y-labelled deterministic asynchronous transition system is a struc-
ture 7S = (Q, E, T, ¢in, p,I) where (Q, E, T, gin, ) is a transition system (as in
Definition 2.1) and I C E X E is an irreflexive and symmetric independence relation

such that the following conditions are satisfied:

(TR1) Suppose ¢ 21y ¢ and ¢ =% ¢o and e; I e;. Then there exists ¢’ such that
¢ —» ¢ and ¢ = ¢'.

(TR2) Suppose ¢ —» q; —+ ¢ and e; I e;. Then there exists g, such that
¢ == — " 0
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From now on, we refer to X-labelled deterministic asynchronous transition sys-
tems as just asynchronous transition systems. Simulations will now be required to

preserve the independence of events:

Definition 3.2 Let 7'S; = (Q1, E1, 11, G}, v1, [1) and TSy = (Q2, Ea, T, 2,, 2, I2)
be a pair of asynchronous transition systems. Then an asynchronous simulation
f: TS, — TS, is a simulation from (Q1, E1, T4, ¢}, v1) to (Q2, Ea, Ty, ¢2,, ¢2) (as in
Definition 2.2, Chapter 2) which in addition satisfies:

e Suppose in TS|, we have e; Iy ey, t, = (g,e1,q1), t2 = (q1,€2,¢), t3 = (¢, €2, q2)
and t; = (g2, €1,¢).

— If f(t1) = (p, €}, p) and f(t2) = (p1, €5, p') then €| I, €, and there exists py such
that f(t3) = (pa 6’2,])2) and f(t4) = (p2: ellapl)'

— If f(t1) = (p, e}, p1) and f(t3) = (p, €y, p2) then €| I, €}, and there exists p’ such
that f(tQ) = (pla 612:pl) and f(t4) = (p2a ellap,)' O

From now on we will often drop the adjective “asynchronous” in referring to
asynchronous simulations. As before controllers will be defined in terms of unfold-
ings. The new feature is that the independence of events will induce a partial order
over the runs of the system. A standard technique taken from Mazurkiewicz trace
theory [DR95] will be used to group together different interleavings of the same

partially ordered stretch of behaviour.

Definition 3.3 Let 7'S = (Q, E, T, gin, , I) be an asynchronous transition system.
Then ~rg is the least equivalence relation (which turns out to be a congruence)
contained in E* x E* which satisfies: Tejesm’ ~pg Tese;™ whenever e; I ey and

7,7 € E*. We let [7] denote the ~ps-equivalence class containing 7. O

Unfoldings are now defined by identifying states that arise by executing sequences

of actions that are ~ 75 equivalent:

Definition 3.4 Let 7'S = (Q, E, T, gin, , I) be an asynchronous transition system.
The unfolding of 7S is Uf(TS) = (@,E, f, Gin, O, f) where @, E and T are the

smallest sets that satisfy:

® (qi'm [5]) € Q\
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o If (¢,[7]) E/C? and /(\q,e, q') € T then R
(¢, [re]) € Q, e € E and ((¢,[7]), e, (¢, [re])) € T.

~

The initial state is Gin = (¢in, [¢]) and 3 and T are ¢ and I restricted to E and E x E

respectively. O

Trace theory ensures that Uf(TS) is also an asynchronous transition system.
Figure 3.1 shows an asynchronous transition system 7'S, and its unfolding Uf(71'S,).
The independence relation is the symmetric closure of {aski,cs;} x {aska, csz2}.
Note that unlike the unfoldings in Chapter 2, the unfolding is not a tree, but is a
directed acyclic graph.

The model-checking problem for asynchronous simulations is determine, given a
pair of transition systems T'S}, and TS, whether there is an asynchronous simulation
from Uf(TS),) to Uf(TS;).

Let us now consider products of asynchronous transition systems. The new
feature is that the concerned independence relations should agree on the common
events. Let T'S; and TS, be two asynchronous transition systems with E; as the
set of events and ¢; as the labelling function of T'S;, i € {1,2}. Then TS:|| TS, is
defined iff V e, e’ € E1 N Ey, e I € iff e I, €'. If this condition is satisfied (and the
condition that Ve € E) N Ey, ¢,(e) = @a(e) is also met), then T'S,|| TSy is defined
as done in Definition 2.4, Chapter 2 with the new independence relation defined
as Iy U I,. Again, it should be clear that T'S:||7'S; is an asynchronous transition
system.

Let T'Sp, T'S; and T'S. be three asynchronous transition systems. Then T'S. is an
asynchronous controller for (TS, T'S;) iff TS, satisfies the usual properties (CT1)-
(CT3) of Definition 2.5 for being a controller and if there exists an asynchronous
simulation from Uf (TS| TS.) into Uf(TS;). The control-synthesis problem is then
to check whether, given a pair of finite asynchronous transition systems 7'S, and
TS, there is an asynchronous controller for (7S,, T'S;).

Let us consider the example given below in Figure 3.1. The plant consists of
two agents which do the following: these agents wait for the user to press a button
(ask;) after which they enter a critical section (cs;). When they finish and exit
the critical section, they send a signal (fin;) which can be observed by the other
agent. The two agents are shown in the figure. The combined system is the normal

synchronized product of the two systems and is also illustrated. The unfolding of the
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plant is also shown. The induced independence relation is the symmetric closure
of {askj,cs;} x {asks,cse}. Let us fix the labelling function as ¢(ask;) = ask,
©(cs;) = cs and p(fin;) = fin, 1 € {1,2}.

The specification T'S (which is equivalent to its unfolding) is shown in Figure 3.2
with only the labels of events on the transitions — the independence of events should
be clear. On the labels, it is identical to the plant, except that it has no moves
enabled when both agents are in the critical section. This therefore demands that
the plant should not reach a state where both agents are in their critical sections (if
it reaches such a state, then the controller will not be able to satisfy the nonblocking
condition at this state).

An asynchronous controller is required to respect the independence relation.
Hence it cannot enable an agent entering a critical section depending upon an in-
dependent event occurring in the other agent. In other words, independent actions
have to be controlled independently. In this example, we require that the event cs;
is controlled independent of the event css (as they belong to different agents). Hence
the controller is forced to sequentialize the agents in a predetermined manner — an
example of a valid controller is TS, shown in the figure which allows the first agent
to enter its critical section before the second, regardless of the sequence of buttons
pressed.

Before we go on to proving that the model-checking problem in this setting of
asynchronous simulations is undecidable, note that the model-checking problem for
simulations for sequential transition systems studied in Chapter 2 is decidable. One
can easily show that, given two finite-state (sequential) transition systems 7T'S, and
TS, there is a simulation from T'S), to TS, iff the corresponding graph G, defined
in Section 2.3 is itself a good subgraph. Checking whether G, can clearly be done
in polynomial time.

We now wish to show that the problems of model-checking for finite asynchronous
simulations and the problem of deciding if a pair of finite asynchronous transition
systems admits an asynchronous controller — finite or otherwise — are undecidable.
The reduction is from the tiling problem [LP81] which is known to be undecidable.
In what follows, it will be convenient to talk about the tiling problem as a colouring
problem. An instance of the colouring problem is a quadruple C = (C, ¢, R, U)
where C' is a finite set of colours, ¢;, € C is a distinguished initial colour and

R:C — 2 and U : C — 29 are two functions. A solution to C is a map
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fin,
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fin,

csy
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fing
finy

Agent,
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asko
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fing

fin,
finy

Agent,

TS, = Agent, ||Agent,

UF(TSy)

Figure 3.1: A transition system and its unfolding
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TS,

TS,

Figure 3.2: Asynchronous specification and controller for TS,
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U2
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Uy
01 11 21 01

Ug
00 10 20 00

To r1 T2 To

Figure 3.3: The main grid

col : Ny x Ny — C (N is the set of natural numbers {0,1,2,...}) which satisfies:
e ¢0l(0,0) = ¢,

eV (myn) € Ny x Ng. col(m + 1,n) € R(col(m,n)) and col(m,n + 1) €
U(col(m,n)).

For each instance C of a colouring problem we first construct a pair of infinite
asynchronous transition systems (7S ¢ 18§ ) such that C has a solution iff there ex-
ists an asynchronous simulation from TS{ to TSS. We then show how to construct,
given C, two finite asynchronous transition systems TS]S and TS SC such that TS¢
and TSS are isomorphic to Uf (TS; ) and Uf(TSE) respectively. This will show
that the model-checking problem is undecidable.

Through the rest of the section fix an instance of the colouring problem C =
(C, ¢in, R,U) and let ¢, ¢ range over C. The associated pair of infinite asynchronous
transition systems will be denoted as T'S{ and TSs.

The main part of T'S{ will look like a two dimensional grid generated by the two
sets of events Er = {ro, 71,72} and Ey = {ug, u1,us} with Er x Ey C I; where I
is the independence relation of TS{. This is shown in Figure 3.3. We display only
the events concerned and not their labels. We deal with the labels later.

In addition, there will be nine events {0,1,2}2. At each grid point at most four
such events will be sticking out. For convenience we will often write 75 instead of
(,7) for 4,5 € {0,1,2}. At a grid point, the event ij will be enabled if r; and u;

are enabled at this point. This event will commute with events r; and u; enabled at
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Ug

Uy
01 01

11
To 1

Figure 3.4: A typical neighbourhood of a grid-point

this grid point. It will also commute with the events i(j + 1) and (i 4+ 1); enabled
at the neighbouring grid points. Here and in what follows addition is taken to be
addition modulo 3.

Thus the set of events of 7S¢ is By = E, U E, U {ij | i,j € {0,1,2}} and its

independence relation I; is the least symmetric relation of F; x F; which satisfies :

{T()a TlaTQ} X {U’O) ulaUQ} g Il

’L_] Il T le:ZI

ij [ i'j'if [(i' =i+ 1and j=j) or (i =4 and j' = j +1)]

TS¢ is such that along any run, an event ij can occur at most once. Thus a typical
neighbourhood in 7S¢ will look as in Figure 3.4.

Note that once an event of type %j is performed, one can never get back to the
main grid; at most three more events can be performed before reaching a terminal
state. These events which stick out of the grid will be used — via a simulation —
to check whether the colours assigned to neighbouring grid points are consistent.

The assignment of colours to the grid points will be done in 7'S5. This transition
system will look exactly like TS f except that we will use events taken from the set
C x {0,1,2}? instead of {0,1,2}2. At a grid point, the event (c,ij) will be enabled
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if r; and u; are enabled at this point. As an exception, at the origin only the event
(Cin, 00) will be enabled apart from the events ry and ug. In addition the event (c, ij)
can wander forward a bit through the independence relation as described below. The
crucial point is, the independence relation I, of T'S$ will be used to check for the
consistency of the colouring scheme.

The set of events of TSy is By = E, U E, U{(c,ij) | c€ C, i,j € {0,1,2}} We

define I5 to be the least irreflexive and symmetric subset of E; x E satisfying:

- {ro, 1,2} X {ug, ur,us} C I.

T IQ (C, ilj’) ifie=1

- u; Iy (¢,i'5")if j =4

(cyig) Iy (d,d'j") if [(i' =i+ 1,7 =jand ¢ € R(c)) or (' =14, 5/ =7+ 1 and
€ Ule))

We force TS¢ and TS5 to march together by a suitable choice of labels. Fix
¥ = {ro, 71,79, ug, U1, us} U {0,1,2}2. In both the systems the event z € E, U E,
gets the label z. The events 45 in 7S¢ and the events (c,ij) in T'SS get the label
ij.

Let us define TSY and TSS formally. Let TSC = (Q1, E1,Ti,q},, 01,11) and
TSQC = (Q2, En, T3, q2,, v2, I) be two Y-labelled asynchronous transition systems
with Ey, @1, I, Fs, ¢y and I, defined as above. Let x0 = (ro - r1-719)%, xM =
(ro-ry-re)*-ry and X% = (ro -r1-re)* 1o - 71. Similarly, let xO = (ug - uy - ug)*,
x = (up - ug - ug)* - ug and X2 = (uo - uy - ug)* - up - uy. Let

Zv=|J XO-XP-ijorioui-[(+1)5 + i(j+1)
i,j€{0,1,2}

Z represents representatives of all maximal sequences we want the system to gen-
erate. Let 7] = {y | 3z € Z; : y ~1 x}, where ~ is the trace equivalence relation
corresponding to I;. Set Zi' = Pref(Z}), the prefixes of words in Z]. Z{ denotes the
set of all sequences we would like 7S¢ to generate. So, set Q; = Z”/ ~; and for
each [z],[z - €] € Q, where z € E}, e € Fy, let the transition [z] — [ze] belong to
Ti. The initial state g;, is [¢].

TS is defined similarly: For each pair of colours ¢, € C, let

R(C’cl) — U X'S’L) . X1S,J) . (C’ 7,]) . 7'1‘ . U/] ° (Clg (7’ + 1)-7)
i,j€{0,1,2}
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U(c,c’) = U Xﬁz) . XQS]) . (C, Z]) “TE Uy - (C,,i(j + 1))
4,j€{0,1,2}

Now set

Zi= U XOX0-@iprew) U RS )
i,5€{0,1,2} ¢, c’|c'€R(c) ¢, eU(c)

Let Z, = {y | 3z € Zs : y ~9 z}, where ~y is the trace equivalence relation
corresponding to I,. Let Zj = Pref(Z}), the prefixes of words in Zj. Z) denotes
the set of all sequences we would like TS5 to generate. Set Qy = 7%/ ~4 and let us
have, for each [z], [z - €] € Qo where x € Ej, e € E,, the transition [z] — [ze] in
T,. The initial state g2, is [g].

Grid points are those states in 7SS and TSS reached after executing a sequence
in (E, U Ey)*.

Lemma 3.1 For any colouring problem C, there is a solution for C iff there is a

simulation from TSE to TSy .

Proof

(=) Let col : Ny x Ny — C be a solution for C. Now there is a simulation which
works as follows. Map the grid-points of TS¥ to the grid-points of T'S5. This
is easily achieved by mapping the states of the form [z] (where z € (E, U E,)*
to [z]. If at a grid-point, r; and u; events are enabled, then map the outgoing
edge 7j from this grid-point to the (c,ij) event in the corresponding grid-point
of TS, where c is the colour assigned by col to that grid-point. That is, at a
grid-point [z], if r; and u; are enabled, we map the transition [z] N [z - ij]
to [z] () [ - (c,1j)]. We extend the function to map other occurrences of the
same event to appropriate transitions. It is now easy to see that this defines
a simulation. The simulation will preserve independence of events since col is

a solution for C.

(<) Let f: TSY — TS5 be a simulation. First, it is easy to argue that the grid-
points of T'S{ must get mapped to the grid-points of TSS. This follows from
the fact that f must preserve the label of events that are mapped. Now, we
can assign colours to the grid-points as follows: at any grid-point, if r; and u;
are enabled, then the colour for that grid-point is ¢ where f maps the outgoing

edge ij event to (c,ij). It follows easily from the construction and the fact
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that f preserves the independence of events, that the colouring defined is a

solution to C.

|

All that remains now is to exhibit finite state transition systems TSpc and TS SC
such that their unfoldings are isomorphic to TSY and TSy respectively. The systems
TS]f and TS¢ are Y-labelled transition systems, (where ¥ = {ro, 1,9, ug, 11, ug} U
{0,1,2}?) defined as follows:

TS; = (Qp, Ep, Ty, ¢, 0, I,) where

e £, =F, ¢, = ¢1 and I, = I; as defined above We denote by D, the depen-
dence relation: D, = (E, x E,) \ .

° Qp = {7’0, 7'1,’/'2} X {’U,Q,’U,l,’U,Q} X 2{0’1’2} X 2{0’1’2} X 2{0’1’2}2
A state (R,U, Lg, Ly, X) of the plant contains the following information:
— R encodes which r; event is enabled and U encodes which u; event is
enabled.

— Ly encodes the set of all 7 such that events 75’ may be permitted and L
encodes the set of all j such that events ¢'j may be permitted. Together
they encode exactly which 75 events are permitted at a grid-point: an

event 77 is permitted iff 7 € Ly and j € L;.

— X encodes the set of all 75 events that have occurred so far.

° an = (7o, uo, {0}, {0},(2))

o Let a typical member of (), be denoted as a tuple (R, U, Lg, Ly, X).

T, is defined as follows:

— (R,U, L, Ly, X) = (R, U, L'y, Ly, X' if
R=r, (Bj € X:i#), R =rpn, U =U,L, =Ly, L) =
(Lg\{i—1})U{i+1}and X' = X

— (R,U,Lg, Ly, X) = (R, U', L, L}, X') if
U=wj (') € X :j#73),U =ujp, R =R, L, = Lg, Ly =
(Ly\{j—1)uU{j+1}and X' = X



Chapter 3: Asynchronous simulations 54

- (Ra Ua LRaLUaX) i> (RI: UI)LIRaLIUaXI) if
i€ Ly, j€ Ly, (F'j € X :§'Dyij), R = R, U' = U, X' = X U{ij},
LIR = LR and L,U = LU

It should be clear now how the definitions of the plant transitions work. Note
that X = () at any grid point.
TSE is defined as TSE = (Qs, E,, Ty, ¢, ©s, I,) where

e . =F, ;= and I; = I, as defined above We denote by D, the depen-
dence relation: Dy = (Fs x E) \ L.

o Q. = {ro,r1, 72} X {ug, uy, us} x 21012 x 2012} 5 9OX012}” o finp 4]
e g, = (7o, w0, {0}, {0}, 0, init)

e Let a typical member of @); be denoted as a tuple (R,U, Lg, Ly, X, S). T; is

defined as follows :

- (R, U, Lg, Lu, X, S) S (R, U', Ly, Ly, X', ") if

R=r, (AjeX i), R =rq,U=U L, =Ly, Ly =
(LR\{i—l})u{iH} X'=X and §' = x

— (R, U,Lg, Ly, X, S) = (R, U", Lk, Ly, X', S") if

U=wj (') € X:j#73),U =ujp, RR =R, Ly = Lg, L, =
(Lu\{j —1})U{j+1}, X'= X and §' = %

— (R,U,Lg, Ly, X, S) “ % (R, U", L, Ly, X, S') if

(S =init = c=c¢y), 1 € Lg, j € Ly, ((,i'j") € X : (¢,i'7)D(c,ij)),
R =R, U =U, X'=XU{(¢,ij)}, i = Lg, Ly = Ly and §' = S

The specification is constructed in almost the same way as the plant, except that
the Lgr and Ly components encode the (¢, i) events enabled and the independence
relation of the (c,ij) events are constrained by the given colouring problem. We
also keep track in a new component S whether the last grid-point seen was (0, 0) or
not. If it is, then we only allow the ¢;, event to occur.

It is tedious but straightforward to see that Uf(TSS) and Uf(TSY) are iso-
morphic to TS¢ and TS5. Also, from a given C, we can construct TSpC and TS¢

effectively. From Lemma 3.1 we then have
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Theorem 3.1 The problem of uniformly determining the existence of a stmulation
from the unfolding of a finite asynchronous transition system to the unfolding of

another 1s undecidable. O

Next we show that the problem of checking for an asynchronous simulation re-
duces to that of checking for the existence of an asynchronous controller. Given
TS, and TS, we construct TS;, and TS, such that there exists a simulation from
Uf(TS),) into Uf(TS,) iff there is a controller for (TS, TS"). It will turn out that
Uf(TS,) and Uf(TS,) can be embedded into Uf(TS}) and Uf(TS’). Further, it
will turn out that if (TS}, T'S',) has a controller, say TS, then it would have to be
the trivial controller which allows all system moves. Hence Uf(TS,||TS;) will be
isomorphic to Uf(TS,). Hence, if (TS}, TS’ has a controller, it would imply that
there is a simulation from Uf(TS}) to Uf(TS,), from which we will show how to
extract a simulation from Uf(TS),) to Uf(TS;). To prove the converse, we will show
how any simulation from Uf(TS,) to Uf(TS,) easily extends to a simulation from
Uf(TS,) to Uf(TSY). This will show that the completely non-restrictive controller
is a valid controller for (TS, TSY).

Let TS = (Q, E, T, ¢in, ) be a X-labelled asynchronous transition system. We
then define its augmented version Aug(7TS), a ¥'-labelled asynchronous transition
system, below, where ¥/ = ¥ U {x} where x is a new label not in X. First, as-
sume without loss of generality that X is disjoint from @,,Qs, E, and E,. Then
Aug(TS) = (Q', E",T',q,, ¢, I'") is defined as follows:

e ' =QU{X | X is a non-empty subset of X'} U {qy, ¢ux}
o F'=FE,U¥ U{¥}
o Y'(er1) =ppler),if e € Ep; ¢'(a) =a,ifa € X; ¢'(¥) =%

b q;n = Qin-

T"=TU {(q1,a0,{a}) |qs € Qanda € X'} U
{(X,a,Y) | X,Y are non-empty subsets of ¥ and a ¢ X and
Y =XU{a}} U
{(ar,¥,0) |1 € QY U {(a0 ', ¢)}

o I =1,U{(a,b) [ a# b and a,b € X'}.

We can prove the following:
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Lemma 3.2 For any two asynchronous transition systems TS, and TS, there
is a simulation from UfF(TS,) to UF(TSs) iff there is a controller for
(Aug(TS,), Aug(TS5)).

Proof

(=) Let f: Uf(TSy) — Uf(TS;) be a simulation. Consider T'S. = Aug(TS,).
Then Uf(Aug(TS,)) and Uf(Aug(TS,))||TS.) are clearly isomorphic. Now it
is easy to see that f can be extended to a simulation from Uf(Aug(TS,)) to
Uf(Aug(TS;)) by mapping X'-events to corresponding Y'-events and +'-events

to corresponding *'-events.

(<) Let TS, be a controller for (Aug(TS,), Aug(TS;)). Let g be a simulation from
Uf(Aug(TS,)|| TS.) to Uf(Aug(TSs)). First, we can show that T'S. cannot

restrict any system move of Aug(TS)).

Claim If (g,,q.) is reachable in Aug(TS,)||TS. and ¢, — q,, then 3q; :
g — ¢’ in TS..

The claim can be checked as follows. If g, is in @)p, then we know that some
event from (g,, ¢.), say €', must be enabled in Aug(TS,)||TS.. Now, the cor-
responding event ¢(e') is also enabled. We can then argue that if any one
Y'-event is enabled, then all of them must be enabled (using the nonblock-
ing property of the controller and the fact that it preserves independence of
events). Using the properties of a controller, it follows that all events from
(gp, g.) must be enabled in the controlled plant. If g, is not in @, then also it
is easy to check the claim.

End of claim

It therefore follows that Uf(Aug(TS,)||TS.) is isomorphic to Uf(Aug(TS,)).
We can also show that g maps the Uf(TS,) fragment of Uf(Aug(TS,)) to
the Uf(TS;) fragment of Uf(Aug(TS;)), using the fact that two consecu-
tive x-labelled events are enabled only from the states of Uf(TS,). Hence a
restriction of g will give a simulation from Uf(TS),) to Uf(TS;).
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This leads to the second main result of this chapter.

Theorem 3.2 The problem of uniformly determining if a pair of finite asynchronous

transition systems admits an asynchronous controller is undecidable. O

From our constructions above it is easy to deduce that the problem of uniformly
determining if a pair of finite transition systems (7'S,, T'S;) admits a finite controller
is undecidable. This holds since in the reduction from the undecidable simulation
problem to the controller problem, our plant-specification pair is such that it admits
a controller iff it admits a finite controller (namely the trivial one that is isomorphic
to the plant).

Our undecidability result goes through even for the restricted class of transition
systems called product transition systems. The main details of the construction
of product transition systems whose unfoldings will be the same as we require, are
given in the Appendix. Consequently, the undecidability extends to other models —
for example, when the plant and specification are presented as labelled 1-safe Petri
nets.

Yet another restriction one can consider is the class of asynchronous transi-
tion systems where there is an underlying independence over the labels > which
respects the independence of events, i.e.: TS = (Q, E, T, ¢in, p, I, f) where TS =
(Q, E,T,qn, p,I) is an asynchronous transition system and 7 C ¥ x X is irreflexive
and symmetric and Ve,e' € E, e I ¢ = ¢(e) T ¢(€').

It is easy to see that the class of systems and specifications used in the unde-
cidability result for simulation fall within this class. Hence checking existence of
simulation for this class is also undecidable. We can also show that checking for
the existence of a controller for this class is undecidable. The reduction is from the

simulation problem for this class and the details are given in the Appendix.



Chapter 4

Temporal logics, trees and

automata

The Beaver brought paper, portfolio, pens,
And ink in unfailing supplies:
While strange creepy creatures came out of their dens,

And watched them with wondering eyes.

— The Hunting of the Snark, Lewis Caroll

In this chapter we review some temporal logics (the branching-time temporal
logics CTL and CTL* and the linear-time temporal logic LTL) and also review labeled
infinite trees and automata working on them. All these concepts and definitions
(except that of alternating automata) will be used in the next chapter where we
consider the synthesis and control problems for branching-time logics. Also, tree-
automata will be extensively used in Chapter 6 where we consider the distributed
control-synthesis problem. Though we won’t really work with synthesis/control
problems involving LTL, we use LTL in some crucial lower-bound results in the next
chapter and it will also be a natural way to view the specification mechanisms in
Chapter 6.

28
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4.1 Linear-time temporal logic LTL

We introduce the temporal logics we need in the next two chapters briefly here.
We refer the reader to [Eme90] for a more comprehensive and gentle introduction.

Linear-time temporal logic (LTL) is a temporal logic designed to specify proper-
ties of infinite sequences. The models for this logic are w-sequences of letters from
¥, where ¥ = 247 for a set of atomic propositions AP.

Let us fix a set of atomic propositions AP. Then the formulas of LTL over AP
is defined to be the least set such that:

e For each p € AP, p is a formula

e If ¢ and 9 are formulas then so are —p, ¢ V 1, X¢ and Uy

The modalities X and U stand for “Next” and “Until” respectively — i.e. X¢
means that the suffix sequence starting from next position satisfies ¢ while U
means that the formula v holds somewhere down the sequence and till that point ¢
holds.

Let o € (24P)“ be an w-sequence of subsets of AP. If 0 = 0 -0y - ..., then we
denote by ofi] the suffix of o starting from the i** position in the sequence — i.e.
oli| =0;- 0411 .. ..

Formally, the semantics of when a formula ¢ is satisfied in a model o € (24P),

denoted o = ¢, is defined inductively on the structure of ¢ as follows:

eockEpiffo=0p-01...and p € 0y
cEeVYifo=poro =9y
o= —piffo e

o = Xeiff ofl] = ¢

o | oUy iff there is a j € Ny such that o[j] = ¢ and for every 0 < i < j,
olif F ¢

We use the following abbreviations as well:

e oAy ==((-¢) V(=) (“and”).

e Fy = truely (“eventually”).

e Gy = -F—p (“always”).
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4.2 Branching-time temporal logics CTL and CTL*

In the branching time logic CTL*, a path quantifier, E denoting “for some path”
(or A denoting “for all paths”), can prefix an assertion composed of an arbitrary
combination of the linear time operators X (“next”) and U (“until”). CTL and CTL*
are interpreted on Kripke structures which we define below.

CTL* has two types of formulas: state formulas, whose meaning is related to a
specific state, and path formulas, whose meaning is related to a specific path. Let

AP be a set of atomic propositions. A CTL* state formula is either:
e p forpe AP.
e —p or ¢ V1, where ¢ and ¢ are CTL* state formulas.
e Eyp or Ay where ¢ is a CTL* path formula.
A path formula is either:
e A CTL* state formula.
e —p or ¢ V1 or Xp, or U, where ¢ and ¢ are CTL* path formulas.

The logic CTL* consists of the set of state formulas generated by the above rules.
The logic CTL (“computation tree logic”) is a restricted subset of CTL*. In CTL,
the temporal operators X and U must be immediately preceded by a path quantifier.
Formally, it is the subset of CTL* obtained by restricting the path formulas in the
above definition to be X¢ or pUv, where ¢ and v are CTL state formulas. In other

words, the set of CTL formulas is the smallest set such that:
e For each p € P, pis a CTL formula.

e If ¢ and ¢’ are CTL formulas, then so are —p, ¢ V ¢, EXp, AXp, EpU¢" and
ApUy'.

The semantics of CTL* (and its sub-logic CTL) is defined with respect to a
(Kripke) structure S = (AP, W, R, wq, L), where AP is the set of atomic proposi-
tions, W is a set of states, R C W x W is a transition relation that must be total
(i.e., for every w € W there exists w’ € W such that (w,w’) € R), wp is an initial
state, and L : W — 24P maps each state to a set of atomic propositions true in this

state. We sometimes say R(w,w') to mean that (w,w’) € R. If R(w,w") holds, we
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0,1
SW .

say that w' is a successor of w . A path of S is an infinite sequence m = w
of states such that for every i > 0, we have R(w®, w**'). The suffix w, w**!,... of
7 is denoted by 7'. We use w = ¢ to indicate that a state formula ¢ holds at state
w, and we use m = ¢ to indicate that a path formula ¢ holds at path 7 (assuming

a structure S). The relation = is inductively defined as follows.

e For an atomic proposition p € AP, we have w | p iff p € L(w)

w E g iff w i p.

wEeVYifwgEporwkEp.

w = Eg iff there exists a path m = wy, wy, ... such that wy = w and 7 = ¢.

w = Ay iff for every path m = wg, w1, ... such that wy = w, 7 = .

O w! ...and v @

7 = ¢ for a state formula ¢ iff 7 = w

7 = o iff T .
TEeVYiff = porm =1
m = Xp iff ! = .

7 = Uy iff there exists 7 > 0 such that 7/ = v and for all 0 < 1 < j, we
have 7 = .

We say that a Kripke structure S satisfies a CTL* (or CTL) formula ¢, denoted
S = o, if wy = ¢ where wy is the initial state of S.
We use abbreviations ¢ A 9, Fp, Gy to mean the same as in LTL.

4.3 Trees

A (rooted directed) tree is a directed acyclic graph T'= (N, E), where N is a set
of nodes and £ C N x N is an edge-relation, that has a designated root r which
doesn’t have a parent (i.e. there is no v € N such that (v,r) € E) and every other
node of the tree has a unique parent and is reachable from r.

For a finite set Y, we note that Ty = (Y*, Ey), where Ex = {(z,z.c) | = €
T* and ¢ € T}, is a tree — we refer to this as the full Y-tree. Also, consider the
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graph T' = (N, E) where N C T* and E C Ex such that, if v.c € N with v € T*
and ¢ € T, then v € N. Then T is a tree (it’s a subtree of Ty) and we call this an
T-tree. The root of an Y-tree is the empty word e.

Let T = (N, E) be a tree. For every v € T, the set sucer(v) = {v' € N | (v,v') €
E} is the set of children (successors) of v. Where T is clear from the context, we
drop the subscript 7" and write succ(v). We usually consider trees that satisfy the
condition that succ(v) # @ for every v in 7.

We also associate a direction dir(v) € T with each node v of an Y-tree 7. A
designated element ¢y € T is the direction of €. For each non-root node v.c with
c€e Y, we set dir(v.c) = c.

A path 7 of any tree T = (IV, F) is an infinite sequence of nodes of the tree
T = Vv; ... such that vy is the root of 7" and for each 7 € Ny, v;,1 is a successor of v;
in T. Finally, given a set X, a X-labeled tree is a pair (7, V) where T is a tree and
V :T — ¥ is a labeling function that labels each node of the tree with a symbol of
Y.

Of special interest to us are 24”-labeled trees, where AP is a finite set of proposi-
tions. We call such trees computation trees and we sometimes interpret CTL* formu-
las with respect to them. Formally, a computation tree (7,V'), where T'= (N, E),
satisfies a CTL* formula ¢ if ¢ is satisfied in the structure (AP, N, E,r, V'), where r
is the root of 7.

Kripke structures can be unfolded into trees just as transition systems were un-
folded into trees in Chapter 2. Formally, for a Kripke structure S = (AP, W, R, wy, L),
we can associate a 24F-labelled TW-tree (Ts,Vs) where Ts C W* is the least set such

that:
o ¢ €Tyg; dir(e) = wy

e For every x € W*, if z € Ts and dir(z) = w and (w,w') € R, then z.w' € Ts.

(Also, by convention, dir(z.w') = w')

It turns out that CTL* formulas cannot distinguish between a Kripke structure

and its unwinding:

Proposition 4.1 Let ¢ be a CTL* formula and let S be a Kripke structure. Then
S = iff (Ts,Vs) E ¢, where (Ts,Vs) is the unwinding of S.
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Proof Follows easily by induction on the structure of ¢. |

Hence, we switch freely between Kripke structures and their unfoldings while

interpreting CTL* formulas on them.

4.4 Automata on trees

Let us now turn to automata working over Y-labelled Y-trees. Let us fix finite
sets X and Y. We introduce here Biichi, Rabin and parity tree automata (see
[Tho90, Tho97] for more details). Our treatment of automata are a bit non-standard
(for the sake of convenience). We define them on Y-trees while in the literature,
automata are usually defined on fixed-arity complete trees. However, one can easily
go back and forth between these definitions.

A non-deterministic tree automaton over Y-labeled Y-treesis A = (X, @, 0, qo, F)
where 3 is the finite alphabet we have fixed. @ is a finite set of states. For each
X C 7T, let Gx denote the set of all functions from X to (). Also, let G denote
the union of all sets Gx where X C Y. Then ¢ : Q x ¥ x 2¥ — 29 is a transition
function that maps a state, a letter, and a subset X of Y to a subset of Gx. In other
words, if g € Q, a € X, X C T, then §(¢,a,X) is a set of functions from X to @
— each such function gives a set of possible propagation of states to the children of
the node being read. gy € @) is the initial state, and F is an acceptance condition

(or a winning condition) that depends on the kind of automata we consider:
(Biichi) F is a subset of @

(Rabin) F = {(R1,G1),...,(Rm,Gn)} is a set of pairs of subsets of @) (i.e. for
each i, R;,G; C Q).

(parity) F is a function F : @ — {0,...,h} for some h € N (the set {0,...,h} is

called the set of colours).

Automata with Biichi, Rabin and parity winning conditions are called Biichi,
Rabin and parity automata, respectively.
Let « = 2oz ... € Q¥ be an infinite sequence of states. Then we denote the

states that occur infinitely often in « as:

inf(a) = {q € @ | there are infinitely many 7 € N such that z; = ¢}.



Chapter 4: Temporal logics, trees and automata 64

The notion of when « satisfies a winning condition F is defined depending on

the kind of winning condition:
(Biichi) « is accepting if inf(a) N F # 0 — i.e. o meets F infinitely often.

(Rabin) Let F = {(Ry,G1),---, (Rm,Gm)}- Then ais accepting if 3i € {1,...,m}
such that inf(a) " R; = 0 and inf(a) NG; # O — i.e. if there is a pair (R;, G;)
in F such that a meets (G; infinitely often and meets R; only finitely often.

(parity) Let F : @ — {0,...,h} for some h € N. Then « is accepting if
min(F(inf(a))) is even — i.e. the smallest colour met infinitely often in «

1s even.

Let (T,V) be a ¥-labeled Y-tree (hence " C Y*). Let succ_dir(z) = {dir(y) |
y € succr(z)} denote the directions of the children of z.
A run of the automaton A over (T,V) is a QQ-labeled tree (T, p) such that:

* ple) =

e Let x € T and C = succ_dir(z). Then there is a function g : C — @ in
d(g,V(x),C) such that for each ¢ € C, p(z.c') = g(c').

A path 7 of a run (7, p) is said to be accepting if it satisfies the acceptance
condition as defined above. The run (T, p) itself is said to be accepting if all paths
of it are accepting. A Y-labeled tree (7', V) is accepted by A if there is an accepting
run of A over (7, V). The language accepted by A is the set of all 3-labeled trees
accepted by A.

4.5 Alternating tree automata

Let us now define alternating tree automata which are a generalization of non-
deterministic tree automata. While non-deterministic automata can guess a set of
successor states and send one copy of itself along the subtrees rooted at each of its
children, an alternating automaton can pass several copies of itself to a single child
as well.

For a set X, let B*(X) denote the set of positive boolean formulas formed using
elements in X — i.e BT (X) - true | false | 2 | ¢ V ¢' | ¢ A ¢ where z € X and ¢
and ¢ are in BT(X). For aset Y C X, we say that Y satisfies § € B*(X) if setting
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elements in Y to true (and the elements not in Y to false) satisfies 6, with the usual
interpretation of V and A.

An alternating tree automaton over X-labeled Y-trees is A = (X,Q, 0, qo, F)
where ¥, @, gy and F are as in a non-deterministic automaton and § : Q x ¥ x 27 —
B*(@ x Y) is a transition function which satisfies the following condition: it must
map a state, a letter, and a subset C' of T to a boolean formula involving states
along with the directions in C. In other words, if ¢ € ), a € X, C C T, then
d(q,a,C) is a boolean formula in BT(Q x C).

Let (T,V) be a Y-labeled tree. A run of the automaton A over (7,V) is a
(T x Q)-labeled tree (T,,p) where T, is a tree that needn’t be isomorphic to 7'
Intuitively, the label of a node y in T}, being (z, q) represents that the run at that
node is reading the node x of the tree T' and is in state g. Let the root of 7T}, be r.

(T}, p) is a run if p satisfies the following conditions:
* p(r) = (&%)

o Let y € T, and p(y) = (z,q). Let C = succ_dir(z) and 6(¢,V(z),C) = 6
where 6 is a formula in BT (Q x C). Let Y C @ x C be the set of all (¢, )
such that there is a child 3’ of y with p(y’) = (¢, z.¢'). Then we require that
Y satisfies the formula 6.

A path 7 of a run (7}, p) is said to be accepting if the sequence of Q-components
of the labels of 7 satisfies the acceptance condition. The run (7}, p) is accepting if
all paths it it are accepting. A 3-labeled tree (T,V) is accepted by A if there is
an accepting run of A over (7,V) and the language accepted by A is the set of all
Y-labeled Y-trees accepted by A.

Example 4.1 Let T = {c,d, e}.
Consider the automaton A = (3, {qo, ¢a, @, G} }, 6, g0, F) where ¥ = {a, b} and F
is a Biichi winning condition with F = {g}.

The transition function is defined as follows: For any C' C T:

5(‘10,‘% C) = 5(Q0a ba C) = /\ ((qaa C) A (Qba C) A (QO: C))

ceC

8(qa0,C) = N (@a) 3 6(qa,a,C) = true

ceC
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5((](),0'7 C) = /\ (Qbac) ; 6(Qbab, C) = /\ (QI,)’C)

ceC ceC
8(gha,C) = N (gh0) 5 6(g55,C) = )\ (@,0)
ceC ceC

The state gy propagates itself to all children of the current node and hence walks
down all paths. At each node, it also spawns a copy of the automaton in state g,
and another in state g,. The state g, persists till it reads an a, at which point it
stops. Hence it checks if all the paths of the subtree it is pursuing has an a. The
states g, and ¢j persist in their states when they see an a and switch states when
they see a b. Consequently the Biichi condition is met iff b is seen infinitely often
along any path pursued by these states. It is easy to see that this automaton accepts
an Y-tree iff any path from any subtree has at least one a and also has infinitely
many b’s. Note that the copies of the automaton checking the two properties walk

down the tree independent of each other. O

Note that for any non-deterministic automaton A = (2, @, 6, go, F) we have the
alternating automaton A’ = (2, @, ', go, F) where for every g € Q,a € X, C C T,

7(g.e,0)= \/ N\ (9(0)0)
9€d(g,a,C) c€C
It is easy to check the language of trees accepted by A’ is the same as that of A.

The converse also holds:

Theorem 4.1 ([MSS86]) For every alternating parity automaton A', one can con-
struct an equivalent non-deterministic parity automaton A. Moreover, the number

of states in A is at most exponential in the number of states in A'.

Hence non-deterministic parity automata and alternating parity automata are
equally expressive. Rabin tree automata are also as expressive as parity automata.
However, it turns out that Biichi non-deterministic tree automata are strictly weaker
than Rabin/parity non-deterministic tree automata.

The class of languages accepted by Rabin/parity automata are called regular tree
languages and it is well-known that this class is closed under union, intersection,
projection and complement [Tho97].

Also, Rabin proved in 1969 [Rab69] that the problem of checking whether a non-

deterministic tree automaton accepts some tree is decidable. The complexity of this
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decision procedure has been improved over the years and currently it is known that
non-deterministic Rabin automata can be checked for emptiness in time (nm)°™
where n is the number of states in the automaton and m is the number of Rabin
pairs in the winning condition. This problem has also been shown to be NP-complete
[EJ88, PR89a|. For parity automata, the complexity of checking emptiness is in NP,
and in co-NP, but is not known to be in P [Eme97]. On the other hand, Biichi tree
automata can be checked for emptiness in polynomial time (in fact in time O(n?)
where n is the number of states in the automaton) [VWS86b].

Moreover, all the above algorithms give a regular witness tree that the automa-
ton accepts, if the language it accepts is nonempty. A tree is regular if its set of
“complete” subtrees (i.e. the full subtrees rooted at nodes), up to isomorphism, is
finite. Such a tree can in fact be presented as a finite-state transition system whose
unfolding gives the tree (for a natural notion of unfolding similar to the one defined
in Chapter 2). The number of states in this transition system is also bounded by
the time-estimate above — i.e. (nm)°™ for Rabin tree automata, etc. In many of
our applications of tree-automata, these witnesses of regular trees will be useful in

actually designing controllers.



Chapter 5

Synthesis and control for

branching-time logics

They sought it with thimbles, they sought it with care;
They pursued it with forks and hope;
They threatened its life with a railway-share;

They charmed it with smiles and soap.

— The Hunting of the Snark, Lewis Caroll

In this chapter we study the problem of control-synthesis for the branching-time
temporal logics CTL and CTL*. Apart from the control-synthesis problem, we also
study the synthesis problem where we are given a specification in CTL*, say, and
are asked to come up with a program that satisfies the specification.

Let us look at the program synthesis problem more closely. Suppose we are
given finite sets I and O of input and output signals. A program can be viewed
as a strategy f : (27)* — 29 that maps finite sequences of input signal sets into an
output signal set. When f interacts with an environment that generates infinite
input sequences, what results is an infinite computation over 2/Y°. Though f is

deterministic, it produces a computation tree. The branches of the tree correspond

68
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to external non-determinism caused by the different possible inputs. Many classes
of reactive programs like protocols and finite-state hardware devices can be seen to
work in such a manner.

One can now specify properties of such an open system by a linear or branching
temporal logic formula (over TUQ). Unlike linear temporal logics, in branching tem-
poral logics one can specify possibility requirements such as “every input sequence
can be extended so that the output signal v eventually becomes true” ([DTV99]).
This is achieved via existential and universal quantification provided in branching
temporal logics [Lam80, Eme90).

The realizability problem for a branching-temporal logic is to determine, given
a branching-time specification ¢, whether there exists a program f : (27)* — 2©
whose computation tree satisfies ¢ [ALW89, PR89a]. Realizing ¢ boils down to
synthesizing such a function f. An important aspect of the computation tree asso-
ciated with f is that it has a fixed branching degree |2’|. Tt reflects the assumption
that at each stage, all possible input signals are provided by the environment. Such
environments are referred to as mazimal or universal environments. Intuitively,
these are static environments in terms of the branching possibilities they contribute
to the associated computation trees. Equivalently, as we have noted already, each
program has just one computation tree capturing its behavior in the presence of
a maximal environment. In a more general setting, however, we have to consider
environments that are, in turn, open systems. We term such environments reactive.
They might offer different subsets of 2! as input possibilities at different stages in
the computation.

As an illustration, consider I = {rq,rs,...,7,} and O = {ty,ts,...,t,} where [
represents n different types of resources and O represents n different types of tasks
with the understanding that, at each stage, the system needs to receive r; from the
environment in order to execute ¢;. In the case of the maximal environment, the
specification “it is always possible to reach a stage where t; is executed” (AGEF(t;)
in CTL parlance) is realizable. This is so because at each stage in the computation,
the maximal environment presents all possible combinations of the resources. In the
case of the reactive environment, the above specification is not realizable. This is
so because there could be an environment driven by an open system that produces
only a finite number of the resource r;. In the resulting computation tree, each path

eventually reaches a node in which the environment stops offering ;. From then on,
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t; cannot be executed.

So, a reactive environment associates a set of computation trees with a program
— each tree describes the behaviour of the program when it interacts with some
environment. Consequently, in the presence of reactive environments, the realiz-
ability problem must seek a program all of whose computation trees satisfy the
specification.

The control-synthesis problem is closely related to the realizability problem. Here
we are given a plant (which is an open system) that suitably models the system and
environment interacting with each other. Given a branching-time specification ¢,
the control problem is to come up with a strategy for controlling the moves made by
the system so that the resulting computation tree satisfies . Here again, assuming
a reactive environment requires the controller to function correctly no matter how
the environment disables some of its moves; thus correctness should be checked with
respect to a whole set of computation trees.

In this chapter, we study the control problems for both CTL* and CTL spec-
ifications against non-reactive and reactive environments. It turns out that the
realizability problem can be reduced to the control problem.

The controller-synthesis problem for maximal environments can be transformed
(by flipping the role of the system and the environment) into the module-checking
problems solved in [KV96, KV97a]. Hence, from the results on module checking, it
follows that the problem is EXPTIME and 2-EXPTIME complete for CTL and CTL*
respectively [KV99a, KV99b].

The main result of this chapter is that for reactive environments these problems
(realizability and control) are 2-EXPTIME complete and 3-EXPTIME complete for
CTL and CTL*, respectively. In this sense, reactive environments make it more
difficult to realize open systems and synthesize controllers for them.

The upper bounds are established using automata-theoretic methods. In case
the answer to a realizability /control problem is positive, we also show how to extract
a program/controller that meets the specification. The sizes of these and the time to
construct them are shown to be of the same order as the time-complexity in solving

the problem.
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5.1 The problem setting

First, recall the definitions of the branching-time logics CTL and CTL*, Kripke
structures as well as the notions of nondeterministic automata on infinite trees in-
troduced in Chapter 4.

In order to study controller synthesis, we model a plant as P =
(AP, Wy, W,, R, wqg, L), where AP, R, w,, and L are as in a Kripke structure with
W = W,U W,. Here W is a set of system states and W, is a set of environment
states. Throughout what follows we are concerned only with finite plants; AP and
W are both finite sets. We also assume that W, "W, = (). The size of the plant is
[Pl = W[+ |R|.

Note that unlike the models in Chapter 2 and Chapter 3, our models no longer
have event-labels on transitions and the additional labelling of events to capture the
way the system and the environment interact. What we have instead is a partition
of the state-space into the set of system states (where it is the turn of the system
to move) and environment states (where the environment makes a move). The
underlying structure need not be bipartite with respect to these sets, and hence, the
system and environment need not strictly alternate. In addition, we have a labelling
on the states of the plant that describes the set of atomic propositions that are true
in each state.

Recall the notion of Y-trees, for a finite set Y. Let P = (AP, W, W,, R, w,, L)
be a plant. Then P can be unwound into a W-tree T in the obvious manner: it is

the smallest set such that the following conditions hold:
e ¢ €Tp; dir(e) = wy
e If x € Tp and w € W, then (z.w € Tp iff R(dir(z),w))

This tree is similar to the unfoldings of transition systems studied before. The
tree Tp induces the 24P-labelled tree (Tp, Vp) where for each v € Tp, we have
Vp(v) = L(dir(v)).

A controller is now an advice function which, for every system state in this tree,
picks a subset of children of the state to indicate which moves it wants to allow at
that point. Hence it is just a restriction of the tree at the system nodes.

Let P = (AP,W,,W,, R, w,, L) be a plant, (Tp,Vp) be its unwinding and let
(T, V) be a subtree of (Tp,Vp). We denote by T° = {v | v € T and dir(v) € W}
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the set of nodes of T" that correspond to system states, and by 7¢ = T\ T* the set
of states that correspond to environment states.

A restriction (T',V') of (T,V) is a tree 7" C T such that V' is V restricted to
T'. A restriction (T",V') of (T, V) is said to be a system restriction if for every
environment state v € 7€, all children of v in T belong to 7" as well. Le., there
is no pruning of the tree at environment states. Similarly, a restriction (7", V") of
(T, V) is said to be an environment restriction if for every system state v € T'%, all
children of v in T belong to 7".

A strategy (or controller) for a plant P is now just a system restriction (7, V') of
(Tp, Vp). Note we can have v and v' with dir(v) = dir(v'") and still have sucer(v) #
sucer(v'). Indeed, the decisions made by the system and the environment depend
not only on the current state of the interaction (that is, dir(v)), but also on the
entire interaction between the system and the environment so far (that is, v). We
say that the strategy (7', V') has finite-memory (or that the controller is finite-state)
if the number of non-isomorphic subtrees of it is finite. In this case, one can find a
finite Kripke structure P’ whose unwinding is isomorphic to (7, V). This structure
then corresponds to the controlled plant.

For example, Figure 5.1 shows a plant P and the unwinding (T, Vp) of it. It
also illustrates a system restriction of the plant. The system nodes are denoted by
circles and the environment nodes by squares. This tree (7', V') represents the system
playing according to its strategy against an environment which plays all moves it
can at all its states (which we call an universal environment). The control-synthesis
problem for non-reactive environments is to find whether, given a plant P and a
specification ¢, there is a strategy for P such that the tree corresponding to the
strategy playing against the universal environment satisfies the specification.

However, in some cases, we may not only want the strategy to win against the
universal environment, but also against all possible environments. Consider, for ex-
ample, the scenario where we have a set of plants { Py, ..., Py} that interacts with a
(universal) environment E. In this context, in order to make the individual plants
satisfy a specification, we may want to solve the problem by synthesizing indepen-
dently a controller for each plant. Hence, we would want to design a controller
C;, say, for a plant P;, by considering its environment as all interactions with E as
well as the other plants. We would like the controller to make sure that the plant

meets its specification no matter how the other processes behave. These processes



Chapter 5: Synthesis and control for branching-time logics 73

A plant P

The unwinding (Tp, Vp) of P

A system restriction of (Tp, Vp)
Corresponds to a universal
g-tree for some

controller g

Figure 5.1: Unwindings and system-restrictions
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A g-respecting execution of P
i.e. an environment restriction
of the universal g-tree

Figure 5.2: g-respecting executions

form part of the environment but being independently designed, may not play like
the universal environment. Hence we would like P; to meet its specification for all
possible environments.

The interaction of a reactive environment with a plant can be seen as just a way
of pruning the unwinding of a plant at enwvironment states — the environment at
any environment node of the tree picks a (nonempty) subset of its children which
are the possibilities it will offer. Hence the control-synthesis problem for reactive
environments is to come up with a strategy such that any pruning of the unwinding
of the controlled plant at the environment states satisfies the given specification.

We now make this intuition formal. A controller for the system is a function g
that assigns to each v € T}, a non-empty subset of sucer, (v). The universal g-tree
is the system restriction of (7),,V)) corresponding to g: i.e. it is the tree (7, V})

where T is the smallest subset of T such that:
e ccT,
o If v e T, and v' € g(v), then v' € T,

A g-respecting execution of P is any environment restriction (7,V) of (13, V,).
For example, Figure 5.2 exhibits a g-respecting execution of the controller g depicted

in Figure 5.1.

Definition 5.1 [Control problem for non-reactive environments|

Given a finite plant P and a specification ¢ (in CTL or CTL*), does there exists a
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controller g such that (7,,V}) satisfies ¢? O

Definition 5.2 [Control problem for reactive environmentsj
Given a finite plant P and a specification ¢ (in CTL or CTL*), does there exist a

controller g such that all g-respecting executions of P satisfy 7

Controllers for the above problems will be called controllers for (P, ) against
non-reactive and reactive environments, respectively.

The synthesis problem (or the realizability problem) for programs against reactive
and non-reactive environments can be defined along very similar lines: we consider
a program f interacting with its environment via two finite sets I and O of input
and output signals respectively . We can view f as a strategy f : (2/)* — 29 that
maps finite sequences of input signal sets into an output signal set. The interaction
starts by the program generating the output f(¢). The environment replies with
some ¢ C I. In general, f(i1.i5....%;), is the response of f for the input sequence
i1.92....%;. This (infinite) interaction can be represented by a computation tree.
The branches of the tree correspond to external non-determinism caused by different
input signal sets chosen by the environment. Thus f can be viewed as the full 2/Y°-
labeled 2'-tree (T}, V) with Ty = (27)*, dir(e) = 0 and Vi(v) = dir(v) U f(v) for
each v € T}.

Given a CTL or CTL* formula ¢, the realizability problem for non-reactive envi-
ronments is to find a a strategy f so that (T, V) satisfies ¢. We say that f realizes
@ if f is such a strategy. And say that ¢ is realizable if there is a strategy that
realizes it.

On the other hand, the realizability problem for reactive environments is to find
a strategy f such that no matter how the environment disables (in a non-blocking
manner) its possible responses at different stages, the tree of interaction between the
system and the environment satisfies . Formally, let f : (21)* — 2° be a strategy
and let (T,V) be a 2IYO-labeled 2!-tree with dir(c) = . We say that (T,V) is an
f-respecting execution iff V(v) = f(v) U dir(v) for each v € T. (In other words,
(T,V) is a restriction of the computation tree (T}, V})). The realizability problem
for reactive environments is to find if there is an f such that every f-respecting
execution satisfies ¢. We say that [ reactively realizes ¢ if f is such a strategy.
Also, ¢ is said to be reactively realizable if there is a program f that reactively

realizes .
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It turns out that the control-synthesis problem is harder than that of realizability.
Using a universal plant that embodies all the possible assignments to I and O, the
realizability problem can be reduced to the control problem. Formally, we have the

following:

Lemma 5.1 Let ¢ be a CTL* (CTL) formula over AP =1UO. We can effectively
construct a finite plant P and a CTL* (resp. CTL) formula ¢’ such that |P| =
O((27Nh2) ) |¢'| = O(|| + 214F1), and the following hold:

e o is realizable iff there is controller for (P,¢') against the universal environ-

ment

e © is reactively realizable iff there is a controller for (P,¢') against reactive

environments.

Proof We define P = (AP, W, W, R, wy, L) as follows:
o AP'= AP U {p.} with p. ¢ AP. (The role of p, will become clear soon).
o W, =21 x20
o W, = {wo} U2 with wy ¢ 2" UW,

e R = RO U R1 @) R2 where RQ = {’U)()} X ({@} X 20), R1 = We X 2I, and
Ro= {(X,(X,Y))| X C T and Y C O}.

e L((X,Y)) = XUYU{p.} for each (X,Y) € W, and L(w) = { for each w € Wi.

Next, for the formula ¢ in CTL (or CTL*), we construct the CTL (respectively
CTL*) formula ¢’ over AP’ by setting ¢’ = ¢} Ay). The basic idea is that ¢} ensures
that the truthhood of ¢ matters only at the states in W,. The conjunct ¢} is the
formula EX(||¢||) where ||¢]|| is defined inductively as follows:

For formulas ¢ in CTL*, ||¢|| is defined as:

e For state formulas:

— |lpl| =p for p € AP

— [[=ell = ~llel]
— |l Vo2 = 1] V ||zl
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— l[E¢ll = Elll
= lIA¢ll = Al

e For path formulas

— If ¢ is a state-formula, then ||¢|| is already defined.
= [l=ell = =llell

= ller voall = lloall V I

= [IXell =X X ([eoll)

= e U &'l = (pe = llell) U (pe All€N))

For formulas in CTL, it is defined as:

o |pl| =pforpe AP

o |-l ==l
lor V gal| = 1] V [l@2]|-

* [|EX¢|l = EX EX[|¢]| and
IE(p U )|l = E( (pe = llell) U (pe A ll'l]) )

o [AXg]l = AX AX[¢] and
1A U @)l = A (pe = 9l U (pe A I )

The conjunct ¢} ensures that the system chooses only one move at states in W,
(since the 29 labelling required must be unique). It is given by ¢}, = AG(—p, =
(A,eo(EXz = AXz)) It is easy to check that P and ¢' satisfy the required proper-
ties. a

5.2 Synthesis and control against the universal

environment

It turns out that the control-synthesis problem for universal environments re-
duces to another problem, the module checking problem, that has been already solved
[KV96, KV97al.
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The module-checking problem can be stated in the following manner. Consider
a plant modelled as a Kripke structure as above and consider a formula ¢ in CTL
or CTL*. The idea is now to verify whether the plant (already) satisfies ¢. Again,
we can consider either the plant interacting with the universal environment or the
plant interacting with a reactive environment.

The model-checking problem is to check whether the universal tree generated by
the plant, i.e. the tree (Tp, Vp), satisfies the specification ¢. The module-checking
problem is to check whether all the trees that are obtained by interactions with all
possible environments satisfy ¢. In other words, the problem is to check whether
all environment restrictions of (T, Vp) satisfy ¢. If it does, then we say that P
module-checks against (.

Now consider the problem of control-synthesis against the universal environment.
The problem is to find whether there is a system restriction of the tree (Tp, Vp) that
satisfies . But this problem is the same as the module-checking problem, if we

interchange the system and environment states, and negate the formula:

Proposition 5.2 Let P = (AP, W, W, R, w,, L) be a plant and ¢ be a formula
in CTL*. Let P' = (AP,W., W! R, wy, L) be a new plant where W! = W, and
W = W,. Then there is a controller for (P, ) against the universal environment

iff P! does not module-check against —p.

Proof A system restriction of (T, Vp) is an environment restriction of (Tpr, Vipr).
Hence, there is a system restriction of (Tp, Vp) that satisfies ¢ iff there is an envi-
ronment restriction of (Tpr, Vpr) that satisfies ¢, i.e. iff it is not the case that all

environment restrictions of (Tpr, Vpr) satisfy —. O

Kupferman and Vardi have shown in [KV96] that the complexity of the module-
checking problems for CTL and CTL* are EXPTIME complete and 2-EXPTIME com-

plete, respectively. Due to this we have:

Theorem 5.1 ([KV99a))

1. The problems of realizability and control-synthesis for CTL against the univer-

sal environment are EXPTIME complete.

2. The problems of realizability and control-synthesis for CTL* against the uni-

versal environment are 2-EXPTIME complete.



Chapter 5: Synthesis and control for branching-time logics 79

Proof The upper bounds as well as the lower bounds for control-synthesis follow
from the proposition above and Lemma 5.1. The lower bound for realizability fol-
lows from [KV99a). O

The procedures used in [KV96] also employ automata-theoretic techniques and it
is easy to see that their technique can, when module-checking fails, produce a regular
tree (represented as a finite transition system) which is an environment restriction
that doesn’t satisfy the specification. When one starts with a control-synthesis
problem with a plant P and specification ¢ and reduces it to module-checking as
above, this tree is a system-restriction of (Tp, Vp) that satisfies . Hence it gives a
finite-state controller for P that meets the specification. The sizes of the controllers
can also be seen to be bounded by the time-bounds of the module-checking procedure

(exponential for CTL formulas and double exponential for CTL* formulas).

5.3 Reactive environments: Upper bounds

In view of the notion of module-checking mentioned above, the control-synthesis
problem for reactive environments is the problem of checking if the plant can be
controlled so that it module-checks against the specification. Before we show that
the control-synthesis problems for reactive environments are decidable, let us first
recall the following well-known connections relating branching temporal logics and

tree automata:

Theorem 5.2

(1) [VW86a] Given a CTL formula ¢ over AP and a set T, we can construct a
nondeterministic Biichi tree automaton Ay, with 2009 states that accepts
exactly the set of 24T -labeled Y -trees that satisfy .

(2) [EJ88, Saf88, Tho97| Given a CTL* formula ¢ over AP and a set Y, one can

220(I<p|)

construct a nondeterministic parity tree automaton Ay , with states and

2009) colours that accepts exactly the set of 24T -labeled Y -trees that satisfy .

The first part of the above theorem follows from [VW86a|. For the second part,
in [EJ88] it was shown how to construct, given a CTL* formula ¢, a nondeterministic

Rabin tree automaton Ay, with 2209 states and 2009 Rabin pairs that accepts
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exactly the set of 24P-labeled Y-trees that satisfy . In this proof, a crucial step
is to use the fact that one can convert any nondeterministic automata on infinite
words to a deterministic automaton on infinite words with the Rabin acceptance
condition, shown in [Saf88]. In [Tho97] it is shown that one can in fact build a
parity automaton on infinite words, instead of a Rabin automaton. Incorporating
this, we can use parity automata instead of Rabin automata in the proof of [EJ8S§]
and build, for a given formula ¢ € CTL*, a nondeterministic parity tree automaton
Av, with 22°"*" states and 200¢) colours that accepts exactly the set of 247-labeled

T-trees that satisfy ¢.

The decision procedure

Recall that in the control problem for reactive environments we are given a plant
P = (AP, Ws,W,, R,wg, L) and a CTL (or CTL*) formula ¢ over AP, and we have
to decide whether there is a strategy g for the system so that all the g-respecting
executions of P satisfy ¢.

Recall that a strategy g for the system assigns to each v € T} a nonempty subset
of succ(v). We can associate with g a {_L, T, d}-labeled W-tree (T, V,), where for
every v € Tp, the following hold:

e If v € T§, then the children of v that are members of g(v) are labeled by T,
and the children of v that are not members of g(v) are labeled by L.

o If v € Tg, then all the children of v are labeled by d.

Intuitively, nodes v.c are labeled by T if g enables the transitions from dir(v) to ¢
(given that the execution so far has traversed v), they are labeled by L if g disables
the transition from dir(v) to ¢, and they are labeled by d if dir(v) is an environment
state, where the system has no control about the transition from dir(v) to ¢ being
enabled. We call the tree (Tp, V) the strategy tree of g.

Note that not every {_L, T, d}-labeled W-tree (Tp, V) is a strategy tree. Indeed,
in order to be a strategy tree, V' should label all the successors of nodes corre-
sponding to environment states by d, and it should label all the successors of nodes
corresponding to system states by either T or L, with at least one successor be-
ing labeled by T. Let us fix the convention that the root is always labelled by T.

Formally, we have the following.
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Theorem 5.3 Given a plant P with state-space W, there is a nondeterministic
Biichi automaton Agy, over { L, T,d}-labeled W -trees, such that Agy, has |W/| states
and accepts exactly the strategy trees of P.

Proof Let P = (AP, W, W,, R,wy,L) and W = W, U W,. For w € Wy, let G,
denote the set of all functions ¢ : succ(w) — {T, L} such that there is at least one
w' € suce(w) which is mapped by g to T. G,, denotes the possible moves the system
can make at the state w.

Consider the nondeterministic Biichi tree automaton on 3-labelled W-trees (where
Y ={T,L,d}): Agra = (5,Q,9,Qo,F) where Q@ =W x X, Qo = {(wp, T)} and ¢

is defined as:

e Forevery (w,m) € @, m € ¥ and X C W where X # succ(w), 6(qg,m, X) = 0.
i.e. Agp accepts only trees that are labellings of the unwinding of the plant

— it rejects all other W-trees.

e For every w € W, m,m' € ¥ where m # m', §((w, m), m’, succ(w)) = 0, i.e.
at a state (w, m), A is expecting to see a node labelled m — if it does not see

m, it rejects the tree.

e For every w € W, m € {T,L1,d}, 6((w,m),m,succ(w)) = { ¢ | Jg €
Gw, such that for every w' € succ(w), ¢'(w') = (w', g(w')) }

e For every w € W, m € {T,L,d}, 6((w,m), m, succ(w)) = {ga} where g4 :

succ(w) — @ is the function that maps every w' € succ(w) to (w',d).

The acceptance condition F is trivial — F = (). Hence a tree is accepted if
there is a run of the automaton on it. It is easy to check that the automaton ac-

cepts exactly the set of all strategy trees. O

Our algorithm proceeds as follows. Given a formula ¢, we construct a tree
automaton A such that A accepts a strategy tree (Tp,V}) iff there is a g-respecting
execution of P that does not satisfy . Then, there is a controller for (P, ¢) against
reactive environments iff the automaton A is not universal with respect to strategy
trees (that is, the language of Ay, is not contained in that of A). Indeed, a strategy
tree that is not accepted by A is induced by a strategy g all of whose g-respecting

executions satisfy ¢.
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Theorem 5.4 Given a plant P with state space W and a branching-time formula
©, we can construct a nondeterministic tree automaton A over {1, T,d}-labeled
W -trees such that the following hold:

1. A accepts a strategy tree (Tp,Vy) iff there is a g-respecting execution of P that
does not satisfy .

2. If ¢ is a CTL formula, then A is a Biichi automaton with |W|-2°) states.

220(|90D

3. If ¢ is a CTL* formula, then A is a parity automaton with |W| - states

and 2°U9D) colours.

Proof Let P = (AP,W,,W,, R,wy, L), and let Ay _, = (247, Q, 6, Qo, F) be the
automaton that accepts exactly all 247 -labeled W -trees that satisfy —¢, as described
in Theorem 5.2. Let W = W, U W,. We define A = (3, Q', ', Qp, F') as follows.

e X ={1,T,d}

e Q=WxQx{T,L})U{qacc}- The state g, is an accepting sink. Consider
a state (w,q,m) € W x @ x {T,L}. The last component m is the mode of
the state. When m = T, it means that the transition to the current node is
enabled (by either the system or the environment). When m = L, it means

that the transition to the current node is disabled.

When A is at a state (w,q, T) as it reads a node v, it means that dir(v) = w,
and that v has to participate in the g-respecting execution. Hence, A can read
T or d, but not L. If v is indeed labeled by T or d, the automaton A guesses
a nonempty subset of successors of w. It then moves to states corresponding
to the successors of w and ¢, with an appropriate update of the mode (T for

the successors in the guessed subset and L for the rest).

When A is in a state (w, g, L) and it reads a node v, it means that dir(v) = w
and that v does not take part in a g-respecting execution. Then, A expects to

read L or d, in which case it goes to the accepting sink.

e QL ={wo} x Qo x{T}.

e The transition function ¢’ is defined as follows:
For allw € W, g € Q, and X = succp(w), we have:.
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- 6((w,q,T), L, X)=0((w,q, L), T,X)=10
— If z € {1,d}, then ¢'((w,q, 1), 2, X) = {gacc} Where guc is the function

that maps each element w' of X to gucc.

— If z € {T,d}, then §((w,q, T),z, X) is defined as follows. Let Y C X be
a nonempty subset of succ(w). Then, ¢'((w,q, T),z, X) contains all the
functions g such that there is a function h € (¢, L(w),Y’) in Ay, —, such
that:

x If w' €Y, then g maps w' to (w',¢', T) where ¢' = h(w")

x If w' ¢ Y, then g maps w' to (w', ¢, L) (in fact, we can map it to any

state (w', g1, L) where ¢; € Q.)

Intuitively, 0’ propagates the requirements imposed by (g, L(w),Y) to

the Y-successors of w, for every possible choice of Y.

Note that ¢’ is independent of w being a system or an environment state.

The type of w is taken into consideration only in the definition of Ag,.

For all w € W, ¢ € Q, m,m’ € {T,1} and X # succp(w), we define
8'((w,q,m),m', X) = (). This ensures that A works only on unwindings of
P. We also define, for every X' CW and m € {T, L}, 0'(qace; My X') = {Gacc}

where g, is the function that maps each element of X’ to gucc.

e The final states are inherited from the formula automaton. Thus, if ¢ isin CTL,
then F' = (W x Fx{T, L})U {qac}- If pisin CTL* let F: Q — {0,...,h}.
Then, F': Q" — {0, ..., h} is such that F(ge.) =0 and forallw € W, ¢ € Q,
and m € {1, T}, we have F'((w,q,m)) = F(q).

The above automaton hence accepts a strategy tree iff the strategy corresponding
to it is a losing strategy for the system. There is hence a winning strategy for the
system iff there is a tree accepted by Ay, that is not accepted by A. So we are
left with the problem of checking whether the language of Ay, is contained in the
language of A. Since tree automata are closed under complement [Rab69, Tho97],
we can complement A, get an automaton fl, and then check the non-emptiness of

the intersection of Ay, with A. Hence the following theorem.
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Theorem 5.5 Given a plant P and a formula ¢ in CTL, the control problem for ¢
is in 2-EXPTIME. More precisely, it can be solved in time O(exp(|P|%-2°0¢D)). For

@ in CTL*, the problem is in 3-EXPTIME. More precisely, it can be solved in time
O(exp(| P2 - 22°1°")) 1

Proof For the complexity of this procedure, it is easy to see that if ¢ is in CTL,
the automaton A has a state-space size of O(|P|-2°0¢D). Though A runs on k-ary
trees (where k& depends on P), it can be complemented as easily as automata on bi-
nary trees — the complemented automaton A (as well as its intersection with Ay, )
is a parity automaton with O(exp(|P| - 290¢D)) states and O(|P| - 2°0¢D) colours
([Tho97]). Since emptiness of parity tree automata can be done in time polynomial
in the state-space and exponential in the number of colours [EJ88, PR89a|, we can
check emptiness of this intersection in time O(exp(|P[2-2°0¢D)). For CTL* specifica-
tions, the analysis is similar except that the complexity contributed by the formula

increases by one exponential. O

By [Rab69], if there is indeed a strategy that is winning for the system, then
the automaton that is the product of Ay, and the complement of the automaton
constructed in Theorem 5.4 accepts it and when we test the automaton for emptiness,
we can get a regular tree accepted by the automaton. This then provides a finite-
memory winning strategy that can be realized as a finite state controller for the

system.

5.4 Reactive environments: Lower bounds

For two 247-labeled trees (T,V) and (T, V"), and a set Q@ = {q1,...,q} C AP,
we say that (7,V) and (T",V’) are Q-different if they agree on everything except
possibly the labels of the propositions in ). Formally, 7 = 7" and for all z € T,
we have V(z) \ @ = V'(z) \ Q. The logic AQCTL* extends CTL* by universal
quantification on atomic proposition: if ¢ is a CTL* formula and ¢i,...,q; are
atomic propositions, then Vqi,..., ¢ is an AQCTL* formula. The semantics of
Vqi,...,q is given by S = Vqu,...,qx iff for all trees (T,V) such that (T,V)
and the unwinding (Ts, V) of S are {q, ..., ¢ }-different, (T, V) = 1. The logics

Lexp(x) stands for 20(*)
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AQLTL and AQCTL are defined similarly as the extensions of LTL and CTL with
universal quantification on atomic propositions.
The following Theorem is taken from [SVW87]. We describe here the full proof,

as our lower-bound proofs are based on it.
Theorem 5.6 [SVW8T7| The satisfiability problem for AQLTL is EXPSPACE-hard.

Proof We do a reduction from the problem of whether an exponential-space de-
terministic Turing machine 7" accepts an input word z. That is, given T" and =z,
we construct an AQLTL formula Vgp such that 7T accepts z iff Vqp is satisfiable.
Below we describe the formula ¢ informally. The formal description of ¢ and of the
function next are detailed later.

Let T = ([, Q,—, qo, F'), where T is the alphabet, @ is the set of states, —C
Q xT'x @ xT x{L,R} is the transition relation (we use (¢,a) — (¢',b,A) to
indicate that when 7 is in state ¢ and it reads the input a in the current tape cell, it
moves to state ¢, writes b in the current tape cell, and its reading head moves one
cell to the left or to the right, according to A), g is the initial state, and F' C @
is the set of accepting states. Let n = a - |z|, for some constant a, be such that
the working tape of T" has 2" cells. We encode a configuration of 7" by a word
Y17v2 - - - (q,7i) - - . yon. That is, all the letters in the configuration are in I', except
for one letter in @ x I'. The meaning of such a configuration is that the j% cell of
T, for 1 < j <27, is labeled v;, the reading head points on cell ¢, and T is in state
g. For example, the initial configuration of 7" is (qo, x1)To - - - Tn## - - -, where the
input to 7' is x = xqx1Z2 . . . £, and # stands for the empty cell. We can now encode
a computation of 7" by a sequence of configurations.

Let ¥ =T U(Q xT'). We can encode letters in ¥ by a set AP(T) = {p1,..-,Pm}
(with m = [log|X|]) of atomic propositions). We define our formulas over the set
AP = AP(T)U{b,c,d,e,q} of atomic propositions. The task of the last five atoms
will be explained shortly. Since T is fixed, so is ¥, and hence so is the size of AP.

Consider an infinite sequence m over 24°. For an atomic proposition p € AP
and a node u in 7, we use p(u) to denote the truth value of p at u. That is, p(u)
is 1 if p holds at u and is O if p does not hold at u. We divide the sequence 7 into
blocks of length n. Every such block corresponds to a single tape cell of the machine
T. Consider a block uq,...,u, that corresponds to a cell p. We use the node u;

to encode the content of cell p. Thus, the bit vector p;(u1), ..., Pm(u1) encodes the
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letter (in I'U(Q x I')) that corresponds to cell p. We use the atomic proposition b to
mark the beginning of the block; that is, b should hold on u; and fail on us, ..., u,
(see C1 below).

Recall that the letter with which cell p is labeled is encoded at the node u; of
the block ug, ..., u, that corresponds to p. Why then do we need a block of length
n to encode a single letter? The reason is that the block also encodes the location
of the cell p on the tape. Since 7T is an exponential-space Turing machine, this
location is a number between 0 and 2" — 1. Encoding the location eliminates the
need for exponentially many X operators when we attempt to relate two successive
configurations. Encoding is done by the atomic proposition ¢, called the counter.
Let ¢(uy), - .., c(uy) encode the location of p. Note that, for technical convenience,
the least significant bit of the counter is in u;. A sequence of 2" blocks corresponds
to 2" cells and encodes a configuration of 7". The value of the counters along this
sequence goes from 0 to 2" — 1, and then start again from 0. This is enforced by ¢.
Since we want the size of ¢ to be O(n), we need also an atomic proposition d that
acts as a “carry” bit (see C2 and C3 below).

An atomic proposition e marks the last block of a configuration, that is, e holds
in a node u; of a block wuy, ..., u, iff ¢ holds on all nodes in the block (see C4).

Let 01...094,0%...0%, be two successive configurations of 7. For each triple
(05-1,04,0i11) with 1 <4 < 2" (taking o9n,1 to be o} and g to be the label of the
last letter in the configuration before o; ... o9, or some special label when o . .. g9
is the initial configuration), we know, by the deterministic transition relation of T,
what o] should be. Let next({o; 1,04, 0;11)) denote our expectation for o,. The
formal definition of next is detailed later.

Consistency with next gives us a necessary condition for a word to encode a
legal computation. In addition, the computation should start with the initial con-
figuration. Finally, if the computation ends with an accepting configuration (that
is, one with (g¢,7;) with ¢ € F'), then T accepts z. It is easy to specify in LTL the
requirements about the initial and accepting configurations. For a letter o € ¥, let
n(o) be the propositional formula over AP that encodes o. That is, (o) holds in
node u; of a block that encodes cell p iff the cell p is labeled . Then, ¢ contains
conjuncts (see C5 and C6) that require the computation to start with the initial
configuration and to eventually reach an accepting configuration.

The difficult part in the reduction is in guaranteeing that the sequence of config-
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urations is indeed consistent with next. To enforce this, we have to relate o;_1, o;,
and 0,4, with o] for any 7 in any two successive configurations oy . ..o, 0] ... 0.
One natural way to do so is by a conjunction of formulas like “whenever we meet
a cell with counter 7 — 1 and the labeling of the next three cells forms the triple
(05-1,0,0i11), then the next time we meet a cell with counter 4, this cell is labeled
next({o; 1,04,0:11))”. The problem is that as i can take any value from 1 to 2",
there are exponentially many such conjuncts. This is where the universal quantifi-
cation of the AQLTL comes into the picture. It enables us to relate (o;_1,0:,0541)
with o}, for all i.

To understand how this is done, consider the atomic proposition ¢, and assume
that the following hold. (1) ¢ is true at precisely two points, both are points in
which a block starts, (2) there is exactly one point between them in which e holds
(or possibly that in exactly both of them, and not in between, e holds) — thus, the
two points are in successive configurations, and (3) the value of the counter at the
blocks starting at the two points is the same. Then, it should be true that (4) if
the labels of the three blocks starting one block before the first ¢ are o;_;, 0;, and
oi+1, then the block starting at the second g is labeled by next(o; 1,04, 0441).

Using b, ¢, and e, we can easily express (1)—(4) with formulas of length polyno-
mial in n (see the formal definition of (1)-(4) below). Recall that as the set ¥ is
fixed, scanning all the possible labels of a cell can be done with a formula of a fixed
length. Also note that for expressing (3), we need to compare the value of the two
counters bit by bit (see definition of (3) below).

The formula ¢ contains the conjunct (C7) = ((1) A (2) A (3)) = (4). Since the
condition (4) is checked in Vg for all the assignments to ¢ that satisfy (1) A(2)A(3),
it follows that ¢ is satisfied only in computations consistent with next. Hence, Vqy
is satisfiable iff there is an accepting computation of T on .

The formulas described above are formally defined as follows:

C1. b should hold on u; and fail on us, ..., uy:

bAX(mOAX(=bA---AX=b)---) AG(b <> X"b)

C2. The counter starts at 0:

—c AX(me A X(=¢c... AN X=¢)---)



Chapter 5: Synthesis and control for branching-time logics 88

C3. The counter is increased properly. Note that as we always want to increase it

by 1 we take b as a carry for the least significant bit.
(b Vv d) A—c) = (X(—d) A X"c)).
=(bVd)A=c) = (X(=d) A X"¢)).
(bvd) Ac) = (XdAX"c)).
—(bVd)Ac) = (X=d) AX")).
C4. e holds in a node u; of a block with counter 1™:
Gle > (bAcAX(eAX(ecAX(c--+))).
C5. The computation starts with the initial configuration:
n(go, z1) A

X*(n(x2) - - - AX (n(zn) AX"((#) A [(n(7#) = X"n(#))U(n(7#) Ae)l)) ---))-

C6. The computation reaches an accepting configuration:

Fon \/ n@)

geF,yel’

C7. The formula ((1) A (2) A (3)) = (4)) where:
(1) g is true at precisely two points, both are points in which a block starts:
(=)U (b A g AX((—q)U(b A g A XGg)))

(2) There is exactly one point between them in which e holds or e holds at

both points but not in any point in between them:
(=9)U(g A ((me)U(e A X((—€)Uq)))).

(3) The value of the counter at the blocks starting at the two points is the
(=q)Uq A [(c = XF(g A ¢)) A ((=e) = XF(g A (=c)))A
X((c = F(g A Xe)) A ((—e) = F(g A X(—e)))A
X((e¢ = F(g AXXc)) A ((—e) = F(g AXX(=¢)))A

X((e = Flg AX" ) A ((me) = Fg AX"H(=e)))) )]
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(4) If the labels of the three blocks starting one block before the first ¢ are
oi 1, 0;, and o;,1, then the block starting at the second ¢ is labeled by

next(o;_1, 04, 0i41)"

V' (20) U (n(o)AX (gAn(o2) AX" (n(0) AF (gAn(next (o1, 03, 3))))))-

01,02,03€%

The function nezt is defined as follows: next({o;_1, 0;,0;11)) denotes our expectation

for of. It is defined as: 2.

° next“%‘—h%’a%ﬂ” =%

2

(¢

(q,7i-1) = (¢'svi_1, L).
(q,7i-1) = (¢'s7_1, R).

If
® next s Ji=1)s Jis J1 =

({(g7i-1), %, Yis1)) { ) It

o next((vi-1, (¢, V), Vir1)) = i where (¢,7%) — (¢, 7, Q).

Yi If (q,7i11) = (¢, i1, R).

o next((Vie1, Vi, (¢ Vit+1))) = {
(q,afyi) It (qa 'Yz'+1) — (qla’Y'L{—l—l’ L)

We now show that AQCTL is also strong enough to describe an exponential-space
Turing machine with a formula of polynomial length. Moreover, since CTL has both
universal and existential path quantification, AQCTL can describe an alternating
exponential-space Turing machine [CKS81], implying a 2-EXPTIME lower bound for
its satisfiability problem.

Theorem 5.7 The satisfiability problem for AQCTL is 2-EXPTIME-hard.

Proof We do a reduction from the problem whether an exponential-space alternat-
ing Turing machine T" accepts an input word z. That is, given T" and z, we construct
an AQCTL formula Vg such that T accepts z iff Vgi) is satisfiable.

Let T = (T, Qu, Qe, >, qo, F'), where the sets @, and Q. of states are disjoint,
and contain the universal and the existential states, respectively. We denote their
union (the set of all states) by @. Our model of alternation prescribes that — C
Q xT xQ xT x{L, R} has a binary branching degree. When a universal or an

2We assume that 7’s head does not “fall off” from the right or the left boundaries of the
tape. Thus, the case where ¢ = 1 and (gq,v;) = (¢',7}, L) and the dual case where i = 2™ and
(g,7v:) = (¢',7}, R) are not possible.
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existential state of 7" branches into two states, we distinguish between the left and
the right branches. Accordingly, we use (g, a) — {((q, b;, &), (¢r, by, Ay)) to indicate
that when 7 is in state ¢ € @), U Q. reading input symbol a, it branches to the left
with (g, b, ;) and to the right with (g, b, A,). (Note that the directions left and
right here have nothing to do with the direction of movement of the head; those are
determined by A; and A,.)

For a configuration ¢ of 7', let succ;(c) and succ,(c) be the successors of ¢ when
applying to it the left and right choices in +, respectively. Given an input z, a
computation tree of 7" on z is a tree in which each node corresponds to a configu-
ration of 7. The root of the tree corresponds to the initial configuration. A node
that corresponds to a universal configuration ¢ has two successors, corresponding
to succ(c) and suce,(c). A node that corresponds to an existential configuration ¢
has a single successor, corresponding to either suce(c) or succ,(c). The tree is an
accepting computation tree if all its branches reach an accepting configuration.

An accepting tree (i.e. a tree labelled with configurations) can be encoded as a
tree where each node in the accepting tree is blown up into a path where the labels
on the path encode the configuration corresponding to the node. The formula )
will describe such encodings of accepting trees. As in the linear case, we encode a
configuration of T by a sequence v17s ... (g, %) ... Yen, and we use a block of length
n to describe each letter o; € I' U (Q x I') in the sequence. The construction of
1 is similar to the construction described for ¢ in the linear case. For an LTL
formula &, let £4 be the CTL formula obtained from & by preceding each temporal
operator by the path quantifier A. For example, (G(p — Fg))p = AG(p — AFq),
and (GFp)p = AGAFp. As in the linear case, the atomic propositions ¢ and d are
used to count, b is used to mark the beginning of blocks, and e is used to mark the
last letter in a configuration. Note that the conjuncts £ in ¢ that impose the desired
behavior of b, ¢, d, and e are such that £4 impose the desired behavior of b, ¢,d and
e in the branching case. Also, the conjuncts £ used in ¢ in order to check that the
first configuration is the initial one and that the computation is accepting are such
that £4 do the same for the branching case. Our formula v has all these conjuncts.

The difficult part is to check that the succ; and succ, relations are maintained.
For that, we add two atomic propositions, er and ey, that refine the proposition e
and indicate whether the configuration just ended has been existential or universal.

Also, eg and ey will continue to hold till the end of the block representing the last
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cell of the configuration. Formally, ¢ contains the conjuncts
o AG(e — (A(eg UEXD) V A(eg UEXD))) A AG(—(ey A eg)),
* AG(Acq. rer(n(g,7) = A(=e)U(e Aeg))), and

© AG(N\gequner (1(07) — A=e)U(e A ex))).

In addition, we use an atomic proposition [ to indicate whether the nodes belong to
a left or a right successor. For clarity, we denote =/ by r. Formally, v contains the

conjunct

AG(l — (AlUe)) A AG(r — (ArUe)).

Since a universal configuration ¢ has both succi(c) and suce,(c) as successors, and

an existential ¢ has only one of them, v also contains the conjunct
AG( (eg AEXb) — (EXIV EXr)) A AG( (e A EXb) — (EXI A EXr))

We can now use universal quantification over atomic propositions in order to
check consistency with suce; and suce,. Note that succ(c) and suce,(c) are uniquely
defined. Thus, we can define functions, next; and next,, analogous to function next
of the linear case. Given a sequence (0;_1,0;,0;+1) of letters in ¢, the function
next;({(ci_1,0i,0:+1)) denotes the expectation for the i’th letter in succ(c). We
denote this letter by o!, and similarly for next, and of.

In the linear case, we considered assignments to ¢ in which ¢ holds at exactly two
points in the computation. Here, we look at assignments where ¢ holds at exactly
two points in each branch. The first point is a node where a block of o; starts, and
the second point is a node where a block of ¢! or o7 starts (note that an assignment
to ¢ may check consistency with succ along different branches)?

Consider the atomic proposition ¢, and assume that the following hold: (1) ¢
is labeled as described above (in particular, in each branch of the tree, ¢ is true at
precisely two nodes, both are nodes in which a block starts), (2) in every branch
with two occurrences of ¢, there is exactly one node between them in which e holds
(thus, the two nodes are in successive configurations), and (3) the value of the

counter at the blocks starting at the two points is the same. Then, it should be true

3Tt is convenient to think of a satisfying tree for ¢) as a tree that has branching degree 1
everywhere except for nodes that are labeled by ey and have a successor labelled b, where the
branching degree is 2. Our reduction, however, makes no assumption about such a structure.
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that (4) if the labels of the three blocks starting one block before the first ¢ are
0;_1, 0;, and o0;41, then the blocks starting at the second ¢ are either left branches
in which case they are labeled by next;(0;_1, 05, 0:11), or they are right branches, in
which case they are labeled by nezt,(o; 1,0;,0:11). Hence, 9 contains the conjunct
((1)A(2) A(3)) — (4), where (1)—(4) are described formally below. Since in Vg,
the condition (4) is checked for all the assignments to ¢ that satisfy (1) A (2) A (3),
it follows that 1 is satisfied only in a computation tree consistent with succ; and
succ.. Hence, Vqi) is satisfiable iff there is an accepting computation tree of 7" on z.
The formulas (1)—(4) are formally defined as:

(1) g is labeled as described above:

AEQUBANgNAXA((—q)U(b A g N AXAG—q))).

(2) In every branch with two occurrences of ¢, there is exactly one node between

them in which e holds (thus, the two nodes are in successive configurations):

A(—q)U(g A A((me)U (e AN AX A((=e)Uq))))-

(3) The value of the counter at the blocks starting at the two points is the same:

A(=q)Uq A [(e 5 AXAF(gNe)) A((—c) = AXAF (g A (—¢)))A
AX((c - AF(gN AXc) A ((—c) = AF (g AN AX (—c)))A
AX((c > AF(gNAXAXc)) A ((—e) = AF (g N AXAX (—c)))A

~— ~—

AX((c = AF (g A (AX)" 1)) A ((me) = AF (g A (AX)"7H(0)))) - )))-

(4) If the labels of the three blocks starting one block before the first ¢ are o;_1, 03,
and 0,11, then the blocks starting at the second ¢ are either left branches in
which case they are labeled by next;(0; 1,04, 0;11), or they are right branches,

in which case they are labeled by next,(0;_1, 04, 0441):

AUV oy 0y, 05ex((01) A (AX)"(g An(o2) A (AX)"(n(o3)A
AF (g Nl An(nexty(o1,09,03))) V (¢ AT An(next,(o1,09,03)))])))-
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The satisfiability problem for CTL* is exponentially harder than the one for CTL.
We now show that this computational difference is preserved when we look at the
extensions of these logics with universal quantification over atomic propositions. A
full exposition of the details for the lower bound below will detract us from the main

theme of the thesis. Hence we omit details and present only a gist of the proof.
Theorem 5.8 The satisfiability problem for AQCTL* is 3-EXPTIME-hard.

Proof We do a reduction from the problem whether a doubly-exponential-space
alternating Turing machine 7" accepts an input word x. That is, given 7" and z, we
construct an AQCTL* formula Vg1 such that T accepts z iff v is satisfiable.

In [VS85], the satisfiability problem of CTL* is proved to be 2-EXPTIME-hard
by a reduction from an exponential-space alternating Turing machine. Below we
explain how universal quantification can be used to “stretch” the length of the tape
that a polynomial CTL* formula can describe by another exponential. As in the
proof of Theorem 5.6, the formula in [VS85] maintains an n-bit counter, and each
cell of T’s tape corresponds to a block of length n.

In order to point on the letters o; and o} simultaneously (that is, the letters that
the atomic proposition ¢ point on in the proof of Theorem 5.6), [VS85] adds to each
node of the tree a branch such that nodes that belong to the original tree are labeled
by some atomic proposition p, and nodes that belong to the added branches are not
labeled by p. Every path in the tree has a single location where the atom p stops
being true. [VS85] uses this location in order to point on ¢’ and in order to compare
the values of the n-bit counter in the current point (where o is located) and in the
point in the computation where p stops being true.

On top of the method in [VS85], we use the universal quantification in order to
maintain a 2"-bit counter and thus count to 22°. Typically, each bit of our 2"-bit
counter is kept in a block of length n, which maintains the index of the bit (a number

between 0 to 2™ — 1). For example, when n = 3, the counter looks as follows.
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000 001 010 011 100 101 110 111 < m-bit counter
0 0 0 0 0 0 0 0 <« 2"-bit counter
000 001 010 011 100 101 110 111
0 0 0 0 0 0 0 1
000 001 010 011 100 101 110 111
0 0 0 0 0 0 1 0
000 001 010 011 100 101 110 111
0 0 0 0 0 0 1 1

To check that the 2"-bit counter proceeds properly, we use a universally quanti-
fied proposition ¢ and we check that if ¢ holds at exactly two points (say, last points
in a block of the n-bit counter), with the same value to the n-bit counter, and with
only one block between them in which the n-bit counter has value 1", then the bit
of the 2™-bit counter that is maintained at the block of the second ¢ is updated
properly (we also need to relate and update carry bits, but the idea is the same).

O

Note that the number of atomic propositions in % in the proofs of both Theo-
rems 5.7 and 5.8 is fixed. Note also that if ¢ is satisfiable, then it is also satisfied
in a tree of a fixed branching degree (a careful analysis can show that for CTL the
sufficient branching degree is 2, and for CTL* it is 3).

The logic EAQCTL* extends AQCTL* by adding existential quantification on
atomic propositions: if Vqy,. .., gt is an AQCTL* formula and py, ..., p,, are atomic
propositions, then dpq,...,pnVq, ..., ¢ is an EAQCTL* formula. The semantics
of 3p1,...,PmVaq,...,q is given by S = dpi,...,pnVaq, ..., q iff there is a
tree (T,V) such that (Ts,Vs) and (T,V) are {p,...,pn}-different and (7,V) =
Yaqi,...,qx00. The logic EAQCTL is the subset of EAQCTL* corresponding to CTL.
For n > 1, let [n] = {1,...,n}, and let S, = (0, [n], [n] X [n],1, L) be the structure
whose transition relation is the n-state clique (note that since S, has no atomic
propositions, its labeling function L is redundant). For an AQCTL* formula 1, let
width(v)) be the sufficient branching degree for 1); that is, width(1)) is such that if
there is some tree that satisfies 1, then there is also a tree with branching degree
width(1) that satisfies ¢¥. Recall that the semantics of EAQCTL* formulas is de-

fined with respect to the unwinding (7s, Vi), for structures S. Hence, as detailed
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in [Kup97], the satisfiability problem for the AQCTL* formula Vg, . . ., gx% can be re-
duced to the model-checking problem of the EAQCTL* formula dpy, . .., p Vi, - - ., qxt¥
in Suigin(y)- Since the formulas used in the proof of Theorems 5.7 and 5.8 have fixed

widths, the following Theorem follows immediately from Theorems 5.7 and 5.8.

Theorem 5.9 The model-checking problems for EAQCTL and EAQCTL* are
2-EXPTIME-hard and 3-EXPTIME-hard in the size of the specification, respectively.
O

Intuitively, the model-checking problem for EAQCTL* asks whether we can find
an assignment to the propositions that are existentially quantified so that no matter
how we assign values to the propositions that are universally quantified, the formula
is satisfied. Recall that in the control problem we ask a similar question, namely
whether we can find a strategy for the system so that no matter which strategy
the environment uses, the formula is satisfied. In the theorem below we make the
relation between existential and universal quantification over atomic propositions
and supervisory control formal. The relation is similar to the relation between

existential quantification and the module-checking problem, as described in [KV96].

Theorem 5.10 Given a structure S and an EAQCTL* (or EAQCTL) formula
p1, .y PV, - .., qr, there is a plant P and a CTL* formula (resp. CTL for-
mula) Y such that |P| = O((1 + k + m) - [S]), [¢¥'| = O(S| + [¢]), and S E
Ip1, - PV, - -, @b iff there is a controller for (P,v') against reactive environ-

ments.

Proof For technical convenience, let us first assume that a plant has a third type
of states, W, which belong to neither the system nor the environment (that is,
all the successors of states in W, are always taken). Let E = {pi,...,pn} and
U={q,...,q} be the sets of existentially and universally quantified propositions,
and let S = (AP, W, R, wy, L).

We define P = (AP U {yes, dummy}, W,,, Wy, We, R', wg, L"), where

L4 Wn =Wu {des; Qno}-
e Wy=W X E.

e W, =W xU.
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o R =RU{{w,(w,r)) :we W and r € EUU}U((W x (EUU)) X {qyes; ¢no}) U
{{ayes, Gyes)s {anos Gno) }-

e Forallw e W and r € FUU, we have L'(w) = L(w) \ (FUU), L'{w,r)) =
{r, dummy}, L'(qyes) = {yes}, and L'(gn,) = 0.

That is, the plant P contains the structure S. Each state w in S is duplicated
k + m times. Each copy of w is associated with a quantified proposition. States
associated with existentially quantified propositions are system states. States asso-
ciated with universally quantified propositions are environment states. Each dupli-
cated state is labeled by the proposition it corresponds to and by a new proposition
dummy. In addition, there are two states gy, and gy, that all the duplicated states
go to. The new atomic proposition yes is true in gye;.

We define v' in two steps. First, path quantification in 1)’ should be restricted
to computations of S. That is, to paths that never meet a duplicated state. To
do this, we use a function f: CTL* formulas — CTL* formulas that restricts path
quantification to paths that never visit a state labeled with dummy. For example,
f(EqU(AFp)) = E((G—dummy) A (qU(A((Fdummy) V Fq)))). The full definition of
f and a proof that when 9 is a CTL formula, there is also a CTL formula equiv-
alent to f(v), can be found in [KG96, KV96]. We can now define ¢’ as f()
with EX(r A EXyes) replacing each occurrence of a quantified proposition 7. So,
if r is existentially quantified, the system chooses whether it holds or not (by en-
abling/disabling the transition from the state (w,r) to the state gys), and dually
for universal quantification. Note that we first apply f and only then do the re-
placement. The length of the formula ¢ is linear in the length of .

Finally, we remove the assumption about a plant having a third type of states by
adding to ¢’ a conjunct that disables the pruning of transitions from W,,. Formally,
this is done by adding W to AP, and having formulas like AG(w; — (EXws A EXw3))
that describe R. This is why the length of ¢ is O(|¢)| + | P|). 0

Since the number of atomic propositions in the formulas used in the reductions
in Theorems 5.7 and 5.8 is fixed, and since in the case P is fixed the size of ¥’ in

Theorem 5.10 is O(|¢)|), we can conclude with the following.

Theorem 5.11 The supervisory control problems for CTL and CTL* are 2-EXPTIME-
hard and 3-EXPTIME-hard in the size of the specification, respectively. O
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5.5 Conclusions

Our results shed additional light on the discussion regarding the relative merits
of linear versus branching temporal logics, cf. [Lam80, Pnu85]. We mainly refer
here to the linear temporal logic LTL and the branching temporal logic CTL. One
of the beliefs dominating this discussion has been “while specifying is easier in
LTL, model checking is easier for CTL”. As is argued in [KV96, KV97a, KV99b],
the computational advantage of CTL over LTL (cf. [CGP99]), disappears once one
considers reactive environments. Our results here show that the same phenomenon
occurs in the context of the synthesis problem and the control problem: once one
considers reactive environments, the problems for LTL and CTL are equally hard
(2-EXPTIME complete).

Note that for LTL, the environment being reactive or universal makes no differ-
ence: if a controller meets the specification in a universal environment, then it meets
the specification for all possible environments. This is because the set of paths gener-
ated when playing against the universal environment subsumes the paths generated
when playing against any environment.

In a setting with incomplete information, the system (resp., the environment)
may not be able to observe all the signals generated by the environment (resp., the
system), so a strategy needs to depend only on the observed signals. The effect that
incomplete information has on the complexity of the synthesis and control problems
can vary dramatically, from having no impact [KV97b] to causing undecidability
[PRI0]. An interesting question that deserves further study is whether one can

handle incomplete information in our setting within the same complexity bounds.



Chapter 6

Distributed Control

They roused him with muffins—they roused him with ice—
They roused him with mustard and cress—
They roused him with jam and judicious advice—

They set him conundrums to guess.

— The Hunting of the Snark, Lewis Caroll

6.1 Introduction

The aim of the previous chapters has been the study of the automatic design of
controllers for various branching-time specification mechanisms. In all the problems
considered so far (except that of Chapter 3), we have assumed that the controller
is centralized and can observe every move of the plant. In many settings, however,
the control problem arises in a distributed setting, where there are many programs,
distributed across a network, that interact with different environments and have
some capability to communicate with each other. In these settings, the controllers
we look for have to respect the distributed nature of the system. We need to build
controllers at the various sites and these controllers may not have complete infor-

mation about the evolution of the plant at the other sites. In this chapter, we study

98
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a version of the distributed control-synthesis problem for a set of programs that
behave synchronously and communicate using messages.

Let us say that we have a plant that has k processes, P;, P, ..., Py, that interact
with their local environments and can communicate with each other in some fixed
manner. The control problem in this setting is to come up with controllers Cy, . .., Cj
for the programs such that C; is a controller for P;, for each i. The important
point is that a local controller C; may not have complete information of the inputs
fed to the other programs by their local environments, and hence will not know
the exact states the other programs are in. However, it is not the case that the
processes are completely ignorant of each other’s configurations — they can pass
information along the fixed communication channels between them. These channels
may not be able to convey the entire state-evolution of a program at a site to another
site. However, there is some partial information exchange that is possible. The
problem is to come up with controllers that will control the plant and the messages
sent, so that the programs can exchange enough information to behave in a way
so that the specification is met. (We are not fixing many details, like the mode of
communication, specification language, etc. — but these remarks are independent
of these details.)

There are two ad-hoc ways in which we can (partially) solve the distributed-
synthesis problem. One of them was briefly outlined in Chapter 4. Note that the
system can be viewed as a set of £ players playing a game against an environment.
The distributed controller we are looking for is a prescription of how each player can
play such that they all win the game. One way to solve this is to assume that the
players are in fact playing against each other and trying to win the game no matter
how the other players play. If we can come up with a set of strategies at each site
so that, if a site plays according to its strategy, then it will win no matter how the
other players play, then surely this set of strategies will win against the environment.
Hence we would have a controller for the plant. However, if we cannot find such
a set, it does not mean that there is no distributed controller — it may be that
individual players may not be able to win by themselves but only by cooperating
in some manner. Hence, this method to solve the control-synthesis problem is not
complete.

Another way to solve distributed control without meeting it head-to-head, is to

view the system as a global system and build a centralized controller for it. This
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controller is one which can view all the inputs at all sites and control the behaviour
in a global manner so that it meets the specification. Existence and building of such
a global controller is often decidable, as shown in [Tho95, PR89a] and the earlier
chapters in this thesis. One can then try to see if this (particular) global strategy can
be realized as a distributed one — i.e. we can try and decompose this strategy into
local strategies at sites. This is decidable sometimes (for example Pnueli and Rosner
show this is decidable in their setting [PR90]), and if one succeeds in decomposing
it, then we have a distributed controller. However, again, if we don’t, we cannot be
sure that there is no distributed controller — for there might exist some other global
strategy that is decomposable. Hence this method too is sound, but not exhaustive.

A frontal attack on the synthesis problem in a distributed setting was first made
by Pnueli and Rosner in [PR90] (see also Rosner’s Ph.D thesis [R0s92]). In this pa-
per, they study a model where the programs communicate in a synchronous manner
through fixed communication channels, and show the surprising but disheartening
result that the realizability problem for almost all architectures is undecidable. The
problem can be seen as a multi-player game with incomplete information (as de-
scribed above) studied by Peterson and Reif [PR79], and the results in [PR90] are
extensions of these results. Pnueli and Rosner show that even a two-site architec-
ture where there is no possible communication between the sites, is undecidable.
They also identify a small class of architectures (called hierarchical architectures)
for which the problem is decidable.

The results in [PR90], though they are meant for realizability, extend to control-
synthesis as well. We show that it follows from their results that the only kind of
architectures for which the control problem is decidable is the singly-flanked pipeline
(called pipelines in [PR90]). A singly-flanked pipeline is a set of sites arranged in a
linear order, connected one to the other along the order with internal channels and
with a single environment input at the first site of the sequence (see Figure 6.2).

The decidable architectures identified above are particularly disappointing as
they don’t have external environment inputs at even two sites, and hence are not
non-trivial examples of distributed reactive systems. The negative results for other
architectures in fact stem from this property of having two external environments
and lead to the scenario where there are sites that have incomplete information
about each other (in the decidable architectures, for any two sites, one has complete

information about the other).
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The crucial idea for this chapter comes from our conjecture that the problem
is intractable because we are demanding global properties of systems that are in
fact distributed and have programs that are completely oblivious to each other.
The undecidability proofs crucially use this fact that the sites cannot exchange
information while the specification can demand global properties of them.

We therefore drop global specifications, and instead consider local specifications.
Local specifications can describe, for each site, how the site ought to behave — but
it cannot demand anything on the global evolution of the plants. Our hope was that
this may lead to a larger class of architectures that are decidable whilst reducing the
power of specifications but not making the specification too restrictive. Local logics
have been studied extensively in the concurrency community [Thi94, Ram96, Zie87].

Indeed, if one considers the control-problem for the two-site architecture which
is not connected, then it becomes trivially decidable for local specifications since
we can design controllers for the two sites, independent of each other, against their
respective specifications.

Though the idea looks promising, it turns out that the class of decidable archi-
tectures gets only mildly larger. The main result of this chapter is to classify the
exact class of architectures for which the control problem for local specifications is
decidable — this turns out to be the class of architectures where each connected
component is a sub-architecture of a doubly-flanked pipeline (see Figure 6.2). On
the positive side, our results show that we can design controllers for doubly-flanked
pipelines, which are nontrivial reactive architectures (as they allow at least two sites
for environment input). Indeed, our results show that the realizability problem can
also be effectively solved in this important setting, where the specifications at the
sites can state properties of the internal channels as well.

For convenience we study here only the controller synthesis problem and assume
local specifications to be given as Rabin conditions over the states of the local
plant. We consider Rabin conditions since they are expressive enough to state any
w-regular specification. Indeed, we could have worked instead with temporal logic
specifications, one at each site, which describes the desired behaviours of the local
programs. However, since one could cast this as a problem with Rabin conditions
(by building a deterministic Rabin automaton over words accepting the desired
behaviours [Saf88] and taking its intersection with the local plant), we can solve the

problem in that setting as well.
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Our undecidability results go through for weaker acceptance conditions right
down to reachability. Thus our negative results show that even in the presence
of local specifications, the controller synthesis problem is intractable for almost all
architectures.

In the next section we introduce the formal setting for our work. In Section 6.3
we briefly review the results on control synthesis for global specifications obtained
from the results of [PR90]. Section 6.4 establishes our decidability results for local

specifications while Section 6.5 proves the undecidability results.

6.2 Problem setting

An architecture is a tuple A = (S, X,T,r,w) where S = {sy,..., s} is a finite
nonempty set of sites, X = {x1,...,2;} is a set of external (or environment) input
channels and 7" = {t1, ..., t,} is a set of internal channels. r is a function r : XUT —
S which identifies for each channel a process which reads the channel; w : T — S
identifies for each internal channel, a process which writes into it.

We assume, without loss in generality, that each process has at most one external
input channel and that there is at most one channel from one site to another.

We represent architectures graphically as directed graphs whose nodes are the
sites and every channel z € X U T is represented by an edge — if z € T', then it is
an edge from w(z) to r(z) and if z € X, then it is a sourceless edge to (z). We only
consider acyclic architectures — i.e. those architectures whose graph representation
does not have a directed cycle. We will assume further that every site has at least
one input (external or internal) channel.

For example, consider the architecture in Figure 6.1. It represents the architec-
ture A = ({1, S2, 83, Sa}, {x1, 24}, {t1, Lo, t3, ta}, 7, w) where r(z1) = s1, r(x4) = 54,
r(t1) = s9, w(t1) = s1, r(te) = s3, w(te) = s1, r(t3) = 84, w(t3) = 89, 7(t4) = 84 and
w(ts) = s3. The external channels are represented by dotted lines.

As done in [PR90], we could have architectures with external output channels
as well. However, since we state our specifications in terms of how the sequences
evolve and not what is output along channels, and since specifications involving the
values output on channels can be converted to state-based specifications, we omit
these external output channels.

In our framework, each site runs a program which reads its external and internal
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Figure 6.1: An architecture

channel inputs and reacts by sending outputs along the internal channels to other
processes and changing its state. The moves are synchronous — i.e. the programs
read a set of external inputs and make one collective move while respecting the
partial order imposed by the architecture.

For example, in the architecture in Figure 6.1, in a synchronous step, s; will read
the environment’s input on z;, change its state and write onto ¢; and t5; s and s3
will, independently, read the inputs on ¢; and ¢, respectively; s, and s3 change state
and write onto t3 and t4, respectively; finally s4 will read both inputs on ¢3 and ¢4
and the external input on x4, and change its internal state.

For a site s € S, let in(s) = r~'(s), the set of channels which s reads from and
let out(s) = w™'(s), the set of channels s writes into.

Given an architecture A, a domain definition for A is a function D which asso-
ciates with each z € X UT, a finite set of values that can be sent along the channel
z. We denote D(z) sometimes as D,. For a set of channels Z, a valuation function
for Z is a function h whose domain is Z and which maps each z € Z to an element

of D,. Let H, denote the set of all valuation functions for Z.

Definition 6.1 A reactive synchronous plant (a plant in short) is a tuple (A, D, ﬁ)
where A is an architecture (say having k sites {si,..., sx}), D is a domain definition
for A, P is a set of programs, one at each site — i.e. Pis a tuple (Py,...Pg).

Each P; is a nondeterministic transition system (Q;, ¢, d;) where Q; is a set of
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states, ¢/ € @ is the initial state, J; is a nondeterministic transition function
612 : Qz X %m(sl) — P(Qz X Hout(si))-l 0

The transition function of each program defines the different ways in which a site
can react to a set of inputs on its input channels. Each such reaction gives a set of
values which can be written on the output channels together with a (possible) state
change. We say a plant is finite if (); is finite for each P;.

For example, consider an architecture with a site s; with in(s;) = {z,#;} and
out(s;) = {t2, t3}, where x is an external input channel and ¢,, t, and t3 are internal
channels. Consider a reactive synchronous plant where the program at s; is P; =
(Qi,q™,5;). Now let 6(g;, h) have the element (¢, g) where ¢;, ¢! € Q;, h is a function
that takes x to an element in D, and ¢; to an element in Dy, and g is a function
that takes ¢, and ¢3 to elements in D;, and D,, respectively. Then this means that
the plant, when at state ¢;, and reading the inputs h(z) on channel x and h(t;) on
channel t;, can write g(to) onto channel ¢, and g(¢3) onto channel ¢3 and change its
state to ¢.

Let (A, D, P) be a plant. For a program P = (Q,¢™,6) at a site s in A, a
local strategy for P is a function f : Q) X ’H;;(S) — @ X Houy(s) such that Vg € @Q,
T E %;(s), if = x'-h then f(q,7) € §(q, h). Thus the local strategy f is an advice
function for P which looks at the history of values (7’) on the local input channels
and the current values on the local input channels (h), and prescribes a move which
the local program P should take.

A distributed control-strategy is a set of local strategies, one for each site: i.e. a
tuple f = (f1,... fr) where each f; is a local strategy for P, We sometimes refer
to distributed control strategies as simply a distributed controller. A distributed
controller is said to be finite-state, if it can be realized as a finite-state transition
system. Let f = (fi,... fr) and let the state-space of P; be @); for each i. Formally,
f is finite-state if there is a (complete) transition system 7TS;, for each f;, on the
alphabet H;,s,) and a function g from the state-space of T'S; to the set of functions
from @; t0 Q; X Hout(s;) Such that for every « € (Hin(s,)) " and g € @, if the transition
system reaches state u on z, then g(u)(q) = f(q, z).

We will call a plant along with a strategy ((A, D, P), f) a controlled system. Let
us fix for now a controlled system ((A, D, f’), 1)

P(R) denotes the power-set of R
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We need some notations for talking about sequences. For a sequence «, let a/i]
denote the i element in « and «fi, j] denote the finite subsequence of o from the
i'" to the j™ element, both inclusive, for 0 < i < j, 4,7 € Ny. If a is a sequence of
functions on a domain Z, let o | Z’, where Z' C Z denote the sequence of functions
obtained by restricting each function in « to Z’: i.e. a | Z' = 3 where domain of
each f[i] is Z" and f[i|(z) = «[i](z) for each z € Z'.

Consider an environment input sequence (on the channels in X) a € (Hx)*.
Since P, when controlled by the strategy f, is deterministic, there is a unique way
in which the plant and controller respond to the external input — i.e. there is a
unique sequence of states each program takes and a unique set of channel values sent
along each channel. We can define these sequences as follows. Let 5 € (Hxur)* and
v € (Q1 X ...Qg)¥ such that:

L 0] = (g™, ..., gi")
22 80lX=a

3.VteT, jeNy, ifw(t)=s; and v[j] = (q1,...qx) with
fi(ai, B0, 5] L in(s:)) = (gi, h), then B[j](t) = h(t)

4. V5 € Ny, if v[j] = (q1,---qx) and ¥[j + 1] = (¢}, --.q}), then it must be the
case that Vi € {1,...,k}: fi(@, B[0,7] | in(s;)) = (g;, h) for some h € H oy sy

The definitions above formalize how the programs behave when they get an
external input. (1) says that the global state-sequence starts with the initial states.
The next condition requires that the values which the external channels take are
defined by the external input «. (3) demands that the internal channels take values
according to the move defined by the local strategy and (4) ensures that the states
also evolve according to the moves given by the local strategies.

It is easy to see that, since the architecture is acyclic, there are unique sequences
B and v which satisfy the above conditions. We call v the state-behaviour of the

system for the input a.

Global specifications

A global specification describes the set of sequences the plant is allowed to gen-

erate globally. Hence it is just a subset Gspe. Of (Q1 X ... Qx)".
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A controlled plant, when given an external input stream « on the external chan-
nels, produces a state-behaviour v as described above. The controlled plant meets
the specification G, if for every possible input stream c, the state-behaviour v
produced is in Ggpec.

The set G,y can be specified in various ways. For example, it could be specified
using LTL formulas where the atomic propositions are the local states of the plant
with the understanding that a state-behaviour v is interpreted as an infinite sequence
' over subsets of states where if y[i] = (g1, - - -, @), then ¥'[i] = {q1,...,q}. A more
powerful mechanism would be to specify G, as an w-automaton over infinite words
over the alphabet 29 where @ is the union of the sets of local states [Tho90].

Local specifications

Local specifications are defined on the local state-behaviours of the programs of
the plant. Since we wish to capture local linear-time properties, we define local
Rabin winning conditions and the specification then demands that the local runs of
the controlled system meet these conditions.

A local Rabin winning condition R; for a site s; is a set {(R1,G1),...(Rm,Gm)}
where R;,G; are subsets of ();, the state-space of the program at s;. A Rabin
winning condition W for a plant is a tuple (R;,...Ry) where each R; is a local
Rabin winning condition for s;.

Let v € (Q1 X ...Qk)* be a sequence of global states of the system. Let v | i
denote the sequence in ()% obtained by projecting v to the component involving Q);.
A sequence of global states y is said to satisfy a Rabin condition W if for each site
s;, v | ¢ satisfies the local winning condition R;, i.e. if for each site s;, there is a
pair (R, G) in R; such that inf(y | i) N R =0 and inf(y | i) NG # 0.

Finally, a controlled system is said to satisfy a Rabin winning condition W if for
every sequence of external inputs a € (Hx)“, the state-behaviour v defined by «
satisfies W.

Note that, like in global specifications, we could have defined a set of local
specifications where the local specification of a site s is description of set of “local
state-sequences” the site can go through. However, any such w-regular set of local
sequences at a site can be determinized to get a deterministic Rabin automaton
on infinite words ([Saf88, Tho97]). One can take a product of this deterministic

automaton with the concerned local plant to reframe the specification in terms of a
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Rabin winning condition.

Control synthesis problem

Given a local or global specification, a distributed control-strategy f for a plant
(A, D, P) is said to be winning if the controlled system ((A, D, P), f) satisfies the
winning condition. Note that the strategies are always local. We henceforth just
say “strategy” to mean a distributed control-strategy.

We can now state the control-synthesis problem for an architecture .A:

Definition 6.2 [Control problem for 4 against global specifications]
Given a finite reactive plant (A, D, ]3), and a global specification Gy, does there

exist a winning strategy for the plant? O

Definition 6.3 [Control problem for A against local specifications|
Given a finite reactive plant (.A,D,l3), and a Rabin winning condition W, does

there exist a winning strategy for the plant? O

Our main aim is to classify those architectures for which, given a domain defini-
tion and a plant, the control problem is decidable.

In this connection, two important classes of architectures are the singly-flanked
pipelines and the doubly-flanked pipelines. Singly-flanked pipelines are pipelines that
have external inputs only at the left end while doubly-flanked pipelines have external

inputs at both ends (see Figure 6.2):

Definition 6.4 An architecture A is said to be a pipeline if the sites in A are
S1,...5k (for some k € N) and there are exactly k£ — 1 internal channels ¢y, ... %1,
with w(t;) = s; and r(t;) = s;41 fori € {1,...,k — 1}. A singly-flanked pipeline is
a pipeline that has a single external channel z; with r(x1) = s1. A doubly-flanked
pipeline is a pipeline that has exactly two external channels x; and z, with 7(z1) = s;

and 7(z2) = sg. O

We will also need the notion of a sub-architecture — an architecture A’ =
(8", X', T',r',w'") is a sub-architecture of an architecture A = (S, X,T,r,w) if the
graph of A’ is isomorphic to a subgraph of the graph of A: i.e. there is a 1-1 func-
tion g : SSUX'UT' — SUX UT such that g(S') C S, ¢g(X') C X, g(T") C T,
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Figure 6.2: Flanked pipelines

for each 2’ € X', g(r'(2')) = r(g(«")), and for each t' € T", g(r'(t')) = r(g(¢')) and
g(w'(t")) = w(g(t')). Note that an architecture is a sub-architecture of itself.

The control problem for global specifications has already been virtually settled
by Pnueli and Rosner [PR90]. It follows from their results that there is only one
kind of architecture for which the control problem is decidable — the singly-flanked
pipeline architectures.

The main result of this chapter is to give identify the precise class of architectures
for which the control problem for local specifications is decidable. This class is the
class of all architectures all of whose connected components are sub-architectures of

a doubly-flanked pipeline.

6.3 Control synthesis against global specifications

Pnueli and Rosner show in [PR90] that a variant of the control problem, namely
the realizability problem, is decidable for the singly-flanked pipeline. The realiz-
ability problem is awkward to formalize in our setting — it is better stated in a
setting where sites can have external output channels as well. Then, the realizabil-

ity problem is one where we are given an architecture and a specification describing
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sequences of values output by each site, and are asked whether there is a program at
each site that realizes the specification. A program at a site now not only outputs
values along internal channels, but also along the external output channels. Also,
the program is not constrained in any way — it can output any set of values at any
point, unlike the strategies in the control problem.

The proof in [PR90] can however be easily modified to handle the control problem

and we have:

Theorem 6.1 ([PR90]) The control problem for the class of singly-flanked pipeline

architectures against global specifications is decidable. a

In [PRY0], it is also shown that the two-site architecture with no internal chan-
nels, i.e. the architecture Ay, = ({s1, 52}, {z1,22},0,7, w) with r(z;) = s; and
r(z3) = S9, is one for which the realizability problem (and hence the control prob-
lem) is undecidable. In fact they show this for LTL and even weaker “reachability”
specifications. Using this, we can in fact show that the control problem for an

architecture that is not a singly-flanked pipeline is undecidable:

Theorem 6.2 Let A be an architecture that is not a singly-flanked pipeline. Then

the control problem for A against global specifications is undecidable.

Proof We prove this theorem by reductions from the control problem for A, . First,
consider the case where A has two sites, s and s’, both of which have external input
channels. Then, given an instance of the control problem I for A, we can produce
an instance I' of the control problem for A by setting the programs of s and s’
to be the two programs assigned in I to the two sites in A,. Also, we can make
all the other sites “dummy” by making them output on any input, a fixed letter
on each local output channel. In this way, we virtually cut off any way of s and
s' communicating with each other. Also, we set the global specification to be any
sequence where the behaviours of the programs at sites s and s’ satisfy the global
specification assigned in I. It is now easy to see that there is a strategy for the
instance I’ of the control problem for A iff there is a strategy for the instance I for
Al

Now assume A is an architecture that doesn’t have two such sites and neither is
it a singly-flanked pipeline. Then, it is easy to see that A must have sites sg,...,s;

(where 7 > 0) and two sites s and s’ such that s, has an external input, there is an
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internal channel from s; to s;+1 for each j € {0,...7 — 1} and there is an internal
channel from s; to s and one from s; to s'. (Note that we do not claim that there
are no other sites or channels in A.) Now we reduce an instance I for A, to A by
setting the programs in I to s and s’. Also, the combined inputs for the programs
will be input into s;, which will propagate it through the internal channels to s;.
The program at s; will separate these inputs and feed them to s and s'. All other
sites will be “dummy” as in the previous reduction. Note that no program at any
site except those at s and s’ are really controllable (i.e. the programs at other sites
are deterministic). The global specification for the new instance I’ contains all se-
quences where the programs at s and s’ satisfy the global specification of I. It is

again easy to see that there is a strategy for I’ in A iff there is a strategy for I in

AJ_. O

Observe that the above proof does not go through for the problem of realizability
of distributed programs, for we are crucially using the programs at “dummy” sites
to force the channels to carry only a fixed value. In [PR90|, the authors define
architectures so that they also take into account the number of values a channel can
take (i.e. the domain function) and identify a larger class of architectures for which
realizability is decidable. It is still an open problem to identify the exact class of

architectures for which the realizability problem is decidable.

6.4 Local specifications: Decidable architectures

In this section, we show that for architectures where each connected component
is a sub-architecture of a doubly-flanked pipeline, the control problem against local
specifications is decidable. Firstly, since we have local winning conditions, it is easy

to observe the following.

Proposition 6.1 The control problem for an architecture A is decidable iff the con-

trol problem is decidable for each of its connected components.

Proof Clearly, the control problem for an architecture A can be reduced to a set
of control problems, one for each component, by splitting the specification for the
components. This can be done as the specification is local. Also, the control prob-

lem for a component A’ of A can reduced to a control problem for A by inheriting
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the programs and specifications for sites in A’ and by giving “dummy” programs at
sites in A that are not in A’, and also making the local specification on these sites

always win. O

Hence it suffices to prove that the problem is decidable for architectures which
are sub-architectures of doubly-flanked pipelines. We use tree automata to establish
our results. Recall from Chapter 4 the definition of trees and nondeterministic and
alternating automata working on them.

Consider a plant (A, D, ﬁ) and a distributed control-strategy f for it. Let s be
a site in A with an output channel .

Let £ C (D;)“ be the language of infinite strings output on ¢ by the con-
trolled system ((A, D, P), f) (by considering all possible inputs on the external
input channels of the plant). We call such a language of infinite words, a com-
munication language for the channel t. (Note that £ # ().) Let Pref(L£) = {z |38 €
L, = is a prefiv of f}. Then it is not difficult to see that £ = lim(Pref (L)) where
lim(L) = {a € ¥ | for every prefit x of o, x € L}. Though this is true for any
architecture, we show it only for doubly-flanked pipelines as this will suffice for our

purpose.

Proposition 6.2 Let (A, D,ﬁ) be a reactive plant and let f be a distributed con-
troller for it with A = (S, X,T,r,w) a doubly-flanked pipeline. Let t € T be an
internal channel. Then, for sequences of external inputs o € (Hx)¥, let the se-
quence of values output on t be L C D(t)¥. Then L = lim(Pref(L)).

Proof Let us fix a doubly-flanked pipeline, say a canonical one with k sites as
illustrated in Figure 6.2. Let us first do the proof for the first internal channel. Let
s1 be the first site of the pipeline, with external input channel z; and output channel
t;. Let P; be the program at s; and let f; be a local strategy at s;. Let us show
that if the language of strings written onto t; is £, then £ = lim(Pref(L)). Clearly,
L C lim(Pref(L)).

Let T,, = (D(z1)*, E) be the full D(z)-tree. Now label this tree as follows:
label w € D(z1)* by the last value output by P; and f; on ¢;, when working on
input w on z7. Then, clearly one can label the whole tree (except the root) with
labels from D(t¢) and the labels on the path to a node w gives the string output on

t while reading w.
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Let « € lim(Pref(L)). Then for every prefix y of «, there is a § € £ such that
y is a prefix of 5. Now prune the D(z;)-tree as follows: at a level 4, retain only the
nodes which are labelled ai] and then take the connected part of the tree from the
root. That is, take the smallest subtree T" of T, such that

eccT

e If z € T and z.d € Ty, (where z € D(z1)*, d € D(x1)) and if the label of the
nodes in the path from the root to z.d is a prefix of «, then z.d € T

For any prefix y of «, since there is a 8 € £ such that y is a prefix of 3, along the
path in the D(z)-type tree which generates §, there will be a node such that the
path to it is labelled by y. Hence this node and all the nodes in the path from the
root to it will be in the pruned tree 7. Hence the tree 7T is infinite. Since D(z4) is
finite, by Konig’s lemma, there must be an infinite path in this tree. Surely this is
labelled by «. Hence o € L.

We can, by induction over the j, show that the property holds for the j’th inter-
nal channel ¢; in the pipeline. In the induction step, we start with the assumption
that the sequences fed into the input channel ¢;_; to a site s; satisfies the prop-
erty (when j = 1, ¢, is interpreted as z1). We consider then the subtree of the
D(t;_1)-tree, that represents the set of input sequences (since the language of input
sequences satisfies the required property, we can find a subtree such that the infinite
paths in the subtree is exactly the set of input sequences). Now consider the output
channel ¢; from s;. We proceed to label the tree with the values output by the
controlled program at s; on the corresponding sequence of inputs, as above. Then,
by a similar argument, we can establish that the language of infinite strings output

on t; also satisfies the required property. O

So L = Pref(L) C Dy, the set of finite sequences sent along ¢ represents the
set of infinite sequences sent along the channel as well. Let £ be a communication
language of the channel ¢ and L = Pref(L). Then £ can be represented (uniquely)
by a {T, L}-labelled D;-tree T = (D}, 7), where 7(z) = T if z € L and 7(z) = L,
otherwise. In such a tree if a node is labelled T then it will have at least one child
also with label T and if a node has label L then all its children (and hence the
entire subtree below it) will be labelled L. Also, the root, € is labelled T. Clearly

each such {T, L }-labelled D;-tree uniquely represents a communication language of
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the channel t. In what follows, we shall refer to such trees as t-type trees and work
with automata running over t-type trees. The t-type trees will also be referred to
as communication trees of t. If T is a t-type tree then we let Lang(T") denote the
language of infinite strings it represents.

Let us fix a doubly-flanked pipeline which has k sites, as shown in Figure 6.2.
We refer to s; as the left-site, s, as the right-site and each of the s;’s, 1 < i < k as
middle-sites.

We need one more notion before proceeding with the main constructions.

Definition 6.5

e Let s be the left-site of a doubly-flanked pipeline with input channel = and
output channel t. Suppose P is the program at s. Then, a language of infinite
words £ C D(t)“ is said to be an s-successful language if there is a local
winning strategy f at s such that the sequences of outputs produced on ¢,

when P and f work on all possible input sequences on z, is L.

e Let s be the right-site of a doubly-flanked pipeline with input channels ¢ and
x. Let P be the program at s. We say that a language £ of infinite strings
over D, is s-successful, if there is a strategy f at s which can work on the
input sequences in £ on channel ¢ and arbitrary inputs on channel z, and win

locally.

e Let s be a middle-site of a doubly-flanked pipeline with input channel ¢ and
output channel #. Let s host a program P. We say that £ C D(t)“ is
successfully generable by s on £ C D(t)¥ if there is a strategy at s that wins
locally when reading inputs from £ on ¢ and the sequences of outputs produced

on t' is (precisely) L'. O

When we do the construction of automata below for various languages, we would
like the automata to accept only communication trees. Instead of making sure each
time that the tree that is being read is indeed a communication tree, we first show
that the set of communication trees can be recognized by a tree automaton. In later
constructions, we always assume that we take the intersection with the automaton

that accepts the set of communication trees.

Proposition 6.3 Let t be an internal channel. Then there is an automaton which

accepts the communication trees of t.
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Proof The automaton is an alternating Biichi automaton A = (@, gT,0, F) where
Q=A{qr,¢,9.}, F =Q and ¢ is defined as:

* 3(gr, T) = (Vaepw (e ) A (Adepr (4, )

e §(qr, L) = false

6(¢, T)=d(gr,T)

° 5(q, _L) = /\deD(t) (QJ_a d)

e §(q., T) = false
® 5(q1,L)=20(g, L)

The states gt and ¢ make sure that the root is labelled T and that every T-
labelled node has a T-labelled child. The state g, keeps track whether the subtree
below a | -labelled node is fully labelled L. O

Lemma 6.4 Let s be the left-site of a doubly-flanked pipeline with input channel x,
output channelt and program P. Then there is an alternating tree automaton (on t-

type trees) which accepts a t-type tree T iff Lang(T) has an s-successful sublanguage.

Proof The automaton we construct, while running over a t-type tree T, guesses a
local strategy f for the program at s, makes sure that f produces no string which
is not in Lang(T) and also checks that f is locally winning.

The automaton has, in its state-space, a component encoding which state of the

program it is currently simulating. Then reading a node y of T', it does the following:
e Guess a set of moves from the current state for each possible input d in D(x).

e The automaton then propagates, for each d € D(z), a copy along the direction
d' € D(t) where d' is the output of the program on d according to the guessed
move. The corresponding successor state of the program is also propagated
and the automaton will check in these copies whether the labels of the nodes

it reads are T. This will ensure that the outputs are allowed by 7.
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Let the local Rabin winning condition be R. The acceptance condition ensures
that paths on a run encode state-sequences which satisfy R — this ensures that the
guessed local strategy is a winning one.

Formally, the automaton is defined as follows. Let the program be P = (Q, gix, 9)
where the transition system of the program is a function 6 : @ xHzy = P(QXHy).
Since there is only one input and one output channel, we can view § as a function
0:Q x D(z) - P(Q x D(t)) with the obvious interpretation.

The alternating Rabin automaton A is defined as A = (Q, ¢in, d’, R) where ¢’ is
given by:

e Let ¢ € Q. Let a partition at ¢ be a function g : D(z) — @ x D(t) such that
for every d € D(z), g(d) € 6(¢,d). Let G4 be the set of all partitions at g.

Then
e =\ A\ 90

9eGy deD(z)

e 0'(q, L) = false, for every q € @

The first transition says that when the program is in state ¢ and reading T, it
guesses a set of moves on each d € X. The automaton propagates a copy for each
input d € D(z) along the direction corresponding to the program’s output on d.
The second transition says that these propagated states should read a T, verifying
that the outputs guessed are allowed by the tree.

Note that a node in a run-tree of the above automaton corresponds to a unique
input history sequence on the channel x. This is why guessing the strategy of P

independently at the nodes of the run is justified. O

Note that the automaton in the above construction accepts a tree provided the
language represented by the tree merely contains an s-successful language. It seems
hard to strengthen this containment to equality. However, the present version will

suffice.

Lemma 6.5 Let s be the right-site of a pipeline with in(s) = {x,t} and let the
program at s be P. Then there is an alternating tree automaton on t-type trees

which accepts a tree T iff the language that T represents is s-successful.
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Proof The automaton will guess a local strategy for P at s on input sequences
a € Lang(T) along t and arbitrary input sequences 8 € D(z)¥ on z and make sure
that f is winning for all local runs on these sequences.

The automaton will keep track in its state-space the current state of P it is

simulating. Reading a node y of the input tree, it will do the following:

e Guess Y C D(t) corresponding to the set of successors of y labelled T. The

automaton will (in its next move) check if Y is indeed the set of T-successors.

e The strategy has to handle all inputs in Y on the channel ¢ along with an
arbitrary input in D(x) on channel z. The automaton guesses such a strategy
at this point by guessing moves from the current state of P on each h € Hy, 5y
with A(t) € Y. It then propagates along each direction d in Y, one copy of the
automaton for each d' € D(x) corresponding to the chosen move when channel
t carries d and channel z carries d'. It propagates the corresponding state of

P as well.

Let R be the local winning condition. The acceptance condition for the automa-
ton makes sure that all paths on a run encode a state-sequence in P which satisfies
R.

Formally, let P = (Q, ¢in,9), where the transition function of the program is a
function § : Q@ X Hzyy — P(Q). Since there is only one internal input and one
external input channel, we will use a function ¢ : @ x D(t) x D(z) — P(Q) with
the obvious interpretation. Let R be the local winning condition for P.

The alternating Rabin automaton is defined as follows: A = (QU{q.}, ¢in, ", R)

where ¢’ is defined as follows:

e Foraset Y C D(t), let aY guess at g be a function ¢g : Y x D(z) — @ such
that for every d € Y, d' € D(X), g(d,d') € 6(¢q,d,d’). Let Gy, be the set of
all Y guesses at g. Then

" T =\ ACV A A ©@d).d)n N d)}

0£YCD(t) g€Gy,q dE€Y d'eD(x) dgy
e 0'(q, L) = false, for every q € Q
e 0'(qy, T) = false

e §'(qr, L) =true
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The first transition says that when the plant is in state ¢ and reading T, it
guesses the set Y of the T-successors of this node, a way to choose transitions from
this state on every possible input in Y on ¢ and any input on z. The automaton
propagates a copy, for each input on d € Y and d' € D(z), along the direction d with
the corresponding successor state of the program according to the guessed move. It
also propagates the state ¢, along the directions not in Y.

The other transitions check whether the guess of Y in the previous step was
correct. Again, since each node in a run-tree corresponds to a unique input history

on t and x, the guessing of the strategy at these points independently is justified. O

Theorem 6.3 The control problem for the two-site doubly-flanked pipeline is decid-
able.

Proof Let the sites and channels of the pipeline be labelled as in Figure 6.2.
Using Lemma 6.4, construct an automaton A; which accepts a t;-type tree T iff s;
can successfully generate a sublanguage of Lang(T). Using Lemma 6.5, construct
Ay which accepts t;-type trees which represent languages which s, can win on. The
claim now is that a distributed winning strategy exists iff L(A;)NL(Asy) is nonempty.

Assume T € L(A;) N L(As) and let £ be the language it represents. Then there
is a strategy fo at so which will win on £. Also, there is a local winning strategy f;
at S; which will generate a sublanguage £’ of £. However, since the local winning
conditions are linear-time specifications, f, will win on £ as well. Hence (f1, fo) is
a distributed winning strategy. Furthermore, one can construct, from the runs of
Aq and A, on a regular tree in L(A;) N L(A3), a strategy which can be realized as
finite-state transition systems.

It is easy to see that if (fi, fo) is any winning distributed strategy, then the tree

corresponding to the language f; generates is accepted by A; as well as Aj,. O

Lemma 6.6 Let s be a middle-site of a doubly-flanked pipeline with in(s) = {t} and
out(s) = {t'}, and let the program at s be P. Let A be a nondeterministic automaton
accepting t-type trees. Then there is an automaton on t'-type trees that accepts a
tree T' iff there is a t-type tree T accepted by A and a language Ly C Lang(T") such
that Lo is successfully generable by s on Lang(T).
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Proof Let 7" be an input to the automaton and £’ be the language it represents.
The automaton, while reading 7’, will guess a t-type tree T, guess a run of A on T,
guess a strategy f for P on the input strings represented in 7" and make sure that
the run on 7' is accepting, make sure that the strategy outputs strings which are
included in £" and make sure that the strategy locally wins!

A node in the run on 7" will correspond to a node ' in 7" as well as a node x
of the tree T being guessed — here x is the sequence in D(¢)* on which the guessed

*

strategy has output y'. Note that each sequence in D(¢)* can lead to at most one
sequence in D(t')* being output and hence guessing of the tree 7" at nodes of the
run is justified.?

The state-space of the automaton will code both the current state of P as well as a
state of the automaton A which represents the state-label of the corresponding node
in 7', in the guessed run on 7. The automaton at a node in the run corresponding

to the node ¢’ in 7" and z in T will do the following:

e Guess the set Y’ C D(t') which corresponds to the children of 3 in 7" labelled
T.

e Guess the labels of the children of z in 7". This is the point where 7" is being
guessed. Let X C D(t) be the children of x labelled T.

e The automaton now guesses a move of P from the current state on each d € X
and makes sure that the output on ¢ is in Y’. It then propagates along each
direction d' € Y’ in T, many copies of itself — each corresponding toa d € X
on which the guessed move outputs d’. The appropriate successor state of P
is propagated. The automaton also guesses a transition of A from the node x

and propagates these automaton states as well.

The acceptance condition makes sure that along any path in the run, the state-
sequence of P along the run meets the local winning condition of s and the state-
sequence of the automaton meets the winning condition of A.

Formally, let P = (P, pi,,d) (by abuse of notation, we refer to state-space of P
also as P) where 0 : P x D(t) — P(P x D(t')) (note the change in notation). Let
R be the local winning condition at s.

Let A = (@, gin,d4,F) be the nondeterministic Rabin automaton where 64 :
Q x{T,L} - P(M), where M is the set of all functions m : D(t) — Q.

2If the site also has an external input, this will not be the case.
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Fix an arbitrary element ey in D(¢'). Formally, the alternating Rabin automaton
on t'-type trees is defined as follows:
A= ((P x Q)UQ, (Pin,in), 0", F') where ¢’ is defined as follows:

e Letpe P,qge Q. Foraset Y C D(t') and X C D(t), a partition of X into
Y at pis a function g : X — P x Y such that Vd € X, if g(d) = (p/,d’) then
(p',d') € 6(p,d) and d' € Y. For such a function g, let g(d)[1] and g(d)[2]
denote the P and D(t') components of g(d), respectively. Let IT ;- denote the
set of partitions of X into Y at p. Now,

(0, T)= V V V (ma@)

0AYCD(t') 0#XCD(t) gellyy mEda(g,T)

where

(1) = A (@[], m(d), g(d)[2])

deX

and

(2) = /\ (m(d), e)

dgx

e 0'((p,q), L) =false, for all p € P, g € Q.

e §'(q,L)=46"(q, T) = \/me(sA(q,L) /\dED(t) (m(d), eg), for all ¢ € Q.

The acceptance condition is defined so that a path in the run-tree is accepted iff

one of the following happen:

e The states along the path never leave the set (P x ()) and the first component
meets the Rabin condition R and the second component meets the Rabin

condition F.

e The states along the path eventually land in the set @@ (and hence stay there)

and this infinite suffix meets the Rabin condition F.

In the first kind of transition above, the formulas induced by (1) are similar to
the one in Lemma 6.4 except that now it is specialized to work over a guessed subset
X of D(t) rather than the whole of D(t). It also does the additional job of guessing
the automaton A’s move at this point on the letter T. The automaton propagates
along the children corresponding to moves on X, the program state as well as the

automaton state according to the guessed move.
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For successor states of the automaton A on directions not in X, the automaton
propagates these states along the arbitrary direction ey. This is done by the formulas
enforced by (2). The idea is that, since in guessing 7', we know that these children
are all going to read the full subtree labelled L, we just have to make sure that A
accepts this subtree from each of these states. These copies of the automaton will
not read the tree from this point, but simply guess some move on | and propagate
these states (as formalized in the last transition above).

Let us now turn to formalizing the acceptance condition. Let R =
{(R1,G4),...,(Rs,Gs)} and F = {(R|,G)),...,(R;,G})}. We augment the state-
space of the above automaton (in fact only the states that are in (P X Q)) with
another component, which contains the set of functions r : {1,...s} x{1,...,t} —
{0,1} x {0,1,2}. Thus we have states of the form (p, ¢, r). The transition function

remains the same except that the » component is updated to r’ as follows: for every
ied{l,...,s},jed{l,...,t},

e The first component of 7'(i, j) is 1 iff the current P-state is in R; or the current
Q-state is in R;.

e The second component of 7/(4, j) is defined as:

— If second-component of 7(i, j) is 0, then '(i, j) = 1 if the current P-state
is in Gy, else r'(i,7) = 0.

— If second-component of 7(7, j) is 1, then r/(4, j) = 2 if the current @)-state
is in G, else r'(4, j) = 1.

— If second-component of 7(7, j) is 2, then 7'(i, j) = 0.

Intuitively, the first component of (7, j) turns 1 whenever the current state hits
R; or R;-. The second-component of (i, j) evolves in such a way that it takes the
value 2 infinitely often iff the run meets both G; and G infinitely often.

Now, the acceptance condition F' has, for every i € {1,...,s}, j € {1,...,t},
the pair (P x @ x W, P x @@ x W') where W is the set of all functions r where the
first component of (i, j) is 1 and W’ is the set of all functions r where the second
component of r(7,7) is 2. A run satisfies such a pair iff it meets both G; and G;-
infinitely often and meets R; and R only finitely often.

F' also contains, for every (R,G) € F, the pair (RU (P X Q),G). These pairs

accept those runs that eventually settle in the state-space ) and meet the accep-
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tance condition of F. O

Theorem 6.4 The control problem for doubly-flanked pipelines is decidable.

Proof Let the pipeline have k£ sites, as in Figure 6.2. Starting with the left-site,
use Lemma 6.4 to construct an alternating automaton A; that accepts a t;-type
tree 17 iff s; can successfully generate a sublanguage of Lang(7T7). Convert A,
into a nondeterministic automaton A\l. Invoking Lemma 6.6 for sy, with A\l as the
automaton accepting t;-type trees, we can construct an automaton Ay which accepts
a tao-type tree Ty iff there is a tree 77 which A\l accepts and there is a local strategy
which wins on Lang(T;) and generates a sublanguage of Lang(Ty). Arguing in a
manner similar to the one in Theorem 6.3, we can show that A, accepts a tree T iff
there is a strategy f; at s; and a strategy fs at s; which work on all possible inputs
on z1, win locally, and generate a sublanguage of Lang(T3).

Invoking Lemma 6.6 repeatedly, we can walk down the pipeline till we have an
automaton Ag_; which accepts a t;_;-type tree Tj_; iff there are strategies at sites
S1y...,Sk—1 which win locally and produce a sublanguage of Lang(Ty_1) on tx_;.
Now using Lemma 6.5, construct an automaton A, which accepts t,_i-type trees
which s, can win on.

We can now show that £(Ax_1) N L(Ag) # 0 iff there is a distributed winning
strategy for the plant. Further, if there is a winning strategy, we can using the runs
on regular trees, walk back along the pipeline and synthesize winning strategies
which are represented by finite-state transition systems. This will then correspond

to a finite-state distributed controller. O

We note that sub-architectures of doubly-flanked pipelines are either doubly-
flanked pipelines or singly-flanked pipelines. Lemma 6.5 can be easily modified to

handle such a site. Hence we have:

Theorem 6.5 Let A be any architecture such that all connected components of A
are sub-architectures of doubly-flanked pipelines. Then the control problem for A is
decidable.
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.A1 -/42 A3

Figure 6.3: Basic undecidable architectures

6.5 Local specifications: Undecidable architectures

We show now that any architecture that is not a sub-architecture of a clean
pipeline is undecidable. We show first the undecidability of three basic architectures
shown in Figure 6.3.

The reductions will be from the halting problem for deterministic Turing ma-
chines starting with a blank tape. Our proofs are extensions of the undecidability
proof developed in [PR90].

Let us first assume a standard notion of Turing machines, as say in [HUT79.
A Turing machine working over a tape-alphabet I' is a tuple M = (Q, gin, —, )
where () is a finite set of states, g;, and ¢, belong to () and are the initial are
halting states, respectively, and —: @ x I' — @ x I' x {L, R} is the transition
function. — (g,a) = (¢, b,d) is interpreted as meaning that if M is in state ¢ and
reads the symbol a at the current head position, then it rewrites the cell with the
symbol b, the tape-head moves one cell to the right/left (depending on whether d is
R or L) and M changes its state to ¢'.

A configuration of the deterministic Turing machine M is a sequence C' € ['*- Q-
't where T" is the set of tape symbols and Q is the set of states. If C' = z.¢.y, with
g € @, then the machine is in state ¢ and has x.y written on the tape with the head
position on the cell after . The initial configuration, Cj, = ¢;, - b where ¢;, is the
initial state and b is the special tape symbol called blank. The transition relation

F on configurations is defined in the obvious way. We say that the machine halts
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on the blank-tape if Cy, F* C), where Cj, = ¢ - y with ¢, being the designated halt
state and y € ['". We assume that the tape-head of M never falls off the left-end of
the tape.

A crucial mechanism used in the proofs will be the encoding of a program at a
site so that it generates sequences of configurations when controlled by a strategy.
Let us explain this first before going into the proofs. Let s be a site with an input
channel z (z could be internal or external) and an output channel ¢. In order to have
s generate configurations on the channel ¢, we equip the domain of values for channel
t to include a suitable vocabulary to describe configurations. In particular, channel
t will be able to take values in I" and @ and also the special symbols $ and *. The
input channel z can take at least the two values S (which means “Start outputting
a new configuration”) and N (which means “output the Next symbol of the current
configuration”). The site s will host a program P which will behave as follows. On
receiving S, the program will output $, and on being prompted repeatedly with a
sequence of N’s, will output a configuration (i.e. a word in I'* - Q- T'"). At the end
of the configuration, it will output a $ again and wait for the next S input. If at
this point it gets N, then it simply outputs the symbol . The first configuration
output by the program is always Cj,.

The program P will, of course, be finite state and will not encode the exact
configurations generated. It will just be a transition system that allows, when fed an
input S when it is not generating a configuration, to generate any word in I'*-Q-T"*.
However, the program does enforce the condition that no matter how many N’s are
fed in the beginning, the first configuration output is the initial configuration. Note
that the program cannot by itself force the configuration output to even be finite.
What is important is that a controller strategy working on the program must be
able to generate any sequence of configurations, when prompted by the channel z,
as described above.

If something abnormal occurs (for example, if while in the middle of outputting
a configuration, the program receives S as input), we can assume that it goes to
a special state gy, where it is stuck and where, on any input, it outputs a special
symbol win on channel t.

Note that a strategy working on the program could generate different sequences
of configurations, depending on how long the delay was in between configurations.

Thus the behaviour of the controlled program is best viewed as a tree of configura-
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tions.

Let us now prove the first undecidable architecture:
Lemma 6.7 The control problem for the architecture A; is undecidable.

Proof Let us first note that there is a simple proof of this using the fact that
the realizability/control problem for the two-site disconnected architecture A, is
undecidable for global specifications, a result proved in [PR90]. We can reduce an
instance I of the control problem for A, to an instance I’ of the control problem
on A; by setting the programs at s; and sy to be the two programs assigned to
the sites in I. We can now engineer the programs at s; and s, so that they send
the current states they are in, along the internal channel, to s3 at every move. The
site s3 now reads the global behaviour of the programs and we can suitably state a
winning condition on sz so that the program at s; wins iff the global behaviour of
s; and sy meets the global specification mentioned in I.

We however go through a longer proof here by incorporating the proof in [PR90]
to our setting since understanding this will be a stepping-stone in proving the other
undecidability results.

Given a Turing machine M we construct an instance of the control problem on
A; as follows. The sites s; and s, will host programs so that a controller working on
them can generate configuration sequences of M, as described earlier. The channels
1 and x5 hence can carry values S and N and the sites s; and s, will produce
configuration sequences on ¢; and ¢y respectively.

The site s3 will process the configurations sent by s, and s3 as follows. Suppose,
starting from the same time instant, s; starts sending C and s, starts sending C".
If s; and s, are both outputting the " configuration for some i, then s3 checks
whether C' = C'. If not, it goes to a state from where it cannot win. If s, leads s;
by exactly one configuration, then s3 checks whether C' F C’. If not, it again goes
to a losing state. The behaviour for the case when s; leads so by one configuration
is analogous. If it so happens that at a point s; or s, leads the other by more
than one configuration, then s3 starts to ignore its inputs and goes to a state from
which it locally wins. Note that the program at s3 does not need to count the exact
number of configurations it has seen, but just maintain whether the configurations
are proceeding together, or if not, whether one of them leads the other by precisely
one configuration (and if so, which). The crucial fact is that this can be achieved

by s3 with a bounded amount of memory.



Chapter 6: Distributed Control 125

If s3 receives win from either of the other two sites, it goes to a state where
it always wins. Finally, s3 will check whether any of the sites output the halting
configuration — if they do, it enters a winning state.

The site s; and sy are controllable while s3 is not (i.e. the program at sj3 is
deterministic). The local winning condition will be trivial for s; and s, while in
s it will demand that it wins if it enters the winning states mentioned above (e.g.
when the configurations move more than one configuration apart or when the site
s3 reads a halting configuration from s; or s3).

Let us now look closely at how a pair of strategies at s; and s5 can hope to meet
the local specification of s3. We claim that for them to win, they must both output
the proper configuration sequence which the Turing machine goes through starting
from the initial configuration. In other words, we claim that if a pair of strate-
gies doesn’t do this, it will definitely not meet the specification (we are not saying
yet anything about what happens when they do output the correct configuration
sequences).

For assume that a pair of strategies at s; and s, do not output the proper
configuration sequence. Then, the environment can suitably schedule the outputs
of the configurations to make the controller lose. For example, let the first site to
go off the correct configuration sequence be s;. That is, there is a sequence of S’s
and N’s of length ¢ such that after the ¢’th input, s; outputs the first symbol that
is a wrong configuration while for all possible sequences of S and N of length 7, the
configuration sequences output by s, all conform to M.

Let s; on that particular sequence generate a configuration sequence
C1,Cs,...Cp, C" where C4,...,C, is the correct run of the machine and C,, t/ C".
The environment can now let s; run one configuration ahead of s,. Then, at some
point, s3 will read C,, from s, and C' from s; simultaneously. The check C, F C'
will fail, and s3 will go to a state from where the controller cannot win.

Now, if the strategies do indeed play the proper sequences of M, then in order
to win, s3 must see the halting configuration (in the scenario where the the environ-
ment forces the configurations to proceed together, say) It follows then that there

is a distributed controller for this plant iff the Turing machine halts. a

Note that in the reduction above, if there was a controller for the plant that meets

the specification, then M halts and one can in fact build a finite-state controller for
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the programs at s; and sy. Hence it follows that M halts iff there is a finite-state
controller for the plant that meets the specification; this shows that the control
problem is undecidable for A; even if we are seeking only finite-state controllers.

Let us now move on to the architecture A,. Here, the difference from the previous
setting is that we no longer have a site that can globally observe the plant while
maintaining that the other two sites can communicate “secretly” to it. (If we choose
s3 to be the global observer, then though s; and sy can pass on information to ss,
so will always be able to read the message from s; to s3, and change its behaviour
accordingly).

In order to get around this, we will use s; and s3 as the independent agents (anal-
ogous to s; and s, in A;) which will generate configuration sequences, while sy will
be the one that checks these sequences. However, note that s; cannot communicate
to $o.

Let us now introduce a mechanism whereby a site can “accept” sequences of
configurations rather than generate them. Let s be a site with no output channel
and a single internal input channel ¢. As usual, channel ¢ will carry values S and N
in order to prompt s to generate sequences. However, when s starts a configuration,
it will generate it one unit time in advance and keep the generated symbol of ['U Q)
in its state-space. It can then proceed from this state only if the input it receives on
t is the same as the symbol it has committed to. For example, at a particular point,
on prompting, let us say that s commits that the next symbol it will generate is a.
Then the program at s moves to a state of the form (¢,a). At the next instant, s
can move from (g, a) only if it receives a as input on ¢. It then proceeds to commit
the next symbol. If the expected signal is not read, then s will go to a state where
it loses. This mechanism can be viewed as a way so that a strategy can fix a tree
of configurations which a site “generates” — and the program will win only if the

sequences generated on ¢ conform to these sequences.
Lemma 6.8 The control problem for the architecture Ay is undecidable.

Proof Site s; will output configurations on #; when prompted by the environment
on the channel z;. Site s3 will, when prompted by s, on Z5, “accept” configurations.

Site sy can go into two modes, A and B, the decision being taken according to
the first environment input on z,. In mode A, the program at s, simply passes the

configurations which it receives on ¢; to 5. In Mode B, the program first outputs
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the initial configuration to s3 and after that, each time it receives a configuration
C on t, it propagates online C’ to s3 where C' = C'. (Note that a finite transition
system can indeed generate C' from C' online, with a constant delay, say three time
units).

Recall that if s3 receives a symbol it has not committed to, it goes to a reject
state. Mode A ensures that the two sites output/accept the same configuration
sequences while Mode B ensures that if the i configuration output by s; is C' and
the (i + 1) configuration accepted by s, is C', then C' = C’. So the only way
the controller can hope to win is by s; and s3 accepting the configuration sequence
of M. By introducing a winning condition on sy which makes sure that s, locally
wins only if it outputs the halting configuration, one can show that the plant has a
distributed controller iff M halts on the blank tape. O

Lemma 6.9 The control problem for the architecture As is undecidable.

Proof As done by s3 of A, in the previous lemma, s; and s, will now accept
configurations of M. Site s can be in two modes, A and B, the mode chosen by the
first input on . In Mode A, the program at s; passes the initial configuration Cj,
to s; and makes sy wait. Then, while getting as input an arbitrary configuration
C from the environment on z, it passes C' to s, and simultaneously passes C' to s;
where C'+ C'. Mode B is analogous with the roles of s; and s interchanged.

Sites s; and s, accept configuration sequences and when they get an input which
is not what they have committed to accept, they go to a stuck state stk. If they are
not in this state, we say they are unstuck.

Now, assume that at least one of the sites s; and sy doesn’t accept the correct
configuration — say s, is the one which accepts the smallest wrong sequence. Then
the environment can force s; to be unstuck and get sy stuck by playing in mode
B and sending the proper sequence of configurations of M to s; and sy. If s; was
the one that accepted the smallest wrong sequence, then the environment can get
s1 stuck while keeping s, unstuck, by playing in mode A. Note, however, that no
matter how the controller plays, the environment can force both s; and s, to get
stuck by feeding a completely unrelated configuration to s. Also, if programs at s;
and sy accept the correct run of M, then there is no way for the environment to get

the site scheduled earlier to be unstuck and the site scheduled later to get stuck, i.e.
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it is impossible to go into mode A and keep s; unstuck and get sy stuck or go into
mode B and get s; stuck and keep s, unstuck.

Hence, to force s; and sy to accept the correct configuration sequence of M, we
would like the environment to win iff it can get the site scheduled first to be unstuck
and get the other stuck. This kind of condition, however, is not realizable as local
winning conditions on s; and ss. The trick now is to have another mode C' for s
where the controller is forced to emulate the combined (product) behaviour of s
and ss.

In mode C', the program will enter a zone where the state-space is the product
state-spaces of the programs at s; and s,. This zone of the program will in fact be
controllable and we would like to enforce the condition that a winning strategy for
s must control it in a manner such that it exactly mimics the (combined) behaviour
of s; and sy. Just after entering mode C', the program will, depending on the next
input on z, decide whether it enters the submode A or B. Hence it goes to a
mode C4 or Cg. In mode Cy, it virtually passes the initial configuration to its first
component (that corresponding to s;) and makes the second component wait. The
strategy for s at this point has to decide how the component states will evolve. (Note
that this strategy has access to a lot of information — the mode of the state, the
exact product state, etc. Its choices need not be “independently” made for the two
components). When the components evolve, they commit to certain symbols and s
is forced, by the structure of the program, to send these values along the channels
t1 and t,. The crucial point is that the sites s; and s, are oblivious to these modes
and have to behave the same way on all modes.

At any point in this interaction, the environment can choose to send a special
symbol check to s. When s in mode C' receives this, it immediately sends the value
of the current local states of the programs of s; and s, along the channels ¢; and %,.
The programs of s; and sy are augmented in such a way that on receiving a state
of the program, they go to a state that is winning if it is the same state they are in;
otherwise they go to a losing state.

Now, if a strategy at s doesn’t mimic the exact behaviour of the strategies at s,
and so, then it is easy to see that the environment can play in mode C' and make
the strategy lose at s; or ss.

The winning condition can now be stated on the state-space of s in the zone

corresponding to mode C, by allowing a behaviour to be winning for the environ-
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ment only if it reaches a state where the program is in mode C}y, the component
of s; is unstuck the component for sy is stuck, or, the program is in mode Cg, the
component of s, is unstuck the component for s; is stuck. One can make make sure
that one of the sites, say s;, wins when it accepts the halting configuration. One

can show now that a distributed controller exists iff M halts on the blank tape. O

Though we have proved the undecidability result only for three architectures,
they show the undecidability of all other architectures as well. Using Lemma 6.7
we can show that any architecture A’ which has a site s with two internal channels
is undecidable. Let s’ be such a site with s| and sj such that there are internal
channels from s! and sj to s’. The idea is to pick a minimal site s} above s{ and
a minimal site s}, above sj. One can reduce the control problem for 4; to such an
architecture by setting the programs at sites s3, s; and sy in A; to be the programs
at s, s) and s}, in A', respectively. We can make the rest of the sites “dummy” by
making them just pass their input to their output and always win locally.

If there is only one minimal site § above s{ and it is the only minimal site above
sy as well, then it must be the case that there is a path from 3 to a site § such
that 5’ has two internal output channels to sites s| and s, that are above s} and sj,
respectively. We can now set the programs of s; and s, in A; to be the programs
at ! and s}, set the program at s3 in A; to be the program at site s’, make 5 take
the inputs for both sites s| and si and propagate it all the way to §'; the program
at § will simply separate the inputs and feed them to s} and s/, and the programs
at s} and s}, will propagate these inputs to s and s respectively.

Similarly, using Lemma 6.9 we can show that any architecture which has a site
with two internal output channels is undecidable.

What we are left with are pipelines. Since we require each process to have an
input channel, the left-site of the pipeline must have an external input channel. Let
us have a pipeline with sites {s},...,s}}, with s having an external input channel
and with internal channels from s; to s; ; for each 0 <4 < k. If £ = 2 or if s} is
the only other site which has an external input, then it is a sub-architecture of a
doubly-flanked pipeline (and hence the control problem is decidable). So let k& > 2
and let s; have an external input channel, where 1 < ¢ < k. Then, by making the
sites s; “dummy”, where 1 < 7 <17 or: < j < k, we can reduce the control problem

for A; to the control problem for this pipeline, by coding the program at s; into s,
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the program at s into s, and the program at s3 into s. Hence we have:

Theorem 6.6 If A is an architecture which has a connected component which is
not a sub-architecture of a doubly-flanked pipeline, then the control problem for A is
undecidable. O

All the architectures shown to be undecidable above can be shown to be unde-
cidable even if we are looking for only finite-state controllers — this is so because
in all the reductions above, if there was a controller, then there was always a finite-
state one. The results above can be also suitably changed to show that even for
weaker winning conditions such as Biichi, co-Biichi, or even safety conditions, the
architectures remain undecidable.

The proof of Lemma 6.9 shows a method to convert certain global specifications
to local ones. We can use this technique to prove a lower bound on the complexity
of the control problem on the decidable architectures shown in Section 6.4.

Note the our decision procedure for the doubly-flanked pipeline works in time
that is non-elementary in the number of sites in the pipeline. This is because the op-
eration of converting alternating automata to nondeterministic automata when we
walk down the pipeline (see Theorem 6.4) blows up the state-space of the automaton
by one exponential each time. In the setting of global specifications too, the com-
plexity of decidability of singly-flanked pipelines is non-elementary in the number
of sites, as shown in [PR90]. Pnueli and Rosner show, using results in [PR79], that
this non-elementary complexity is unavoidable as well.

Let us consider singly-flanked pipelines. Using the fact that for solving realiz-
ability for these pipelines against global specifications needs time non-elementary in
the number of sites, we can show that this lower bound extends to control-synthesis
for local specifications on these architectures as well. First, it is easy to see that the
realizability problem for a pipeline reduces to that of control on the same architec-
ture and hence one needs time non-elementary in the number of sites for the control
problem against global specifications.

Now, we can reduce a control problem on these pipelines against global specifica-
tions to a control problem on these pipelines against local specifications. Consider a
control problem on a k-site ({s1, ..., sx}) singly-flanked pipeline with a global spec-
ification. We reduce this to a control problem on the (k + 1)-site ({s},...,5,,1})

singly-flanked pipeline with local specifications. The program at s; is inherited from
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the program at site s;_1, for each ¢ € {2,...,k+1}. Site s; will behave in two modes
A and C'; the mode it goes into will be decided by the first environment input. In
mode A, the input it gets is meant for s}, (the external input to s; in the problem
we started with) and hence it passes it on to the site sj.

In mode C, it behaves like the program at s in the proof of Lemma 6.9: it enters
a zone where it emulates the product behaviour of the programs at sites si, ..., s.
At any point, if it gets a special symbol check from the environment, it sends its
current state along the pipeline. The programs at sites s, ..., s} are modified so
that when they receive such a global state, they go to a state where the system loses
if the state doesn’t match the state they are in. If it does match, they move to a
state where the system wins and pass the state to the next site in the pipeline.

Using arguments similar to that of Lemma 6.9, one can show that for any winning
strategy, the local strategy at s| must emulate the strategies at s5,..., s}, when s}
is in mode C'. One can now encode the global specification for sy, ..., s, as a local
specification on s} and show that the reduction preserves the property of existence
of a controller.

Though this reduction is exponential in the number of sites, it shows that the
complexity of the control problem for singly-flanked architectures is non-elementary
in the number of sites. The same lower bound follows for doubly-flanked architec-
tures as one can engineer the program at the last site to ignore its external input.
Finally, it is easy to see that for any decidable architecture, the control problem
must take time non-elementary in the maximum number of sites in a connected

component of the architecture.

6.6 Conclusions

In this chapter, we have studied the problem of control-synthesis in a distributed
but synchronous setting for local specifications and characterized the exact class of
architectures for which the problem is decidable.

We could extend our study of distributed controllers for architectures that are
not acyclic — for example, rings. In a recent paper [KV01], the control problem for
the singly-flanked pipeline with other extra internal channels thrown in, has been
studied for global specifications, and shown to be decidable. However, this is not

surprising as one can show (as observed in [KV01] as well) that the extra internal
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channels cannot change the answer to the problem — there is a controller on such an
architecture iff there is one for the singly-flanked pipeline corresponding to it. This
is because the sites have strictly decreasing information of the global state of the
system and a site knows completely the configurations of the programs at all sites
down the pipeline. Hence adding internal channels that go backward on the pipeline
can carry no useful information. (Adding extra internal edges that go forward will
make them undecidable, even for local specifications, as we have shown.)

One can also study the control problem for local specifications for architectures
that have cycles. However, one can show, using our results, that even here most
architectures are undecidable. An important architecture for which the problem is
still open is the two-site ring (i.e. the architecture where there are two sites, both
having external input channels and having a channel both ways between them).
For rings with more than two sites (where at least two sites have external input
channels), one can show that the problem is undecidable.

Another direction to explore would be to try and extend the local specifications to
more powerful specifications that respect the connectivity in the architecture but for
which the control-problem remains decidable (for the class of decidable architectures
for local specifications). One such mechanism would be to have a set of tuples of
local winning conditions — a behaviour of the plant satisfies this specification if
there is some tuple in the set for which the local winning conditions are met. There
are logics like Product-LTL [Thi94|, for example,, that offer a localized temporal
logic that can be encoded in this manner.

A natural extension of our work would be to consider local branching-time win-
ning conditions instead of linear-time winning conditions. Again, in [KV01], Kupfer-
man and Vardi extend the decidability results of [PR90] for singly-flanked architec-
tures to global branching-time specifications. As for local specifications, the results
for doubly-flanked pipelines don’t seem to extend to the branching-time setting.
The crucial difficulty lies in Lemma 6.4 where it seems to be hard to accept exact
languages rather than sublanguages. Note that in Theorem 6.3, we crucially use the
fact that the specification is linear-time. We conjecture that the control problem for
branching-time logics (say for CTL* adapted in this setting) would be undecidable
for doubly-flanked pipelines.



Chapter 7

Conclusions

In the midst of the word he was trying to say,
In the midst of his laughter and glee,
He had softly and suddenly vanished away—

For the Snark was a Boojum, you see.

— The Hunting of the Snark, Lewis Caroll

In summary, we have shown the following results in this thesis:

- The control synthesis problem was studied for simulations and bisimulations and
it was shown that one can solve this in polynomial time. Moreover, whenever
a controller exists, one can synthesize a controller of polynomial size within

the same time-bounds.

- The control synthesis and model-checking problems for asynchronous simulations
is undecidable. The undecidability extends even to very simple classes of

concurrent systems.

- The control and realizability problems for the branching-time temporal logics
were studied. For universal environments, these problems reduce to module-

checking and hence are, for CTL and CTL*, EXPTIME-complete and 2-EXPTIME-

complete, respectively [KV96]. The complexity of these problems in reactive
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environments become exponentially harder — they are 2-EXPTIME-complete
for CTL and 3-EXPTIME-complete for CTL*.

- We also investigated the control-synthesis problem in a distributed setting, where
the processes communicate with each other in a synchronous fashion and also
interact with their local environments according to an architecture. From the
results of [PR90], it follows that for global specifications, the only decidable
architecture is the singly-flanked pipeline. We studied the problem for local
specifications and showed that the class of decidable architectures (mildly)
increases. The control problem for an architecture for local specifications is
decidable iff each connected component of it is a sub-architecture of a doubly-

flanked pipeline.

Future directions

Apart from the various open problems and directions mentioned in the conclud-
ing sections of the earlier chapters, a theme that universally begs attention is that
of partial observation. In many settings, the controller cannot observe all the moves
of the plant and has to give its advice based on only the partial information it
has about it [KS95, KS97]. A related technically similar work is that concerning
realizability under incomplete information studied in various papers by Kupferman
and Vardi [KV97b, KV99a]. The control-synthesis problem for simulations, bisim-
ulations, branching-time logics and distributed systems, in the setting of partial
observation, needs to be explored.

Another aspect of control usually studied is that of performance evaluation of
controllers. In settings involving simple state-based internal specifications, one can
define the notion of a minimally restrictive controller and synthesize it [CL99]. How-
ever, in many cases involving liveness conditions, as in temporal logics, such a naive
way of defining minimally restrictive controllers is useless as they almost never exist.
However, one does require a fair notion of when a controller is “better” than another
such that it is possible to synthesize the “best” controller.

The results on simulations and bisimulations of Chapter 2 are conspicuous in
that they are not solved using automata-theoretic methods. Of course, one could
use tree-automata here as well — but, a naive way of using them, would not give

us polynomial-time decidability. The most natural way to code the problem into an
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automaton would involve the automaton guessing the moves enabled and how they
will be simulated and this itself would cause an exponential blow-up. Of course, one
just needs to define a class of automata which are suited for handling simulations and
bisimulations and use the efficient mechanisms employed in Chapter 2 to get optimal
results. We feel that this requires further study and a definition of tree automata
which, by their very structure, accept only bisimilar sets of trees and followed by a
formal study of them, will be rewarding.

The results in Chapter 6 also suggest many extensions. The study of distributed
controllers for subclasses of branching-time specifications would be interesting. A
more interesting question is whether one can restrict the control problem in a dif-
ferent way (say by reducing the power of the controller’s memory) in order to get
decidability across a more generous class of architectures.

A serious drawback of our distributed-control model is that the communication
is synchronous. In most practical situations (say in protocols, etc.), the processes
cannot hope to communicate in this manner but only by message-passing along
channels, where messages can take arbitrary time to reach their destination. Our
setting is only distributed in nature and it is important to bring concurrency into
play as well, and try to synthesize controllers in such a setting. A possible place to
start is the work by Pnueli and Rosner on the synthesis of asynchronous reactive
modules [PR89b].

The close link between synthesis and games extends to the distributed setting,
where we can consider designing a distributed controller as finding strategies in
multi-party cooperative games studied in [PR79, APR91]. The authors in these
works show that “hierarchical games”, where the information flow proceeds in one
direction, is decidable. Our results show that there can exist settings where there is
no such hierarchy, where two players can have incomplete information about each
other, and yet the problem of finding winning strategies is decidable. It would be
interesting to study in more generality the games that correspond to the control
problem in our setting, and find the real reason why such games turn out to be
decidable. Proving our results in the more general framework of multi-player games
will give a better understanding of the issues involved and may find applications in
other areas as well.

Yet another general extension would be to study control-synthesis for systems

where the behaviours encode not only the order in which events occur, but also at the
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exact times at which they occur as well. There are fairly robust mechanisms in com-
puter science such as timed-automata [AD94] using which one can model and analyze
timed-systems. The problem of control synthesis for such systems against linear-time
specifications has been undertaken in recent works [AMP95, AMPS98, HW91|. Ex-
tension of these results to the the setting where specifications are external or where
the setting is distributed, would be rewarding in terms of theoretical understanding
as well as practical use.

Reaching out to handle more continuous forms of behaviour can be stretched
even further — for example, in the control of hybrid systems, say using the model of
hybrid automata [Hen96]. However, these models, though interesting and extremely
useful, seem hard at present to analyze, let alone achieve automated control.

On the practical side, considerable effort is needed in terms of building tools
and heuristics to do control-synthesis. There has been very little implementation of
programs for automated synthesis of controllers and this situation needs to improve.
The high-complexity of control-synthesis should not deter trying big examples, as
it is not clear how the complexity will play out in practice. The complexity is also
usually high only in terms of the size of the specification, and not the plant itself,
and hence might be practically feasible. We hope that the work presented in this

thesis will one day find uses in practical applications in industry.



Appendix

Undecidability of simulation for products of systems

Here we will show how to realize the plants and specifications given in Chap-
ter 3 as a restricted class of asynchronous transition systems — those which can be
described as synchronized products of ordinary transition systems.

A Y-labeled deterministic synchronized product system is a structure ({ P}, @)
which consists a set of deterministic transition systems (processes) P, =
(Qi, E;, T, q,). The P;’s are supposed to represent sequential processes which work
concurrently and independently while synchronizing on common events. ¢ is a
labeling function ¢ : |JFE; — X. The asynchronous transition system which cap-
tures the behaviours of such a system is defined as the following “global” system
TS = (Q, E, T, ¢n, p, I) where:

¢ Q=01 XQ2X...Qy

o (1,5 qn) = (- q) iff
Vi:e € E; = (¢; — ¢}) isin P, and
Viiedg B = g =g

61Iegiﬂ‘{i‘elEEi}ﬂ{j‘GQEEj}:(D
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It is easy to see that the system defined above is indeed an asynchronous tran-
sition system.
The construction of the plant 7'5,.

TS, can be realised as a product of the following processes:

A process R = ({Ry, R1, Ro}, {ro, 71,72}, Tk, Ry) where T, has the transitions
Ry = R =5 Ry =% Ry

e A process U = ({Uy, Uy, Uz}, {uo, u1, us}, Ug, Uy) where U, has the transitions
Up = U = Uy = U

e For every i,j € {0,1,2} we have a process
Rij = ({q1,92, ¢}, {ig, miv1,7i-1}, T, ¢in) where T has the transitions:
Tit1 Ti—1 Ti—1 Tit1 ij
G — G —q@ G —q Q@2 — G2 41— g3

gin=q ifi=0and ¢, =2 if 1 # 0

e For every i,j € {0,1,2} we have a process
Uij = ({q1,92, 3}, {24, w1, uj1}, T, ¢in) where T has the transitions:
Uj+1 Uj—1 Uj—1 Uj+1 1
G —> Q@ — 1 G — Q1 g2 — Q2 G — g3

gn=q ifj=0and ¢, =g if 7 #0

e For every 4,j,7,j" € {0,1,2} such that ij and i'j' are distinct events and
it is not the case that ij I i'j’ (as defined in the construction), we have a
process ({q1, g2, 3}, {ij,7'5'}, T, ¢:) where T has the transitions: ¢; — ¢, and
q1 -2 g3
The construction of the specification 7S,.

TS can be realised as a product of the following processes:
e The same processes R and U as in the definition of TS,

e For every (c,ij)-event in T'S,, we have a process
Ry = ({a1, @2, 43}, {(¢,35), riv1, -1}, T, gin) where T" has the transitions:

Tit1 Ti—1 Ti—1 Tit1 (cd)
g — @ — Q1 g — q g2 — Q2 Q1 — q3

Gin = q1 if (1 =0 and c = ¢;,)
Gin = @2 if (1 # 0 or ¢ # ¢ip)
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e For every (c,ij)-event in TS5, we have a process
Uiy = ({a1, @2, a3}, {(¢,95), wjs1,uj—1}, T, gin) where T has the transitions:
Ujpy Uy uj—1 Uj41 (e:i4)
QL —q — Q1 qQ—qQ g2 — Q2 Q1 — g3

gin = q1 if (j =0 and ¢ = ¢z,)
(]inZQ2if(j7500rC7éCm)

e For every pair of distinct events (c,ij) and (¢/,4'j') in TS, such that it is
not the case that (c,4j) I (',4'j") (as defined in the construction), we have a
process ({q1, 2,43}, {(c,i7),(c,75")},T,q1) where T has the transitions:

(e585) (c'si'3")
¢ — geand ¢ —> g3
It is tedious but routine to verify that the product systems given above do

generate the asynchronous transition systems we need.

Undecidability of controller synthesis for a restricted class

Here we consider asynchronous transition systems of the form 7S5 =
(Q,E,T, ¢in,p, 1, 7 ) where TS = (Q, E, T, gin, @) is an asynchronous transition sys-
tem and I C ¥ x ¥ is an irreflexive symmetric independence relation over ¥ which
satisfies the following property: Vei,es € E, e I e; = gp(el)f(p(eg).

Note that any transition system TS = (@, E, T, gin, ¢, I) can be expressed as such
a restricted transition system TS’ = (Q, E,T, gin, p, I, f) by setting I = {(a,d") |
a,a’ € 3, a # da'}, provided that every two events e and e’ which have the same label
are dependent.

In the proof of undecidability of checking for simulations in Chapter 3, observe
that any two events of the same label are indeed dependent. Hence simulation
checking for the restricted class is undecidable as well.

Now we show that the controller synthesis problem is also undecidable for this
class by reducing the simulation-checking problem to this problem.

Let TS, = (Qpy Epy Ty, s 09, I, 1) and TS, = (Qs, By, Ty, 45, 05, Ls, I,) be two
such systems. We will construct TS;j and TS’ such that there is a simulation from
Uf(TS,) to Uf(TS,) iff there is a controller for (TS5}, TS)).

We first expand our alphabet. T'S} and TS will be ¥'-labelled transition systems
where X' =¥, U ¥, where ¥, = X U {x} and ¥; = {d' | a € £,}. Thus, for every

action a in Y, we have introduced a new action a'.
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Assume without loss of generality that X' as well as 27 are disjoint from Qp, Qs,
E, and E,. Then define TS, = (Q,, E,, T, qf;, o, I, j;) as follows:

I
pTp TP

e @, = QU {4,490, %« | @ € X} U{X | X is a nonempty subset of ¥;} U
{0 4}

B, =E, U U{@ |a€X,}U{+"}

[ =1

o vi(e) = pyle) ife € By prle) =aife =a € X gle) = d if e =

@, (K") = *
* ¢, =a,
° T]g = TpU

{(qla a, qa): (qlaala Qa’)a (qa,’d’/, qa,a’)a (Qa’a a, qa,a’) | q € Qp, ac E*} U
{(g1, 0", {a'}) |1 € Qpand a € .} U
{(X,d,Y) | X,Y are non-empty subsets of ¥; and o' ¢ X and

Y=XU{d}} U
{(a, %", q) [ @1 € @} U {(g,*", ¢ii)}

.I;J

I,U {(a,d) ]| aeX,}U
{(a/,b') | @ # b and a,b € X,}.

o I'=1,U{(a,d") |a€ S, }U{(,V)|a#bandabeX,}

TS', is defined in a similar way. Note that the construction preserves the property
required to stay within this class.

Again, using the basic properties of asynchronous controllers, we can prove that
any controller for (TS, TS;) must be the trivial one which allows all system moves
at all times. We can use arguments similar to those in the proof of Theorem 3.2 to
show that there is a simulation from Uf(TS,) to Uf(TS;) iff there is a controller
for (TS, TS,).



Publications

[MT98a] P. Madhusudan and P. S. Thiagarajan. Controllers for discrete event
systems via morphisms. In Davide Sangiorgi and Robert de Simone, editors,
CONCUR’98, Concurrency Theory, 9th International Conference, Proceedings,
volume 1466 of Lecture Notes in Computer Science, pages 18-33, Nice, France,

September 1998. Springer-Verlag.

[KMTV00a] O. Kupferman, P. Madhusudan, P.S. Thiagarajan, and M. Vardi. Open
systems in reactive environments: Control and synthesis. In Proc., CONCUR
‘00, Concurrency Theory, 11th Int. Conf., volume 1877 of LNCS, Penn. State
Univ, USA, September 2000. Springer-Verlag.

[MT01a] P. Madhusudan and P. S. Thiagarajan. Branching time controllers for
discrete event systems. To appear in CONCUR’98 Special Issue, Theoretical
Computer Science, 2001.

[MTO01b] P. Madhusudan and P. S. Thiagarajan. Distributed control and synthesis
for local specifications. In Proc., ICALP °01, 28th International Colloquium on

Automata, Lang. and Programming, volume 2076 of LNCS, Crete, Greece, July
2001.

141



Bibliography

[ADY4]

[ALWSY]

[AMO95]

[AMPO5]

[AMPSO8]

[APR91]

[Bed8s]

R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183-236, 1994.

M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable
concurrent program specifications. In Proc. 16th Int. Colloguium on
Automata, Languages and Programming, volume 372 of Lecture Notes

in Computer Science, pages 1-17. Springer-Verlag, July 1989.

M. Antoniotti and B. Mishra. The supervisor synthesis problem for
unrestricted CTL is NP-complete. Technical Report Technical Report
TR1995-707, New York University, NY, USA, November 1995.

E. Asarin, O. Maler, and A. Pnueli. Symbolic controller synthesis for
discrete and timed systems. In P. Antsaklis, W. Kohn, A. Nerode,
and S. Sastry, editors, Hybrid Systems II, volume 999, pages 1-20.
Springer-Verlag, 1995.

E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for
timed automata. In Proc. IFAC Symposium on System Structure and
Control, pages 469-474. Elsevier, 1998.

D. Salman Azhar, Gary L. Peterson, and John H. Reif. On multi-
player non-cooperative games of incomplete information: Part 1 - de-
cision algorithms. Technical Report TR CS1991 -37, Computer Science
Department, Duke University, Durham, NC 27706, October 1991.

M. A. Bednarczyk. Categories of Asynchronous transition systems.
PhD thesis, University of Sussex, 1988. Technical Report No. 1/88.

142



Bibliography 143

[BL69] J.R. Biichi and L.H. Landweber. Solving sequential conditions by
finite-state strategies. Trans. AMS, 138:295-311, 1969.

[BLI7] G. Barrett and S. Lafortune. Using bisimulation to solve discrete event
control problems. In Proceedings of the American Control Conference,
pages 2337-2341, June 1997.

[CGP99] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
1999.

[Chu63] A. Church. Logic, arithmetics, and automata. In Proc. Interna-
tional Congress of Mathematicians, 1962, pages 23-35. institut Mittag-
Leffler, 1963.

[CKS81] A K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal
of the Association for Computing Machinery, 28(1):114-133, January
1981.

[CL99] Christos G. Cassandras and Stéphane Lafortune. Introduction to Dis-
crete Fvent Systems. Kluwer Academic Publishers, 1999.

[CLR92] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to
algorithms. MIT Press and McGraw-Hill Book Company, 6th edition,
1992.

[DRI5] V. Diekert and G. Rozenberg, editors. The Book of Traces. World
Scientific, Singapore, 1995.

[DTV99] M. Daniele, P. Traverso, and M.Y. Vardi. Strong cyclic planning revis-
ited. In S. Biundo and M. Fox, editors, 5th European Conference on
Planning, pages 34-46, 1999.

[EC82] E.A. Emerson and E.M. Clarke. Using branching time logic to syn-
thesize synchronization skeletons. Science of Computer Programming,
2:241-266, 1982.

[EJ88] E.A. Emerson and C. Jutla. The complexity of tree automata and
logics of programs. In Proc. 29th IEEE Symposium on Foundations of
Computer Science, pages 328-337, White Plains, October 1988.



Bibliography

144

[EK70]

[Eme90]

[Eme97]

[ESWO1]

[Fit96]

[GPSS80]

[Hen96]

[HKRO7]

Jack Edmonds and Richard M. Karp. Theoretical improvements in
algorithmic efficiency for network flow problems. In R. K. Guy,
H. Hanani, N. Sauer, and J. Schonheim, editors, Proceedings of the Cal-
gary International Conference on Combinatorial Structures and their
Applications, pages 93-96. Gordon and Breach, New York, London,
Paris, 1970.

E.A. Emerson. Temporal and modal logic. Handbook of Theoretical
Computer Science, pages 997-1072, 1990.

E. A. Emerson. Model checking and the mu-calculus. In Neil Im-
merman and Phokion G. Kolaitis, editors, Descriptive Complexity and
Finite Models, volume 31 of DIMACS: Series in Discrete Mathematics
and Theoretical Computer Science, chapter 6. American Mathematical
Society, 1997.

K. Etessami, R. Schuller, and T. Wilke. Fair simulation relations,
parity games, and state space reduction for Biichi automata. In Fer-
nando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors, Au-
tomata, Languages and Programming, 28th International Colloquium,
volume 2076 of Lecture Notes in Computer Science, pages 694-707,
Crete, Greece, July 2001. Springer.

M. Fitting. First Order Logic and Automated Theorem Proving.
Springer Verlag, New York, 2nd edition, 1996.

D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis
of fairness. In Proc. 7th ACM Symposium on Principles of Program-
ming Languages, pages 163-173, January 1980.

T.A. Henzinger. The theory of hybrid automata. In Proceedings of the
11th Annual Symposium on Logic in Computer Science, pages 278-292.
IEEE Computer Society Press, 1996.

T.A. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation.
In Proc. 8th Conference on Concurrency Theory, volume 1243 of Lec-
ture Notes in Computer Science, pages 273-287, Warsaw, July 1997.
Springer-Verlag.



Bibliography 145

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12:576-580, 1969.

[HP85] D. Harel and A. Pnueli. On the development of reactive systems.
In K. Apt, editor, Logics and Models of Concurrent Systems, volume
F-13 of NATO Advanced Summer Institutes, pages 477-498. Springer-
Verlag, 1985.

[HUT79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, Reading, Mas-
sachusetts, 1979.

[HWI1] G. Hoffmann and H. Wong-Toi. The control of dense real-time discrete
event systems. In Conference on Decision and Control, pages 1527—
1528, Brighton, England, December 1991.

[JLI1] B. Jonsson and K. G. Larsen. On the complexity of equation solving
in process algebra. In TAPSOFT, volume 493 of Lecture Notes in
Computer Science, pages 381-396. Springer-Verlag, 1991.

[JNOO] M. Jurdzinski and M. Nielsen. Hereditary history preserving bisimi-
larity is undecidable. In Proc., 17th Annual Symposium on Theoretical

Aspects of Computer Science (STACS 2000), volume 1770 of Lecture
Notes in Computer Science, Lille, France, 2000. Springer.

[JNWO96] André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from
open maps. Information and Computation, 127(2):164-185, June 1996.
A preliminary version appeared in Proceedings of Eighth Annual IEEE
Symposium on Logic in Computer Science, pages 418-427, Montreal,
Canada, June 1993. IEEE Computer Society Press.

[KG95] R. Kumar and V.K. Garg. Modeling and control of logical discrete

event systems. Kluwer Academic Publishers, 1995.

[KG96] O. Kupferman and O. Grumberg. Buy one, get one free!!! Journal of
Logic and Computation, 6(4):523-539, 1996.



Bibliography 146

[KGM91]  R. Kumar, V. Garg, and S. I. Marcus. On controllability and normal-
ity of discrete event dynamical systems. System and Control Letters,
17:157-168, 1991.

[KMTV00a] O.Kupferman, P. Madhusudan, P.S. Thiagarajan, and M. Vardi. Open
systems in reactive environments: Control and synthesis. In Proc.,
CONCUR 00, Concurrency Theory, 11th Int. Conf., volume 1877 of
LNCS, Penn. State Univ, USA, September 2000. Springer-Verlag.

[KMTV00b] O. Kupferman, P. Madhusudan, P.S. Thiagarajan, and M. Vardi. Open
systems in reactive environments: Control and synthesis. Technical
Report Technical Report TCS-00-03, Chennai Mathematical Institute,
Chennai, India, 2000. Available at http://www.cmi.ac.in.

[KS83] P.C. Kanellakis and S.A. Smolka. CCS expressions, finite state pro-
cesses and three problems of equivalence. In Proc. Second ACM Sympo-
stum on Principles of Distributed Computing, pages 228240, Montreal,
Quebec, August 1983.

[KS95] R. Kumar and M.A. Shayman. Supervisory control of nondeterministic
systems under partial observation and decentralization. STAM Journal
of Control and Optimization, 1995.

[KS97] Ratnesh Kumar and Mark A. Shayman. Centralized and decentralized
supervisory control of nondeterministic systems under partial obser-
vation. SIAM Journal on Control and Optimization, 35(2):363-383,
March 1997.

[Kup97] O. Kupferman. Augmenting branching temporal logics with existential
quantification over atomic propositions. Journal of Logic and Compu-
tation, 7:1-14, 1997.

[KV96] O. Kupferman and M.Y. Vardi. Module checking. In Computer Aided
Verification, Proc. 8th Int. Conference, volume 1102 of Lecture Notes
in Computer Science, pages 75—86. Springer-Verlag, 1996.

[KV97a] O. Kupferman and M.Y. Vardi. Module checking revisited. In Com-
puter Aided Verification, Proc. 9th Int. Conference, volume 1254 of



Bibliography 147

Lecture Notes in Computer Science, pages 36-47. Springer-Verlag,
1997.

[KVI7Db] O. Kupferman and M.Y. Vardi. Synthesis with incomplete informa-
tion. In 2nd International Conference on Temporal Logic, pages 91—
106, Manchester, July 1997.

[KV99a] O. Kupferman and M.Y. Vardi. Church’s problem revisited. The Bul-
letin of Symbolic Logic, 5(2):245 — 263, June 1999.

[KV99b] O. Kupferman and M.Y. Vardi. Robust satisfaction. In Proc. 10th Con-
ference on Concurrency Theory, Lecture Notes in Computer Science.

Springer-Verlag, August 1999.

[KV00] O. Kupferman and M. Vardi. p-calculus synthesis. In MFCS: Sympo-
stum on Mathematical Foundations of Computer Science, volume 1893

of Lecture Notes in Computer Science. Springer-Verlag, 2000.

[KVO01] O. Kupferman and M. Vardi. Synthesizing distributed systems. In 16th
Annual IEEE Symposium on Logic in Computer Science, pages 16-19,
Boston, Massachusetts, USA, June 2001. IEEE Computer Society.

[Lam80)] L. Lamport. Sometimes is sometimes “not never” - on the temporal
logic of programs. In Proc. 7th ACM Symposium on Principles of
Programming Languages, pages 174-185, January 1980.

[LP81] H. R. Lewis and C. H. Papadimitriou. Elements of the theory of com-
putation. Prentice-Hall, New Jersey, U.S.A.; 1981.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent
programs satisfy their linear specification. In Proc. 12th ACM Sym-
posium on Principles of Programming Languages, pages 97-107, New

Orleans, January 1985.

[LV95] Nancy Lynch and Frits Vaandrager. Forward and backward simula-
tions: I. Untimed systems. Information and Computation, 121(2):214—
233, September 1995.



Bibliography 148

[LX90] K.G. Larsen and L. XinXin. Equation solving using modal transition
systems. In Proc. 5th Symposium on Logic in Computer Science, pages
108117, Philadelphia, June 1990.

[McN93] R. McNaughton. Infinite games played on finite graphs. Annals of
Pure and Applied Logic, 65:149-184, 1993.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer Verlag, Berlin, 1980.

[MP81] Z. Manna and A. Pnueli. Verification of concurrent programs: The
temporal framework. In R.S. Boyer and J.S. Moore, editors, The Cor-
rectness Problem in Computer Science, pages 215-273. International

Lecture Series in Computer Science, Academic Press, London, 1981.

[MSS86] D.E. Muller, A. Saoudi, and P.E. Schupp. Alternating automata, the
weak monadic theory of the tree and its complexity. In Proc. 13th
Int. Colloquium on Automata, Languages and Programming. Springer-
Verlag, 1986.

[MT98a] P. Madhusudan and P. S. Thiagarajan. Controllers for discrete event
systems via morphisms. In Davide Sangiorgi and Robert de Simone,
editors, CONCUR’98, Concurrency Theory, 9th International Confer-
ence, Proceedings, volume 1466 of Lecture Notes in Computer Science,

pages 18-33, Nice, France, September 1998. Springer-Verlag.

[MT98b] P. Madhusudan and P. S. Thiagarajan. Controllers for discrete event
systems via morphisms. Technical Report TCS-98-02, Chennai Math-

ematical Institute, 1998. Available at http://www.cmi.ac.in.

[MTO01a] P. Madhusudan and P. S. Thiagarajan. Branching time controllers
for discrete event systems. To appear in CONCUR’98 Special Issue,
Theoretical Computer Science, 2001.

[MTO1b] P. Madhusudan and P. S. Thiagarajan. Distributed control and syn-
thesis for local specifications. In Proc., ICALP 01, 28th International

Colloquium on Automata, Lang. and Programming, volume 2076 of
LNCS, Crete, Greece, July 2001.



Bibliography 149

[MW80] Z. Manna and R. Waldinger. A deductive approach to program syn-
thesis. ACM Transactions on Programming Languages and Systems,
2(1):90-121, 1980.

[MW84] Z. Manna and P. Wolper. Synthesis of communicating processes from
temporal logic specifications. ACM Transactions on Programming Lan-
guages and Systems, 6(1):68-93, January 1984.

[Ove94] A. Overkamp. Supervisory control for nondeterministic systems. In
G. Cohen and J.-P. Quadrat, editors, 11th International Conference on
Analysis and Optimization of Systems - Discrete Event Systems, vol-
ume 199 of Lecture Notes in Control and Information Sciences, pages
5665, London, 1994. Springer-Verlag.

[Ove9T] A. Overkamp. Supervisory control using failure semantics and par-
tial specifications. IEEE Trans. on Automatic Control, 42(4):498-510,
1997.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Sym-

posium on Foundation of Computer Science, pages 46-57, 1977.

[Pnu85] A. Pnueli. Applications of temporal logic to the specification and ver-
ification of reactive systems: A survey of current trends. In Proc.
Advanced School on Current Trends in Concurrency, pages 510-584,
Berlin, 1985. Volume 224, LNCS, Springer-Verlag.

[PR79] G.L. Peterson and J.H. Reif. Multiple-person alternation. In Proc. 20th
IEEE Symposium on Foundation of Computer Science, pages 348-363,
1979.

[PR89a] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In
Proc. 16th ACM Symposium on Principles of Programming Languages,
Austin, January 1989.

[PR89Db] A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive
module. In Proc. 16th Int. Colloquium on Automata, Languages and
Programmang, volume 372, pages 652—671. Lecture Notes in Computer
Science, Springer-Verlag, July 1989.



Bibliography 150

[PRIO] A. Pnueli and R. Rosner. Distributed reactive systems are hard to
synthesize. In Proc. 31st IEEE Symposium on Foundation of Computer
Science, pages 746-757, 1990.

[Rab69] M.O. Rabin. Decidability of second order theories and automata on
infinite trees. Transaction of the AMS, 141:1-35, 1969.

[Rab72] M.O. Rabin. Automata on infinite objects and Church’s problem.
Amer. Mathematical Society, 1972.

[Ram96] R. Ramanujam. Locally linear time temporal logic. In 11th Annual
IEEE Symposium on Logic in Computer Science, pages 118-127, New
Brunswick, New Jersey, July 1996. IEEE Computer Society.

[Ros92] R. Rosner. Modular Synthesis of Reactive Systems. PhD thesis, Weiz-

mann Institute of Science, Rehovot, Israel, 1992.

[RW89] P.J.G. Ramadge and W.M. Wonham. The control of discrete event
systems. IEEE Transactions on Control Theory, 77:81-98, 1989.

[Saf88] S. Safra. On the complexity of w-automata. In Proc. 29th IEEE Sym-
posium on Foundations of Computer Science, pages 319-327, White
Plains, October 1988.

[SC85] A.P. Sistla and E.M. Clarke. The complexity of propositional linear
temporal logic. Journal ACM, 32:733-749, 1985.

[SVW8T] A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem
for Biichi automata with applications to temporal logic. Theoretical
Computer Science, 49:217-237, 1987.

[Thio4] P. S. Thiagarajan. A trace based extension of propositional linear time
temporal logic. In 9th Annual IEEE Symposium on Logic in Computer
Science, pages 438-447, Paris, France, July 1994. IEEE Computer So-
ciety.

[Tho90] W. Thomas. Automata on infinite objects. Handbook of Theoretical
Computer Science, pages 165-191, 1990.



Bibliography 151

[Tho95] W. Thomas. On the synthesis of strategies in infinite games. In E.W.,
Mayr and C. Puech, editors, Proc. 12th Symp. on Theoretical Aspects of
Computer Science, volume 900 of Lecture Notes in Computer Science,

pages 1-13. Springer-Verlag, 1995.

[Tho97] W. Thomas. Languages, automata, and logic. Handbook of Formal
Language Theory, 111:389-455, 1997.

[VS85] M.Y. Vardi and L. Stockmeyer. Improved upper and lower bounds for
modal logics of programs. In Proc. 17th ACM Symp. on Theory of
Computing, pages 240-251, 1985.

[VW86a] M.Y. Vardi and P. Wolper. An automata-theoretic approach to au-
tomatic program verification. In Proc. First Symposium on Logic in

Computer Science, pages 322-331, Cambridge, June 1986.

[VW86b]  M.Y. Vardi and P. Wolper.  Automata-theoretic techniques for
modal logics of programs. Journal of Computer and System Science,
32(2):182-221, April 1986.

[WN95] G. Winskel and M. Nielsen. Models for concurrency. In S. Abram-
sky, D. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in

Computer Science, volume 3. Oxford University Press, 1995.

[WWO6| K. C. Wong and W. M. Wonham. Modular control and coordination
of discrete-event systems. Discrete Event Dynamic Systems, 6(3):241-
273, July 1996.

[Zie87] W. Zielonka. Notes on finite asynchronous automata. RAIRO Infor-
matique Théorique et Applications/Theoretical Informatics and Appli-
cations, 21:99-135, 1987.

[Zie98] W. Zielonka. Infinite games on finitely coloured graphs with appli-
cations to automata on infinite trees. Theoretical Computer Science,
200(1-2):135-183, 1998.



